CN117991255A - 基于雷达的目标跟踪器 - Google Patents

基于雷达的目标跟踪器 Download PDF

Info

Publication number
CN117991255A
CN117991255A CN202311462674.9A CN202311462674A CN117991255A CN 117991255 A CN117991255 A CN 117991255A CN 202311462674 A CN202311462674 A CN 202311462674A CN 117991255 A CN117991255 A CN 117991255A
Authority
CN
China
Prior art keywords
range
doppler
bins
image
radar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311462674.9A
Other languages
English (en)
Inventor
A·戈文达·卡马斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineon Technologies AG
Original Assignee
Infineon Technologies AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies AG filed Critical Infineon Technologies AG
Publication of CN117991255A publication Critical patent/CN117991255A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/52Discriminating between fixed and moving objects or between objects moving at different speeds
    • G01S13/536Discriminating between fixed and moving objects or between objects moving at different speeds using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/52Discriminating between fixed and moving objects or between objects moving at different speeds
    • G01S13/538Discriminating between fixed and moving objects or between objects moving at different speeds eliminating objects that have not moved between successive antenna scans, e.g. area MTi
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S13/583Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets
    • G01S13/584Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets adapted for simultaneous range and velocity measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/66Radar-tracking systems; Analogous systems
    • G01S13/72Radar-tracking systems; Analogous systems for two-dimensional tracking, e.g. combination of angle and range tracking, track-while-scan radar
    • G01S13/723Radar-tracking systems; Analogous systems for two-dimensional tracking, e.g. combination of angle and range tracking, track-while-scan radar by using numerical data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • G01S7/352Receivers
    • G01S7/356Receivers involving particularities of FFT processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/415Identification of targets based on measurements of movement associated with the target

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本公开涉及基于雷达的目标跟踪器。根据一个实施例,一种方法包括:针对随时间变化的多个帧中的每个帧,通过组合各自对应于毫米波雷达系统的相应接收天线的多个距离‑多普勒图像来获得组合图像;针对随时间变化的帧的组合图像中的每个距离及多普勒仓,累积各自与给定帧相关联并且指示在给定帧的组合图像中的对应距离及多普勒仓中是否已经发生检测的值;针对组合图像中的每个距离及多普勒仓,基于针对对应距离及多普勒仓随时间累积的值来确定移动平均值;针对当前帧,基于移动平均值来标识在过去帧上已经发生重复检测的距离及多普勒仓,并且通过抑制标识的距离及多普勒仓来为当前帧生成更新的组合图像;以及检测更新的组合图像中的运动。

Description

基于雷达的目标跟踪器
技术领域
本公开大体上涉及一种电子系统和方法,并且在特定实施例中涉及一种基于雷达的目标跟踪器(tracker)。
背景技术
由于低成本半导体技术的快速发展,诸如硅锗(SiGe)和精细几何互补金属氧化物半导体(CMOS)工艺,毫米波频率系统(frequency regime)内的应用在过去几年中获得了极大的兴趣。高速双极型和金属氧化物半导体(MOS)晶体管的可用性使得对毫米波应用的集成电路的需求不断增长。例如,这种应用包括用于汽车和物联网(IoT)系统的雷达系统。
在一些雷达系统中,雷达和目标之间的距离是通过如下来确定的:发送调频(frequency-modulated)信号,接收调频信号的反射(也称为回波),并且基于调频信号的发送和接收之间的时间延迟和/或频率差来确定距离。因此,一些雷达系统包括用于发送射频(RF)信号的发送天线和用于接收反射的RF信号的接收天线,以及用于生成发送信号并且用于接收RF信号的相关联RF电路。
发明内容
根据一个实施例,一种方法包括:针对随时间变化(over time)的多个帧中的每个帧,通过组合多个距离-多普勒图像来获得组合图像(combined image),多个距离-多普勒图像各自对应于毫米波雷达系统的相应接收天线;针对随时间变化的帧的组合图像中的每个距离及多普勒仓(range and Doppler bin(s)),对值进行累积,这些值各自与给定帧相关联并且指示在给定帧的组合图像中在对应距离及多普勒仓中是否已经发生检测;针对组合图像中的每个距离及多普勒仓,基于针对对应距离及多普勒仓随时间累积的值来确定移动平均值;针对当前帧,基于移动平均值来标识在过去帧上已经发生重复检测的距离及多普勒仓,并且通过抑制所标识的距离及多普勒仓,来针对当前帧生成更新的组合图像;以及检测更新的组合图像中的运动。
根据另一实施例,一种系统包括:雷达信号处理器,被配置为耦合至毫米波雷达传感器,该雷达信号处理器被配置为:从雷达传感器接收雷达信号;基于接收到的雷达信号,生成距离-多普勒图像序列;针对距离-多普勒图像序列,在每仓(per-bin)的基础上确定是否检测到运动;针对距离-多普勒图像序列中的第一数目的距离-多普勒图像,在每仓的基础上对确定的运动检测数目进行求和,以产生求和的运动检测;针对求和的运动检测来确定每仓移动平均值;将每仓移动平均值中的每个每仓移动平均值与阈值进行比较;抑制(suppress)距离-多普勒图像序列中的距离-多普勒图像中的仓,以产生经修改的距离-多普勒图像,被抑制的仓对应于距离-多普勒图像中的其移动平均值超过阈值的仓;以及基于经修改的距离-多普勒图像来检测运动。
根据又一实施例,一种系统包括:雷达信号处理器,被配置为耦合至毫米波雷达传感器,该雷达信号处理器被配置为:从雷达传感器接收雷达信号;基于接收到的雷达信号,生成距离-多普勒图像序列;针对距离-多普勒图像序列,在每仓的基础上确定是否检测到运动;针对距离-多普勒图像序列中的第一数目的距离-多普勒图像,在每仓的基础上对确定的运动检测数目进行求和,以产生求和的运动检测;针对求和的运动检测来确定每仓移动平均值;将每仓移动平均值中的每个每仓移动平均值与阈值进行比较;抑制距离-多普勒图像序列中的距离-多普勒图像中的仓,以产生经修改的距离-多普勒图像,被抑制的仓对应于距离-多普勒图像中的其移动平均值超过阈值的仓;以及基于经修改的距离-多普勒图像来检测运动。
附图说明
为了更完整地理解本发明及其优点,现在参照结合附图的以下描述,在附图中:
图1示出了根据一些实施例的毫米波雷达系统的示意图;
图2图示了根据一些实施例的由图1的TX天线发送的线性调频信号(chirp)序列;
图3A和3B示出了根据一些实施例的用于检测和跟踪(track)目标的方法的流程图;
图4A、4B、4C和4D图示了目标检测的实验结果;以及
图5图示了可以被用于实施根据实施例的系统和方法的处理系统。
除非另有指示,否则不同附图中的对应数字和符号通常指代对应的部分。附图被绘制以清晰地图示优选实施例的相关方面,并且附图不一定按比例绘制。
具体实施方式
所公开的实施例的制作和使用在下面详细讨论。然而,应该了解的是,本发明提供了许多适用的发明概念,它可以被实施在各种具体上下文中。所讨论的具体实施例仅说明制作和使用本发明的具体方式,并且不限制本发明的范围。
下面的描述图示了各种具体细节以提供对根据描述的若干示例实施例的深入理解。这些实施例可以在没有一个或多个具体细节的情况下获得,或者利用其他方法、组件、材料等获得。在其他情况下,已知结构、材料或操作未被详细示出或描述,以免混淆实施例的不同方面。在该描述中对“实施例”的提及指示关于该实施例描述的特定配置、结构或特征被包括在至少一个实施例中。因此,可能出现在本描述的不同点处的诸如“在一个实施例中”等短语不一定完全指代同一实施例。此外,具体形成、结构或特征可以在一个或多个实施例中以任何适当的方式组合。
本发明的实施例将在具体上下文中进行描述,例如基于雷达的目标跟踪器,其可以用于诸如人类检测等应用中。人类检测是诸如电视、扬声器、照明系统、安全系统等智能设备上的期望特征,以提供诸如音频波束形成、亮度控制、节能、入侵者(intruder)检测等特征。一些实施例可以被用于其他应用中。
图1示出了根据一些实施例的毫米波雷达系统100的示意图。毫米波雷达系统100包括毫米波雷达传感器102和处理系统104,该处理系统104也被称为雷达信号处理器。
在正常操作期间,毫米波雷达传感器102作为调频连续波(FMCW)雷达传感器操作,并且使用一个或多个发送器(TX)天线114向场景120发送多个TX雷达信号106,诸如线性调频信号。雷达信号106是使用RF和模拟电路130生成的。雷达信号106可以例如在20GHz至120GHz的范围内。其他频率也可以被使用。例如,可以使用在24GHz至60GHz范围内的雷达信号106来检测人类移动目标。
场景120中的对象可以包括一个或多个静态或移动对象(诸如桌子、墙壁、椅子等)、空闲和移动的人类和动物,以及周期性移动的对象(诸如旋转的风扇、窗帘、清洁机器人等)。其他对象也可以存在于场景120中。当试图检测场景120中的移动的人类和动物时,场景120中的周期性移动的对象的存在可能导致假阳性(false positive)。如随后更详细地描述的,移动目标指示符(MTI)滤波可以被用于场景120中的目标检测,并且移动平均滤波器可以被用于滤除假目标(例如周期性移动的对象)。
雷达信号106被场景120中的对象反射。也被称为回波信号的反射雷达信号108由多个接收(RX)天线116接收。RF和模拟电路130使用例如带通滤波器(BPF)、低通滤波器(LPF)、混频器、低噪声放大器(LNA)和/或中频(IF)放大器来处理接收到的反射雷达信号108,以生成每个接收天线116的模拟信号xout(t)。
模拟信号xout(t)使用模数转换器(ADC)112被转换为原始数字数据xout_dig(n)。在一些实施例中,原始数字数据xout_dig(n)由处理系统104处理,以检测一个或多个目标及其位置并且以跟踪这种目标。
控制器110控制毫米波雷达传感器102的一个或多个电路,诸如RF和模拟电路130和/或ADC 112。控制器110可以被实施为例如自定义数字或混合信号电路。例如,控制器110也可以以其他方式实施,诸如使用通用处理器或控制器。在一些实施例中,处理系统104实施控制器110的一部分或全部。
处理系统104可以用通用处理器、控制器或数字信号处理器(DSP)来实施,它包括例如耦合至存储器的组合电路。在一些实施例中,处理系统104可以被实施为专用集成电路(ASIC)。例如,在一些实施例中,处理系统104可以用ARM、RISC或x86架构来实施。在一些实施例中,处理系统104可以包括人工智能(AI)加速器。一些实施例可以使用硬件加速器和在DSP或通用微控制器上运行的软件的组合。其他实施方式也是可能的。
在一些实施例中,毫米波雷达传感器102和处理系统104的一部分或全部可以在同一集成电路(IC)内被实施。例如,在一些实施例中,毫米波雷达传感器102和处理系统104的一部分或全部可以在集成在同一封装中的相应半导体衬底中被实施。在其他实施例中,毫米波雷达传感器102和处理系统104的一部分或全部可以在同一单片半导体衬底中被实施。在一些实施例中,毫米波雷达传感器102和处理系统104在相应的集成电路中被实施。在一些实施例中,多个集成电路用于实施毫米波雷达传感器102。在一些实施例中,使用多个集成电路来实施处理系统104。其他实施方式也是可能的。
作为一个非限制性示例,可以实施RF及模拟电路130,例如如图1所示的。在正常操作期间,压控振荡器(VCO)136生成雷达信号,诸如线性频率线性调频信号(例如从61.02GHz到61.47GHz),它由发送天线114发送。VCO 136由PLL 134控制,该PLL 134从参考振荡器132接收参考时钟信号。PLL 134由包括分频器138和放大器140的环路控制。放大器137可以用于驱动发送天线114。
由发送天线114发送的TX雷达信号106被场景120中的对象反射,并且由接收天线116接收。使用相应的混频器146,将由接收天线116接收到的回波与由发送天线114发送的信号的副本(replica)混合,以产生相应的中频(IF)信号xIF(t)(也称为差拍信号)。在一些实施例中,差拍信号xIF(t)具有在10kHz和1MHz之间的带宽。带宽低于10kHz或高于1MHz的差拍信号也是可能的。相应放大器145可以被用于接收来自天线116的反射雷达信号。
差拍信号xIF(t)可以分别用相应的低通滤波器(LPF)148进行滤波,然后由ADC 112进行采样。ADC 112有利地能够以采样频率对经滤波的差拍信号xIF(t)进行采样,该采样频率小于由接收天线116接收的信号频率。因此,在一些实施例中,使用FMCW雷达有利地允许ADC 112的紧凑且低成本的实施方式。
在一些实施例中包括经滤波的差拍信号xout(t)的数字化版本的原始数字数据xout_dig(n)被(例如临时地)存储在例如每个接收天线116的Nc x Ns个矩阵中,以用于处理系统104进一步处理,其中Nc是帧中考虑的线性调频信号的数目,并且Ns是每个线性调频信号的发送样本的数目。
在一些实施例中,ADC 112是具有多个输入的12位ADC。也可以使用具有较高分辨率(诸如14位或更高)或具有较低分辨率(诸如10位或更低)的ADC。在一些实施例中,可以使用每个接收器天线的ADC。其他实施方式也是可能的。
图2图示了根据一些实施例的由TX天线114发送的线性调频信号序列106。如图2所示,线性调频信号106被组织在多个帧(也称为物理帧)中,并且可以被实施为上线性调频信号。一些实施例可以使用下线性调频信号或使用上线性调频信号和下线性调频信号的组合,诸如上下线性调频信号和下上线性调频信号。其他波形形状也可以被使用。
如图2所示,每个帧可以包括多个线性调频信号106(通常也称为脉冲)。例如,在一些实施例中,帧中的线性调频信号的数目是17。一些实施例可以包括每帧多于或少于17个线性调频信号。
在一些实施例中,帧每FT时间被重复一次。在一些实施例中,FT时间是100ms。也可以使用不同的FT时间。帧的线性调频信号之间的时间通常被称为脉冲重复时间(PRT)。在一些实施例中,PRT是1ms。也可以使用不同的PRT。在一些实施例中,FT时间被选择为使得帧n的最后一个线性调频信号的开始与帧n+1的第一线性调频信号的开始之间的时间等于PRT。其他实施例可以使用或导致不同的定时。线性调频信号的持续时间(从开始到结束)通常被称为线性调频信号时间(CT)。线性调频信号之间的持续时间可能在500μs到10ms之间,这可能有利于检测人类的移动。在一些实施例中,毫米波雷达传感器102的采样频率可以是例如1MHz。更高的采样频率或更低的采样频率也可能是可以的。在一些实施例中,用于生成每个线性调频信号的样本数目可以是例如128个样本。更高数目的样本或更低数目的样本(诸如64个样本或更低)也可以被用于生成每个线性调频信号。
图3A示出了根据一些实施例的用于检测和跟踪目标的方法300的流程图。方法300可以由处理系统104来实施。
在步骤302期间,二维移动目标指示符(MTI)滤波被应用于原始数字数据xout_dig(n)(例如来自每个接收信道的数据,例如来自每个接收天线116的数据),以生成第一滤波图像。在一些实施例中,执行MTI滤波用于区分目标与杂波(clutter)。例如,在一些实施例中,在对数字数据执行MTI滤波之后,只有具有高运动的目标被保留,因为它们的能量在多普勒图像中变化。因此,在一些实施例中,在2DMTI滤波之后,可以在数字数据中标识目标,而可以从数字数据中部分或完全去除关于背景的信息。在一些实施例中,2D MTI滤波器被实施为一阶有限脉冲响应(finite impulse response,FIR)滤波器。
MTI滤波可以被应用于时域或频域。在时域中,MTI滤波是通过获取线性调频信号之间的增量(delta),并且然后执行快速时间(fast time)傅里叶变换(FFT)和慢速时间(slow time)FFT来执行的。在频域中,在应用快速时间FFT之后执行MTI滤波,并且然后在执行慢速时间FFT之前计算每个快速时间仓的慢速时间样本之间的增量。在该上下文中,对线性调频信号中的样本执行快速时间FFT,并且沿着多个线性调频信号对样本执行慢速时间FFT。
在步骤304期间,对在步骤302期间生成的移动目标指示符数据执行距离FFT。例如,在一些实施例中,针对帧中的预定数目的线性调频信号(例如所有线性调频信号)中的每个线性调频信号,计算具有线性调频信号的长度的窗口化(windowed)FFT(例如雷达信号106,参见图1)。距离FFT的结果是每个线性调频的跨距离的能量分布的指示。
在步骤306期间,对在步骤304期间生成的距离FFT数据(例如针对每个接收天线116)执行多普勒FFT。例如,在一些实施例中,跨多个连续周期在每个距离仓上计算FFT,以提取多普勒信息。步骤306的结果是针对接收信道中的每个接收信道(例如针对每个接收天线116)的距离多普勒图(也称为距离-多普勒图像或RDI)。
可选地,在步骤308期间,确定在步骤306期间生成的RDI的绝对值。
在步骤310期间,目标检测使用恒定虚警率(constant false alarm rate,CFAR)算法来执行,诸如有序统计(OS)CFAR(OS-CFAR)或对RDI(在步骤308期间生成)或RDI(在步骤306期间生成)的绝对值的单元平均CFAR(cell-averaging CFAR),以生成每个接收信道的第二滤波图像(也称为距离-多普勒(RD)掩码图像(masked image))。在步骤310期间,当与例如预定阈值进行比较时,CFAR检测器基于RDI的功率水平生成检测图像,其中例如“1”表示目标并且“0”表示非目标。RD检测图像作为掩码(mask)进行操作并且与原始RDI相乘(步骤308的输出),以获得RD掩码图像(在在步骤310的输出处),其中仅检测到的目标的细节是非零的。例如,可以对RD检测图像和原始RDI执行逐位(bitwise)AND以获得RD掩码图像。可以在CFAR检测器之后应用局部最大值检测器以帮助目标检测。
与其他类型的目标滤波(诸如生命感测(vital sensing)或机器学习)相比,利用MTI滤波可能是有利的。例如,MTI滤波可能比生命感测和机器学习使用更少的存储器和处理能力。因此,MTI滤波针对一些类型的平台(诸如嵌入式平台)可能是有利的。然而,MTI滤波本身可能比生命感测和机器学习更容易检测到假目标(例如周期性移动的对象)。如随后更详细地描述的,移动平均滤波器可以被用于从步骤310期间生成的RD掩码图像中过滤假目标(例如周期性移动的对象)。这有助于对一些类型的目标(例如人类/动物的移动)提供更可靠的检测,同时忽略非目标(例如杂波,诸如风扇、窗帘、清洁机器人等)。
在步骤312期间,在步骤310期间生成的RD掩码图像被组合,以获得组合RD图像(combined RD image)。例如,组合RD图像可以通过与RD掩码图像执行逐位OR来获得。组合RD图像是来自每个接收信道的RD掩码图像的数据的并集。每个组合RD图像用于一个帧,其中多个帧随时间布置。
在步骤314期间,对组合RD图像(在步骤312期间生成)中的每个距离及多普勒仓的值进行累积。仓的每个值是指示在该仓中是否存在检测的值(例如逻辑值)。针对每个仓(each bin)的累积值(accumulated value)指示在多个帧上在该仓中检测到运动的次数。不期望的非目标(诸如风扇和清洁机器人的移动)可能会落入某些仓内,例如某些距离及多普勒仓。因此,某些距离及多普勒仓的累积值将大于其他仓上的累积值。换言之,针对距离-多普勒图像序列中的第一数目的距离-多普勒图像,在每仓的基础上对确定的运动检测(motion detection)数目进行求和,以产生求和的运动检测(summed motion detection)。
在步骤316期间,计算在步骤314期间累积的值的移动平均值(moving average)。在一些实施例中,针对组合RD图像的每个仓,在每仓的基础上来计算这些移动平均值。不期望的非目标(诸如风扇和清洁机器人的移动)可能会重复地落入某些距离及多普勒仓内。当某些距离及多普勒仓的移动平均值较大时,这些仓指示不期望的非目标的概率很高。
在步骤318期间,标识具有大移动平均值的距离及多普勒仓。可以将每个仓的移动平均值与检测阈值进行比较。移动平均值超过检测阈值的仓的子集被标识为具有大的移动平均值。当与例如预定阈值进行比较时,可以基于值的移动平均值来生成杂波掩码(clutter mask),其中例如“1”表示目标并且“0”表示非目标。
在步骤320期间,从组合RD图像(在步骤312期间生成)去除(例如抑制)具有大移动平均值的距离及多普勒仓,以生成第三滤波图像(也称为滤波RD图像、经修改的RD图像或更新的组合RD图像)。在步骤318期间生成的杂波掩码可以与组合RD图像相乘(步骤312的输出)。例如,可以对组合RD图像和杂波掩码执行逐位AND。因此,所得到的滤波RD图像不太可能包含不期望的非目标。在一些实施例中,利用从先前帧生成的杂波掩码对当前帧的组合RD图像进行滤波。在一些实施例中,基于在步骤318中执行的比较,距离及多普勒仓的去除可以被视为抑制与距离-多普勒图像序列中的、所具有的值超过阈值的距离-多普勒图像中的仓相对应的仓。
可选地,在步骤322期间,可以使用在步骤306期间生成的RDI,来将校准和角度估计应用于在步骤320期间生成的滤波RD图像。最后,在步骤324期间,可以利用经滤波的RD图像执行运动检测,从而跟踪目标。因此,只能跟踪处于期望角度并且具有期望运动的目标。
在一个示例实施例中,步骤314、316和320使用具有P乘Q阵列的阵列,其中P是多普勒仓的数目,并且Q是距离仓的数目。在步骤314和316中,随着时间的变化,针对每个距离及多普勒仓对来自每个帧的检测进行求和,并且将其存储在阵列中。在一些实施例中,基于帧计数器对阵列的值进行归一化。在阵列的值已经被归一化之后,在步骤318中,将这些值与设定阈值进行比较以生成针对每个距离及多普勒仓的逻辑输出。在步骤320中,通过将仓设置为逻辑“FALSE”值来严掩蔽大于阈值的仓。该逻辑“FALSE”值可以通过将对应的比特或变量设置为“0”值来指定。备选地,表示“FALSE”逻辑条件的设定值可以是除“0”之外的另一值,这取决于特定实施例和说明书。
实施例可以实现若干优点。利用移动平均滤波器从RD图像去除具有大移动平均值的仓可以帮助提供对一些类型目标(例如人类/动物移动)的更可靠检测,同时忽略非目标(例如杂波,诸如风扇、窗帘、清洁机器人等)。附加地,使用具有MTI滤波的移动平均滤波器可能比生命感测和机器学习使用更少的存储器和处理能力。移动平均滤波器可以容易地在嵌入式平台中实施,而不会产生过度功耗。例如,方法300可以由处理系统104使用小到32KB至64KB的存储器来实施。
图3B图示了根据一些实施例的用于检测和跟踪目标的方法340的流程图,该方法340可以由处理系统104实施。
如图所示,方法340从步骤342开始,在步骤342中,使用ADC生成ADC数据,以对由雷达传感器产生的模拟雷达传感器信号进行数字化。在图1所示的毫米波传感器系统100的上下文中,可以使用ADC 112来执行步骤342,以将中频信号xIF(t)转换到数字域以供处理系统104处理。接下来,通过执行可选的步骤302中的MTI滤波、步骤304中的距离FFT和步骤306中的多普勒FFT来处理步骤342期间生成的ADC数据,如上面相对于图3A中的方法300描述的。
步骤344包括对步骤306中通过多普勒FFT生成的距离-多普勒图像执行CFAR算法,并且对通过CFAR算法生成的检测图像执行移动平均值。移动平均值计算的输出可以在每仓的基础上与阈值进行比较。例如,可以通过将相应仓值设置为零来抑制与其移动平均值超过阈值的仓相对应的距离-多普勒图像中的仓。在一些实施例中,步骤344可以通过实施上面相对于图3A描述的步骤310、312、314、316、318和320来执行。在各种实施例中,步骤344有利地过滤诸如周期性移动的对象等假目标。
校准和角度估计可以被可选地应用于步骤322,并且在步骤324中检测运动,如图3A的描述中相对于步骤322和324的描述进行描述的。
应该理解的是,图3A和3B中描绘的各种方法步骤可以被同时执行和/或以流水线方式执行。
图4A至4D图示了四种性能比较场景,它们将本文公开的使用移动平均CFAR检测的实施例雷达系统和方法的性能相对于不使用这些实施例技术的雷达系统进行比较。
图4A图示了一种比较场景,其中一个人在图400所描绘的房间随机地四处走动。图4A的左下部分中的迹线402和404描绘了在不使用实施例移动平均CFAR检测技术的情况下执行的目标检测的实验结果,而图4A的右下部分中的迹线406和408描绘了使用实施例移动平均CFAR检测技术执行的目标检测的实验结果。更具体地,迹线402示出了由不使用实施例移动平均CFAR检测技术的系统检测到的、以米为单位的检测目标的距离,并且迹线404示出了由不使用实施例移动平均CFAR检测技术的系统检测到的、以米每秒为单位的检测目标的速度。如所示,检测到的距离从最初几帧期间的0米变化到帧200周围的大约10米。对应的检测速度范围从第50帧至第100帧中目标移动远离雷达传感器时的1米每秒到第100帧至第300帧中目标朝向雷达传感器移动时的-1米每秒。
迹线406示出了由使用实施例移动平均CFAR检测技术的系统检测到的、以米为单位的检测目标的距离,并且迹线408示出了由使用实施例移动平均CFAR检测技术的系统检测到的、以米每秒为单位的检测目标的速度。如图所示,迹线406和408示出了与迹线402和404非常类似的行为,这表明实施例移动平均技术在这种情况下不会对目标检测产生负面影响。
图4B图示了另一比较场景,其中一个人在图420所描绘的房间中沿着视轴方向(boresight direction)来回走动。图4B的左下部分中的迹线422和424描绘了在不使用实施例移动平均CFAR检测技术的情况下执行的目标检测的实验结果,而图4B的右下部分中的迹线426和428描绘了使用实施例移动平均CFAR检测技术执行的目标检测的实验结果。更具体地,迹线422示出了由不使用实施例移动平均CFAR检测技术的系统检测到的、以米为单位的检测目标的距离,并且迹线424示出了由不使用实施例移动平均CFAR检测技术的系统检测到的、以米每秒为单位的检测目标的速度。如所示,检测到的距离从最初几帧期间的0米变化到帧300周围的大约12米。对应的检测速度范围从目标移动远离雷达传感器时的1米每秒到目标朝向雷达传感器移动时的-1米每秒。
迹线426示出了由使用实施例移动平均CFAR检测技术的系统检测到的、以米为单位的检测目标的距离,并且迹线428示出了由使用实施例移动平均CFAR检测技术的系统检测到的、以米每秒为单位的检测目标的速度。如图所示,迹线426和428示出了与迹线422和424非常类似的行为,这表明实施例移动平均技术在这种情况下不会对目标检测产生负面影响。
图4C图示了又一比较场景,其中风扇在图440所描绘的房间中以恒定速度操作。图4C的左下部分中的迹线442和444描绘了在不使用实施例移动平均CFAR检测技术的情况下执行的目标检测的实验结果,而图4C的右下部分中的迹线446和448描绘了使用实施例移动平均CFAR检测技术执行的目标检测的实验结果。更具体地,迹线442示出了由不使用实施例移动平均CFAR检测技术的系统检测到的、以米为单位的检测目标的距离,并且迹线444示出了由不使用实施例移动平均CFAR检测技术的系统检测到的、以米每秒为单位的检测目标的速度。如所示,检测到的距离约为2.5米,其表示从风扇到雷达传感器的距离。迹线444所描绘的速度示出了约0.3米每秒的平均速度,其表示风扇的速度。
迹线446示出了由使用实施例移动平均CFAR检测技术的系统检测到的、以米为单位的检测目标的距离,并且迹线448示出了由使用实施例移动平均CFAR检测技术的系统检测到的、以米每秒为单位的检测目标的速度。如图所示,表示以米为单位的距离的迹线446没有示出风扇的地点,因为已经使用实施例移动平均技术抑制了表示风扇地点的仓。类似地,迹线448所描绘的速度示出了零目标速度,因为使用实施例技术抑制了表示风扇速度的仓。因此,如所表明的,移动平均滤波器减少了非目标的运动检测。
图4D图示了再一比较场景,其中风扇在图460所描绘的房间中以可变速度操作。图4D的左下部分中的迹线462和464描绘了在不使用实施例移动平均CFAR检测技术的情况下执行的目标检测的实验结果,而图4D的右下部分中的迹线466和468描绘了使用实施例移动平均CFAR检测技术执行的目标检测的实验结果。更具体地,迹线462示出了由不使用实施例移动平均CFAR检测技术的系统检测到的、以米为单位的检测目标的距离,并且迹线464示出了由不使用实施例移动平均CFAR检测技术的系统检测到的、以米每秒为单位的检测目标的速度。如图所示,检测到的距离约为2.5米,表示风扇到雷达传感器的距离。迹线464所描绘的速度示出了可变速度,表示风扇的可变速度。
迹线466示出了由使用实施例移动平均CFAR检测技术的系统检测到的、以米为单位的检测目标的距离,并且迹线448示出了由使用实施例移动平均CFAR检测技术的系统检测到的、以米每秒为单位的检测目标的速度。如图所示,针对在不使用实施例移动平均CFAR检测技术的情况下执行的目标检测,表示以米为单位的距离的迹线466示出了比表示以米为单位的距离的迹线462更少的活动性。
类似地,针对在不使用实施例移动平均CFAR检测技术的情况下执行的目标检测,迹线468所描绘的速度示出了比表示速度的迹线464更少的速度活动检测。因此,如所表明的,移动平均滤波器减少了非目标的运动检测。
现在参照图5,根据本发明的一个实施例,其提供了处理系统500的框图。处理系统500描绘了通用平台以及可以被用于实施本文描述的实施例的部分的通用组件和功能性,诸如图1所描绘的处理系统104的全部或一部分和/或图3A和图3B所示的方法步骤的全部或一部分。在替代实施例中,这些处理任务可以例如使用专用硬件来实施,诸如自定义逻辑、流水线处理级、可编程逻辑、一个或多个数字信号处理器(DSP)或本领域已知的适合于执行数字信号处理任务的其他电路。
处理系统500可以包括例如中央处理单元(CPU)502和连接至总线508的存储器504,并且可以被配置为根据存储在存储器504中或其他非暂态计算机可读介质上的编程指令来执行上面讨论的方法。如果期望或需要,处理系统500还可以包括用于提供到本地显示器512的连接性的显示器适配器510以及用于为一个或多个输入/输出设备516(诸如鼠标、键盘、闪存驱动器等)提供输入/输出接口的输入/输出(I/O)适配器514。
处理系统500还可以包括网络接口518,网络接口518可以使用网络适配器来实施,该网络适配器被配置为耦合至有线链路(诸如网络电缆、USB接口等)和/或用于与网络520通信的无线/蜂窝链路。网络接口518还可以包括用于无线通信的合适的接收器和发送器。应该注意的是,处理系统500可以包括其他组件。例如,如果在外部实施,则处理系统500可以包括硬件组件电源、电缆、母板、可移除存储介质、壳体等。虽然未示出,但这些其他组件被认为是处理系统500的一部分。在一些实施例中,处理系统500可以被实施在单个单片半导体集成电路上和/或与其他公开的系统组件相同的单片半导体集成电路上。
本发明的实施例在此处被概述。其他实施例也可以通过本说明书的全部内容以及本文提交的权利要求来理解。
示例1.一种方法,包括:针对随时间变化的多个帧中的每个帧,通过组合多个距离-多普勒图像来获得组合图像,多个距离-多普勒图像各自对应于毫米波雷达系统的相应接收天线;针对随时间变化的帧的组合图像中的每个距离及多普勒仓,对值进行累积,该值各自与给定帧相关联并且指示在给定帧的组合图像中的对应距离及多普勒仓中是否已经发生检测;针对组合图像中的每个距离及多普勒仓,基于针对对应距离及多普勒仓随时间累积的值,来确定移动平均值;针对当前帧,基于移动平均值来标识在过去帧上已经发生重复检测的距离仓及多普勒仓,并且通过抑制标识的距离仓及多普勒仓来为当前帧来生成更新的组合图像;以及检测更新的组合图像中的运动。
示例2.根据示例1的方法,还包括:使用恒定虚警率算法来获得多个距离-多普勒图像。
示例3.根据示例2的方法,还包括:从模数转换器接收数字化雷达信号,该模数转换器被耦合至接收天线;通过对用于线性调频信号的数字化雷达信号执行距离快速傅里叶变换来计算距离快速傅里叶变换(FFT)数据;以及通过沿着多个线性调频信号对距离快速傅里叶变换数据执行多普勒FFT来计算距离-多普勒图像。
示例4.根据示例3的方法,还包括:在对数字化雷达信号执行距离FFT之前,通过对来自模数转换器的原始数字数据应用移动目标指示符滤波来获得移动目标指示符数据,其中目标指示符滤波从数字化雷达信号去除静态目标。
示例5.根据示例1至4中一项的方法,其中抑制标识的距离及多普勒仓包括:将标识的距离及多普勒仓的值设置为零。
示例6.一种方法,包括:针对由毫米波雷达传感器生成的距离-多普勒图像序列,在每仓的基础上确定是否检测到运动;针对距离-多普勒图像序列中的第一数目的距离-多普勒图像,在每仓的基础上对确定的运动检测数目进行求和,以产生求和的运动检测;针对求和的运动检测来确定每仓移动平均值;将每仓移动平均值中的每个每仓移动平均值与阈值进行比较;抑制距离-多普勒图像序列中的距离-多普勒图像中的仓,以产生经修改的距离-多普勒图像,被抑制的仓对应于距离-多普勒图像中的其移动平均值超过阈值的仓;以及基于经修改的距离-多普勒图像来检测运动。
示例7.根据示例6的方法,其中确定是否检测到运动包括:将恒定虚警率算法应用于距离-多普勒图像序列。
示例8.根据示例6或7中一项的方法,其中抑制距离-多普勒图像中的仓包括:将经修改的距离-多普勒图像中的被抑制的仓的值设置为零。
示例9.根据示例6至8中一项的方法,其中距离-多普勒图像序列中的每个距离-多普勒图像包括基于从多个天线接收的数据的组合距离-多普勒图像。
示例10.根据示例6至9中一项的方法,还包括:基于由毫米波雷达系统接收的雷达信号来生成距离-多普勒图像序列。
示例11.根据示例6至10中一项的方法,还包括:从毫米波雷达传感器接收数字化雷达信号;对数字化雷达信号执行距离快速傅里叶变换(FFT)以产生距离FFT数据;以及对距离FFT数据执行多普勒FFT,以产生距离-多普勒图像序列中的距离-多普勒图像。
示例12.根据示例11的方法,还包括:在执行距离FFT之前,对接收到的数字化雷达信号应用移动目标指示符滤波。
示例13.根据示例11或12中一项的方法,还包括:使用模数转换器对由毫米波雷达传感器产生的雷达信号进行数字化,以产生数字化雷达信号。
示例14.一种系统,包括:雷达信号处理器,被配置为耦合至毫米波雷达传感器,该雷达信号处理器被配置为:从雷达传感器接收雷达信号;基于接收到的雷达信号,生成距离-多普勒图像序列;针对距离-多普勒图像序列,在每仓的基础上确定是否检测到运动;针对距离-多普勒图像序列中的第一数目的距离-多普勒图像,在每仓的基础上对确定的运动检测数目进行求和,以产生求和的运动检测;针对求和的运动检测来确定每仓移动平均值;将每仓移动平均值中的每个每仓移动平均值与阈值进行比较;抑制距离-多普勒图像序列中的距离-多普勒图像中的仓,以产生经修改的距离-多普勒图像,被抑制的仓对应于距离-多普勒图像中的其移动平均值超过阈值的仓;以及基于经修改的距离-多普勒图像来检测运动。
示例15.根据示例14的系统,其中雷达信号处理器被配置为:通过将恒定虚警率算法应用于距离-多普勒图像序列,确定是否检测到运动。
示例16.根据示例14或15中一项的系统,其中雷达信号处理器被配置为:通过将经修改的距离-多普勒图像中的被抑制的仓的值设置为零,抑制距离-多普勒图像中的仓。
示例17.根据示例14至16中一项的系统,其中距离-多普勒图像序列中的每个距离-多普勒图像包括基于从雷达传感器的多个天线接收的数据的组合距离-多普勒图像。
示例18.根据示例14至17中一项的系统,还包括雷达传感器。
示例19.根据示例14至18中一项的系统,其中雷达传感器包括毫米波雷达传感器。
示例20.根据示例14至19中一项的系统,其中:雷达信号处理器还被配置为:对雷达信号执行距离快速傅里叶变换(FFT)以产生距离FFT数据;以及对距离FFT数据执行多普勒FFT,以产生距离-多普勒图像序列中的距离-多普勒图像。
虽然本发明已经参照说明性实施例描述,但是该描述并不旨在以限制意义来解释。在参照描述时,说明性实施例的各种修改和组合以及本发明的其他实施例对于本领域技术人员来说是显而易见的。因此,所附权利要求旨在涵盖任何这种修改或实施例。

Claims (20)

1.一种方法,包括:
针对随时间变化的多个帧中的每个帧,通过组合多个距离-多普勒图像来获得组合图像,所述多个距离-多普勒图像各自对应于毫米波雷达系统的相应接收天线;
针对随时间变化的所述帧的所述组合图像中的每个距离及多普勒仓,对值进行累积,所述值各自与给定帧相关联并且指示在所述给定帧的所述组合图像中的对应距离及多普勒仓中是否已经发生检测;
针对所述组合图像中的每个距离及多普勒仓,基于针对对应距离及多普勒仓随时间累积的所述值来确定移动平均值;
针对当前帧,基于所述移动平均值来标识在过去帧上已经发生重复检测的距离及多普勒仓,并且通过抑制所标识的距离及多普勒仓来为所述当前帧生成更新的组合图像;以及
检测所述更新的组合图像中的运动。
2.根据权利要求1所述的方法,还包括:
使用恒定虚警率算法来获得所述多个距离-多普勒图像。
3.根据权利要求2所述的方法,还包括:
从模数转换器接收数字化雷达信号,所述模数转换器被耦合至所述接收天线,
通过对用于线性调频信号的所述数字化雷达信号执行距离快速傅里叶变换来计算距离快速傅里叶变换FFT数据;以及
通过沿着多个线性调频信号对所述距离快速傅里叶变换数据执行多普勒FFT,来计算所述距离-多普勒图像。
4.根据权利要求3所述的方法,还包括:在对所述数字化雷达信号执行所述距离FFT之前,通过对来自所述模数转换器的原始数字数据应用移动目标指示符滤波来获得移动目标指示符数据,其中所述目标指示符滤波从所述数字化雷达信号去除静态目标。
5.根据权利要求1所述的方法,其中抑制所标识的距离及多普勒仓包括:将所标识的距离及多普勒仓的值设置为零。
6.一种方法,包括:
针对由毫米波雷达传感器生成的距离-多普勒图像序列,在每仓的基础上确定是否检测到运动;
针对所述距离-多普勒图像序列中的第一数目的距离-多普勒图像,在每仓的基础上对确定的运动检测数目进行求和,以产生求和的运动检测;
针对所述求和的运动检测来确定每仓移动平均值;
将所述每仓移动平均值中的每个每仓移动平均值与阈值进行比较;
抑制所述距离-多普勒图像序列中的距离-多普勒图像中的仓,以产生经修改的距离-多普勒图像,被抑制的仓对应于所述距离-多普勒图像中的其移动平均值超过所述阈值的仓;以及
基于所述经修改的距离-多普勒图像来检测运动。
7.根据权利要求6所述的方法,其中确定是否检测到运动包括:将恒定虚警率算法应用于所述距离-多普勒图像序列。
8.根据权利要求6所述的方法,其中抑制所述距离-多普勒图像中的所述仓包括:将所述经修改的距离-多普勒图像中的所述被抑制的仓的值设置为零。
9.根据权利要求8所述的方法,其中所述距离-多普勒图像序列中的每个距离-多普勒图像包括基于从多个天线接收的数据的组合距离-多普勒图像。
10.根据权利要求6所述的方法,还包括:基于由毫米波雷达系统接收的雷达信号来生成所述距离-多普勒图像序列。
11.根据权利要求6所述的方法,还包括:
从所述毫米波雷达传感器接收数字化雷达信号;
对所述数字化雷达信号执行距离快速傅里叶变换FFT以产生距离FFT数据;以及
对所述距离FFT数据执行多普勒FFT,以产生所述距离-多普勒图像序列中的所述距离-多普勒图像。
12.根据权利要求11所述的方法,还包括:在执行所述距离FFT之前,对接收到的数字化雷达信号应用移动目标指示符滤波。
13.根据权利要求11所述的方法,还包括:使用模数转换器对由所述毫米波雷达传感器产生的雷达信号进行数字化,以产生所述数字化雷达信号。
14.一种系统,包括:
雷达信号处理器,被配置为被耦合至毫米波雷达传感器,所述雷达信号处理器被配置为:
从雷达传感器接收雷达信号;
基于接收到的雷达信号,生成距离-多普勒图像序列;
针对所述距离-多普勒图像序列,在每仓的基础上确定是否检测到运动;
针对所述距离-多普勒图像序列中的第一数目的距离-多普勒图像,在每仓的基础上对确定的运动检测数目进行求和,以产生求和的运动检测;
针对所述求和的运动检测来确定每仓移动平均值;
将所述每仓移动平均值中的每个每仓移动平均值与阈值进行比较;
抑制所述距离-多普勒图像序列中的距离-多普勒图像中的仓,以产生经修改的距离-多普勒图像,被抑制的仓对应于所述距离-多普勒图像中的其移动平均值超过所述阈值的仓;以及
基于所述经修改的距离-多普勒图像来检测运动。
15.根据权利要求14所述的系统,其中所述雷达信号处理器被配置为:通过将恒定虚警率算法应用于所述距离-多普勒图像序列,确定是否检测到运动。
16.根据权利要求15所述的系统,其中所述雷达信号处理器被配置为:通过将所述经修改的距离-多普勒图像中的所述被抑制的仓的值设置为零,抑制所述距离-多普勒图像中的所述仓。
17.根据权利要求16所述的系统,其中所述距离-多普勒图像序列中的每个距离-多普勒图像包括基于从所述雷达传感器的多个天线接收的数据的组合距离-多普勒图像。
18.根据权利要求14所述的系统,还包括所述雷达传感器。
19.根据权利要求18所述的系统,其中所述雷达传感器包括毫米波雷达传感器。
20.根据权利要求14所述的系统,其中:
所述雷达信号处理器还被配置为:
对所述雷达信号执行距离快速傅里叶变换FFT以产生距离FFT数据;以及
对所述距离FFT数据执行多普勒FFT,以产生所述距离-多普勒图像序列中的所述距离-多普勒图像。
CN202311462674.9A 2022-11-07 2023-11-06 基于雷达的目标跟踪器 Pending CN117991255A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202263423184P 2022-11-07 2022-11-07
US63/423,184 2022-11-07

Publications (1)

Publication Number Publication Date
CN117991255A true CN117991255A (zh) 2024-05-07

Family

ID=88731567

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311462674.9A Pending CN117991255A (zh) 2022-11-07 2023-11-06 基于雷达的目标跟踪器

Country Status (3)

Country Link
US (1) US20240151843A1 (zh)
EP (1) EP4365623A1 (zh)
CN (1) CN117991255A (zh)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10677905B2 (en) * 2017-09-26 2020-06-09 Infineon Technologies Ag System and method for occupancy detection using a millimeter-wave radar sensor
US10705198B2 (en) * 2018-03-27 2020-07-07 Infineon Technologies Ag System and method of monitoring an air flow using a millimeter-wave radar sensor

Also Published As

Publication number Publication date
US20240151843A1 (en) 2024-05-09
EP4365623A1 (en) 2024-05-08

Similar Documents

Publication Publication Date Title
US10795012B2 (en) System and method for human behavior modelling and power control using a millimeter-wave radar sensor
US11885903B2 (en) FMCW radar with interference signal suppression using artificial neural network
US11614516B2 (en) Radar vital signal tracking using a Kalman filter
US10151826B2 (en) Radar employing preacquisition ramps
US11327167B2 (en) Human target tracking system and method
US20200408878A1 (en) A radar transceiver with reduced false alarm rate
US11719805B2 (en) Radar based tracker using empirical mode decomposition (EMD) and invariant feature transform (IFT)
KR100824552B1 (ko) 수동 코히어런트 위치 확인 애플리케이션에서 특징을 검출 및 추출하는 시스템 및 방법
US11567185B2 (en) Radar-based target tracking using motion detection
Jin et al. Design and implementation of FMCW surveillance radar based on dual chirps
EP4047391B1 (en) Radar-based target tracker
CN111316126B (zh) 目标探测方法、雷达、车辆以及计算机可读存储介质
KR101705532B1 (ko) 주파수 변조 레이더 및 그것의 제어방법
KR20190040637A (ko) 레이다 DoA 추정 시스템 및 방법
EP4130782A2 (en) Scene-adaptive radar
EP4365623A1 (en) Radar-based target tracker
JP2007047112A (ja) レーダ装置
US20240111040A1 (en) Radar-based segmented presence detection
US20240027608A1 (en) Radar-based target tracker
CN112867937B (zh) Fmcw雷达降低功率模式
US20230408632A1 (en) Frequency-modulated continuous-wave (fmcw) radar interference mitigation using an autoregressive moving average (arma) model
WO2022249881A1 (ja) 電子機器、電子機器の制御方法、及びプログラム
KR102085204B1 (ko) Hrr 파형을 사용하는 펄스 도플러 레이더의 표적신호 추적을 위한 클러터 신호 억압 방법 및 시스템
CN116804739A (zh) 用于雷达系统的自适应tx-rx串扰消除
CN112867937A (zh) Fmcw雷达降低功率模式

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication