CN118064487A - 一种半夏蔗糖合酶基因在减缓半夏高温倒苗而增产中的应用 - Google Patents

一种半夏蔗糖合酶基因在减缓半夏高温倒苗而增产中的应用 Download PDF

Info

Publication number
CN118064487A
CN118064487A CN202410166073.1A CN202410166073A CN118064487A CN 118064487 A CN118064487 A CN 118064487A CN 202410166073 A CN202410166073 A CN 202410166073A CN 118064487 A CN118064487 A CN 118064487A
Authority
CN
China
Prior art keywords
pinellia
pinellia ternate
bulbil
synthase gene
tuber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202410166073.1A
Other languages
English (en)
Inventor
赵丰兰
徐丽
黄伟
徐娟娟
段永波
薛涛
薛建平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huaibei Normal University
Original Assignee
Huaibei Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huaibei Normal University filed Critical Huaibei Normal University
Priority to CN202410166073.1A priority Critical patent/CN118064487A/zh
Publication of CN118064487A publication Critical patent/CN118064487A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1051Hexosyltransferases (2.4.1)
    • C12N9/1062Sucrose synthase (2.4.1.13)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y204/00Glycosyltransferases (2.4)
    • C12Y204/01Hexosyltransferases (2.4.1)
    • C12Y204/01013Sucrose synthase (2.4.1.13)

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明属于植物生物技术领域,具体涉及一种半夏蔗糖合酶基因在减缓半夏高温倒苗而增产中的应用。采用超表达半夏蔗糖合酶基因6(Ptsus6)能显著促进半夏珠芽快速生长发育,在高温下母株倒苗时珠芽能迅速萌发继续为半夏块茎发育提供碳源和能量,缩短倒苗时间,进而提高产量。本发明通过对蔗糖合酶基因Ptsus6的遗传操作,显著促进珠芽的发育和萌发,减缓半夏高温倒苗,延长半夏光合作用时间而达到增产的目的,有助于耐高温半夏种质资源的培育,提升产业价值。

Description

一种半夏蔗糖合酶基因在减缓半夏高温倒苗而增产中的应用
技术领域
本发明涉及生物技术领域,更确切地说涉及一种蔗糖合酶基因Ptsus6在减缓半夏高温倒苗而增产中的应用。
背景技术
半夏(Pinellia ternata)为天南星科半夏属草本植物,其块茎富含生物碱和有机酸等生物活性物质,具有镇咳祛痰、降逆止呕、抗溃疡、保肝等药理作用。因其广泛的药用功效,半夏已成为我国重要的大宗中药材之一。在新近防治新型冠状病毒中医药方剂中,半夏也是重要组分之一。巨大的市场需求使得半夏长期供不应求,发展高效的生产技术对于半夏产业发展意义重大。
在栽培生产中,半夏面临高温、强光和干旱等逆境胁迫,尤其是夏季高温严重影响半夏生产。当夏季气温升高至35℃以上时,半夏地上部分开始开始枯黄死亡,生长停滞,待天气转凉后块茎或珠芽再次萌发,继续生长。然而,半夏生长主要时间在5~10月,期间长时间面临高温胁迫,大幅度缩短了植株光合作用时间,导致半夏减产。为此,多个课题组研究了半夏耐热增产技术,如CN107347430A公布了一种基于施肥和激素结合覆盖遮阴网的高夏季高温期间焦半夏种植管理方法,CN108633659A公布了一种添加通风管增强半夏种植控温防腐能力的方法,CN103109688A公布了一种喷施茉莉酸甲酯延缓半夏高温倒苗时间提高半夏产量的方法。这些方法都是在种植后通过施肥和搭遮阴网等农艺措施提高半夏耐热性,进一步挖掘利用半夏内源逆境响应基因将有助于在增强耐热性的同时减少额外的人力财力投入。
珠芽是半夏的重要繁殖器官,通常每个叶柄上都会长一个珠芽,待发育成熟后可收获用作半夏种植起始材料。然而,珠芽生长发育常需要较长时间,且其萌发需要合适的温度和水分。本发明公开了一个半夏蔗糖合酶基因Ptsus6,其超表达能显著促进珠芽生长发育,且使得珠芽在母体植株开始枯黄时即可萌发,进而持续进行光合作用,为半夏块茎的发育提供碳源和能量,缓解半夏倒苗造成的块茎产量损失。
发明内容
本发明的目的在于克服现有技术的不足,提供一种能用于半夏抗高温倒苗的基因,具体为一种半夏蔗糖合酶基因在减缓半夏高温倒苗而增产中的应用。
本发明所采用的技术方案是:通过在半夏中超表达蔗糖合酶基因Ptsus6,促进珠芽生长发育,且在高温母体植株枯黄时即可萌发,减缓倒苗时长,进而达到增产的目的。
其包括如下特征:
1.一种半夏蔗糖合酶基因在减缓半夏高温倒苗而增产中的应用,其特征在于,所述方法包括:在半夏中增加蔗糖合酶基因Ptsus6的表达或活性。
2.如权利要求1所述的方法,其特征在于,以重组的方式将外源蔗糖合酶基因Ptsus6整合到半夏的细胞、组织和器官中,并使其过量表达。
3.如权利要求1所述的方法,其特征在于,所述的促进珠芽发育指珠芽产生时间提前,珠芽增大。
4.如权利要求1所述的方法,其特征在于,所述的缓减高温倒苗指高温下母体植株枯黄时珠芽即已发芽,持续为块茎生长提供能量。
5.如权利要求1所述的方法,其特征在于,所述的增产指半夏块茎增大,质量增加。
与现有技术相比,本发明的有益效果是:通过对半夏蔗糖合酶基因Ptsus6的遗传操作,显著促进株芽的发育和萌发,减缓半夏高温倒苗,延长半夏光合作用时间而达到增产的目的,有助于耐高温半夏种植资源的培育,具有重要的理论意义和应用价值。
附图说明
图1是基于实时荧光定量PCR的半夏Ptsus6在野生型半夏中的组织表达模式。以半夏Pt18SrRNA为内参基因。
图2是Ptsus6超表达载体构建及半夏遗传转化。
图3是实时荧光定量PCR检测转基因植株中Ptsus6表达量。以半夏Pt18SrRNA为内参基因。
图4是Ptsus6超表达植株表型。箭头指示珠芽。
图5是高温下Ptsus6超表达植株表型。左边为野生型植株,右边为2x35S::Ptsus6-1转基因植株。
图6是高温处理后转基因及野生型半夏块茎产量。
具体实施方式
针对高温造成半夏倒苗影响半夏块茎产量的问题,本发明人基于半夏植株的生长特征,揭示了一种与半夏珠芽发育和萌发紧密相关的基因——蔗糖合酶6(Ptsus6)基因,及其编码蛋白。本发明还公开了Ptsus6基因的用途,尤其是用于促进半夏珠芽发育和萌发以减缓高温倒苗,进而达到增产的目的。
Ptsus6是蔗糖代谢通路中的关键基因,其表达能催化蔗糖转变成葡萄糖。本发明人首次发现Ptsus6能促进半夏珠芽发生、生长和萌发,进而在高温下母体植株倒苗前萌发,继续为半夏块茎发育提供碳源和能量,提高块茎产量。
在本发明的优选实施例中,发明人克隆了Ptsus6基因并构建超表达载体,转化半夏,得到含有2x35S::Ptsus6表达盒的转基因半夏植株。在实验室和田间实验中均观察到转基因半夏的珠芽发育和成熟时间提前,珠芽增大,并在母体植株枯黄时珠芽即可萌发,同时转基因半夏块茎产量显著提高。
因此,本发明提供了所述Ptsus6蛋白及编码基因的用途,用于促进珠芽发育、成熟和萌发,进而提高半夏块茎产量。
本发明针对珠芽作为半夏重要繁殖器官的特征,首次发现Ptsus6在半夏珠芽发育中的作用,超表达该基因促进珠芽的发育和成熟,进而在母体植株枯黄时即可萌发,延缓半夏倒苗,提高块茎产量。
下面结合具体实施例,进一步阐明本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中为注明具体条件的试验方法,通常按照常规条件如J.萨姆布鲁克等编著的分子克隆实验指南,或按照制造厂商所建议的条件。
实施例1Ptsus6的克隆及序列分析
根据全长转录组数据信息设计引物进行PCR扩增,克隆到蔗糖合成酶基因Ptsus6。
Ptsus6编码区核苷酸长2448bp,编码815个氨基酸的多肽。
Ptsus6的核苷酸序列如下(SEQ ID NO:1):
ATGCCGGAACGCCAGTTGGCCCGCCTCCACAGCCTCAGGGAGCGCCTCGGCGACACCCTCTCCGCCAACCCCAACGAGCTGCTGGCCCTCTTCTCAAGGCTTGTTAACCATGGCAAGGGCATGCTGCAGCCTCACCAGCTTCTGGCGGACTTCGAAGCTGTGATCGCTGATTCGGACGGGCAGAAGCTGAAGGAGAGCGCCTTCGGCGAGGTTCTGAGGGCTGCCCAGGAAGCGATCGTGCTGCCGCCGTGGGTCGCTCTGGCCGTCCGACCAAGGCCTGGAGTCTGGGAATACATCCGCGTCAACGTGAACGAGCTGGCTGTCGAGGAGCTGAGCGTGCCCGAGT ACCTGAGGTTTAAGGAGGAGCTCGTCGATGGGGGCAACGACGGCAACTTCGTCCTGGAGCTGGACTTCGAGCCCTTCAATGCTTCCTTCCCCCGCCCCTCGCTCTCCAAGTCCATCGGTAACGGGGTGCAGTTCCTCAACCGGCACCTCTCCTCCAAGCTGTTCCACGACAAGGAGAGCATGGAGCCCCTGCTCAACTTCCTCCGCAGGCATAACTACAAGGGGATGACCATGATGCTGAACGACAGAATCCGCAGCCTTGCGGCTCTCAGAGGTGCACTGAGGAAGGCGGAGGAACACGTGCTCTGCCTGCCTTCCGACACCCCGTACTCGGAGTTTGATCACAGGTTCCAGGAGCTTGGATTGGAGAAGGGGTGGGGCGACTGCTCCGGGCGTGTGCACGAGAACATCCACCTGCTGCTGGACCTCCTCGAAGCCCCGGATCCGTGCACCCTGGAGAAGTTCCTGGGAACGATCCCGATGGTGTTCAACGTTGTGATCCTCTCCCCGCACGGATACTTTGCTCAGGCAAATGTTCTGGGTTACCCTGACACCGGCGGCCAGGTTGTTTACATTCTAGATCAAGTCCGTGCATTGGAGAACGAGATGCTCCTCAGGATCAAGCAGCAGGGGCTCGACATCACGCCCAGAATTCTTATTGTGACCCGGTTGTTGCCGGACGCCGTGGGGACGACCTGCGGCCAGCGCCTCGAGAAGGTCCTCGGAACGGAGCACACCCACATCCTCCGTGTCCCGTTCAGAACAGAGAACGGAATCCTTCGCAAGTGGATTTCCCGCTTTGATGTGTGGCCTTACCTGGAGACCTACGCCGAGGATGTTGCGAACGAGGTTTCAGGGGAGTTGCAGGCCAAGCCCGACCTGATCATCGGCAACTACAGCGATGGAAACCTCGTTGCCTCTTTGCTGGCGCACAAGATGGGGGTCACCCAGTGCACCATTGCTCATGCGCTGGAGAAGACCAAGTACCCCAGCTCAGATCTCTACTGGAAGAAGTTTGAGAACCAGTACCACTTTTCATGCCAATTCACCGCCGACTTGATCGCCATGAACCACGCCGATTTCATCATCACCAGTACCTACCAAGAAATCGCCGGAAGCAAGGACACCGTGGGGCAGTACGAGAGCCACATCGCCTTCACCATGCCGGGGCTCTACCGCGTCGTCCACGGCATCGACGTGTTCGACCCCAAGTTCAACATCGTCTCCCCCGGTGCCGACATGACCATCTACTTCCCCTACTCGGAGGAGAGCAAGCGGCTCACCGCCCTCCACTCGGAAATCGAGGAGCTCCTCTACAGCGAGGTGGAGAACGGCGACCACATATGCGTGCTCAAGGACAGGAGCAAGCCCATCATATTCTCCATGGCGAGGCTCGACCGTGTGAAGAACATGACGGGGCTCGTGGAGCTGTACGCCAAGTCGCCGCGGCTGCAGGAGCTGGTGAACCTGGTGGTCGTCTGCGGAGACCACGCGAAGGCGTCCAAGGACTTGGAGGAGCAGGCCGAGCTCAAGAAGATGCACAGCCTCATCCAGGAGTACAACCTCAACGGCAAGATCCGGTGGATCTCCGCCCAGATGAACAGGGTCCGCAACGGCGAGCTCTACCGCTACATCGCCGACACCAGGGGTGCCTTCGTGCAGCCTGCGTTCTACGAGGCCTTCGGGCTCACCGTCGTCGAGGCCATGACCTGTGGCCTGCCCACGTTCGCCACCGTGCACGGAGGCCCCGGCGAGATCATAGTGGACGGTGTCTCGGGCTACCACATCGACCCGTACCAGGGCGAAAAAGTTGCCGAGATCCTCGTCAACTTCTTTGATAAGAGCAAGGCAGATCCATCACTCTGGGAGAAGATCTCAGAGGGCGGCCTCAAGCGTATCCACGAGAAGTACACATGGAAGCTGTACTCAGAAAGGTTGATGACACTGTCTGGTGTGTATGGCTTCTGGAAGTACGTCTCCAACCTGGACCGCCGTGAGACGCGCCGTTACCTGGAGATGTTCTACGCCCTCAAATACCGCAACTTGGCGAAGTCCGTCCCACTTGCTGTTGACGGAGAGGTGGCAGCCAATGGCACCAATTAA
Ptsus6的氨基酸序列如下(SEQ ID NO:2):
MPERQLARLHSLRERLGDTLSANPNELLALFSRLVNHGKGMLQPHQLLADFEAVIADSDGQKLKESAFGEVLRAAQEAIVLPPWVALAVRPRPGVWEYIRVNVNELAVEELSVPEYLRFKEELVDGGNDGNFVLELDFEPFNASFPRPSLSKSIGNGVQFLNRHLSSKLFHDKESMEPLL NFLRRHNYKGMTMMLNDRIRSLAALRGALRKAEEHVLCLPSDTPYSEFDHRFQELGLEKGWGDCSGRVHENIHLLLDLLEAPDPCTLEKFLGTIPMVFNVVILSPHGYFAQANVLGYPDTGGQVVYILDQVRALENEMLLRIKQQGLDITPRILIVTRLLPDAVGTTCGQRLEKVLGTEHTHILRVPFRTENGILRKWISRFDVWPYLETYAEDVANEVSGELQAKPDLIIGNYSDGNLVASLLAHKMGVTQCTIAHALEKTKYPSSDLYWKKFENQYHFSCQFTADLIAMNHADFIITSTYQEIAGSKDTVGQYESHIAFTMPGLYRVVHGIDVFDPKFNIVSPGADMTIYFPYSEESKRLTALHSEIEELLYSEVENGDHICVLKDRSKPIIFSMARLDRVKNMTGLVELYAKSPRLQELVNLVVVCGDHAKASKDLEEQAELKKMHSLIQEYNLNGKIRWISAQMNRVRNGELYRYIADTRGAFVQPAFYEAFGLTVVEAMTCGLPTFATVHGGPGEIIVDGVSGYHIDPYQGEKVAEILVNFFDKSKADPSLWEKISEGGLKRIHEKYTWKLYSERLMTLSGVYGFWKYVSNLDRRETRRYLEMFYALKYRNLAKSVPLAVDGEVAANGTN*
以引物5’-AAACCTCGTTGCCTCTTTGC和5’-TTGCTTCCGGCGATTTCTTG为模板进行定量PCR分析,半夏18SrRNA用作内参基因,Ptsus6基因在野生型半夏组织(根、叶柄、块茎、珠芽、叶片和花)的表达情况见图1。
实施例2Ptsus6超表达载体构建及半夏遗传转化
以半夏cDNA为模板,以引物5’-CATGCCATGGATGCCGGAACGCCAGTTGGC和5’-TCCCCCCGGGTTAATTGGTGCCATTGGCTG进行PCR反应,回收扩增产物。
以pCAMBIA2300-35S-Gus-CaMVterm为基础表达载体,在其NcoI/XmaI插入前述Ptsus6PCR产物,获得如图2a所示的重组表达载体。
将上述重组表达载体转化根癌农杆菌GV3101,侵染半夏叶柄,以卡那霉素作为抗性筛选标记。遗传转化过程见图2b~e。
约3个月后,获得Ptsus6超表达的转基因植株。采用实时荧光定量PCR(qRT-PCR)对获得的转基因植株进行检测。
qRT-PCR检测转基因植株中Ptsus6的表达量的结果如图3所示。结果表明,转基因植株中Ptsus6的表达量相对于野生型显著升高。以各转基因株系叶柄为外植体进行快繁,获得30个以上植株种植于温室。
实施例3Ptsus6超表达植株的表型
在温室培养2个月后,转基因植株与野生型对照相比叶柄更粗,珠芽明显增大,根数目增加,根系加粗变短,且部分珠芽已萌发(图4,表1)。
测定转基因植株糖分发现,植株葡萄糖含量提高,说明Ptsus6超表达催化更多蔗糖转化为葡萄糖,为珠芽和块茎发育提供更多碳源和糖分,促进生长,且珠芽发育和成熟提前。
表1转基因植株与野生型对照表型比较
指标 野生型 2x35S::Ptsus6-1 2x35S::Ptsus6-2 2x35S::Ptsus6-3
珠芽直径(mm) 2.06±0.61 6.04±0.25 3.12±0.69 7.12±0.95
根长(cm) 10.11±4.21 5.12±0.97 4.86±2.21 5.41±2.01
根数 20.23±4.82 31.34±6.02 29.77±4.98 32.36±5.85
实施例4高温下Ptsus6超表达植株表型和产量
将转基因植株培养至15cm高时,对转基因和野生型植株进行37℃高温处理15天,以持续在25℃培养的植株为对照。高温处理15天后发现对野生型植株枯黄死亡,转基因植株叶片也枯黄,但其珠芽开始萌发并生长(图5)。恢复常温25℃培养继续培养3个月后测定块茎产量。与野生型对照相比,未经37℃高温处理的转基因植株块茎产量增加了43%~72%,这可能与Ptsus6催化蔗糖水解生成葡萄糖,进一步合成淀粉,导致块茎产量增加。在高温处理组中,野生型植株块茎产量比25℃常温组降低53%,而3个转基因株系仅降低32%~35%(图6)。表明Ptsus6能通过促进珠芽发育与萌发,延长半夏光合作用时间,提高高温下半夏块茎的产量。
本发明提及的所有文献都在本申请汇总引用作为参考,就如同每一篇文献被单独引用作为参考。此外,在阅读了本发明的上述表述之后,本领域技术人员可以对本发明做各种修改,这些等价形式同样落入本申请所附权利要求书所限定的范围。

Claims (6)

1.一种半夏蔗糖合酶基因在减缓半夏高温倒苗而增产中的应用。
2.如权利要求1所述半夏蔗糖合酶基因Ptsus6在创制耐高温转基因半夏中的应用。
3.如权利要求1所述的方法,其特征在于,以重组的方式将外源蔗糖合酶基因Ptsus6整合到半夏的细胞、组织和器官中,并使其过量表达。
4.如权利要求1所述的方法,其特征在于,所述的促进珠芽发育指珠芽产生时间提前,珠芽增大。
5.如权利要求1所述的方法,其特征在于,所述的缓减高温倒苗指高温下母体植株枯黄时珠芽即已发芽,持续为块茎生长提供能量。
6.如权利要求1所述的方法,其特征在于,所述的增产指半夏块茎增大,质量增加。
CN202410166073.1A 2024-02-05 2024-02-05 一种半夏蔗糖合酶基因在减缓半夏高温倒苗而增产中的应用 Pending CN118064487A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410166073.1A CN118064487A (zh) 2024-02-05 2024-02-05 一种半夏蔗糖合酶基因在减缓半夏高温倒苗而增产中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410166073.1A CN118064487A (zh) 2024-02-05 2024-02-05 一种半夏蔗糖合酶基因在减缓半夏高温倒苗而增产中的应用

Publications (1)

Publication Number Publication Date
CN118064487A true CN118064487A (zh) 2024-05-24

Family

ID=91106813

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410166073.1A Pending CN118064487A (zh) 2024-02-05 2024-02-05 一种半夏蔗糖合酶基因在减缓半夏高温倒苗而增产中的应用

Country Status (1)

Country Link
CN (1) CN118064487A (zh)

Similar Documents

Publication Publication Date Title
CN111748556B (zh) SlmiR319b在调控番茄株型中的应用及重组质粒、重组菌、转基因株系
CN114591966A (zh) 拟南芥转录因子srg1基因在调控植物生长发育中的应用
CN110358772B (zh) 提高水稻非生物胁迫抗性的OsEBP89基因及制备方法与应用
LU504522B1 (en) Gene related to low potassium stress of tobacco, promoter and application thereof
CN113913440B (zh) GhD1119基因调控陆地棉开花方面的应用
CN118064487A (zh) 一种半夏蔗糖合酶基因在减缓半夏高温倒苗而增产中的应用
CN118374513B (zh) 水孔蛋白基因OsPIP2-1在调控直播稻种子萌发活力和幼苗建成中的应用
CN117209578B (zh) SlMYB9基因在调控番茄株高中的应用
CN117187260B (zh) 玉米耐旱基因ZmPRX1及其功能性分子标记和应用
CN114807072B (zh) 番茄SlDAO2基因及其应用
CN116376964B (zh) 一种调控水稻低温发芽的基因及其应用
CN115960952B (zh) 过表达玉米ZmHB53基因的表达载体和构建方法及其在提高植物耐旱性中的应用
CN116103258B (zh) 玉米ZmRAFS基因用于提高玉米叶片中棉子糖含量的应用
CN114717210B (zh) 一种杨树香叶基香叶醇还原酶及其编码基因与应用
CN114317597B (zh) 基因OsBEAR1在培育早花早熟作物品种中的应用
CN116676317A (zh) 一种水稻OsEns150基因及其在改良水稻株型、品质和增强穗发芽抗性中的应用
CN118240873A (zh) Hta1基因或其编码蛋白在调控水稻耐热性中的应用
CN118207246A (zh) 番茄基因SlPI26在调控番茄干旱下花柄脱落中的应用
CN118147200A (zh) 甘露子细胞分裂素激活酶基因SsLOG-like3的应用
CN116064602A (zh) 水稻OsASN2基因或其编码的蛋白在提高水稻产量中的应用
CN104805065A (zh) 一种水稻组蛋白脱乙酰化酶及其编码基因和应用
CN118126150A (zh) GmSIG1基因在调控大豆株型中的应用
CN118638805A (zh) 一种大豆耐盐相关基因GmMATE85及其编码蛋白质和应用
CN118460599A (zh) Chalk1基因在调控稻米品质中的应用
CN118546990A (zh) 一种甘蓝型油菜负调控抗旱耐盐基因BnUSDR定点突变的方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination