CN117986971A - 一种导热防腐自修复的功能性环氧树脂涂层的制备方法 - Google Patents

一种导热防腐自修复的功能性环氧树脂涂层的制备方法 Download PDF

Info

Publication number
CN117986971A
CN117986971A CN202410187425.1A CN202410187425A CN117986971A CN 117986971 A CN117986971 A CN 117986971A CN 202410187425 A CN202410187425 A CN 202410187425A CN 117986971 A CN117986971 A CN 117986971A
Authority
CN
China
Prior art keywords
self
repairing
coating
epoxy resin
boron nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202410187425.1A
Other languages
English (en)
Inventor
刘照伟
亢嘉
赵康
陈希
汤玉斐
王雨晨
马伟国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Technology
Original Assignee
Xian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Technology filed Critical Xian University of Technology
Priority to CN202410187425.1A priority Critical patent/CN117986971A/zh
Publication of CN117986971A publication Critical patent/CN117986971A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开一种导热防腐自修复的功能性环氧树脂涂层的制备方法,具体为:首先制备同轴包覆BN@SiC复合纤维与(HHPA/THPA)@PU自修复微球,将二者同步改性后加入EP基体中搅拌,形成具有粗糙表面多功能性的氮化硼/环氧树脂基复合涂层。本发明制备的具有多功能性的氮化硼/环氧树脂基复合涂层,不仅获得了具有防腐、耐高温及自修复效果的涂层,并且使BN@SiC复合纤维在环氧树脂基体中呈网络状纤维结构,形成高效导热通路;调控环氧树脂固化效果后使得自修复微球凸出表面,获得了具有疏水效果的粗糙表面,因此所得涂层将在建筑、工业、汽车以及家电等领域有广阔的应用前景。

Description

一种导热防腐自修复的功能性环氧树脂涂层的制备方法
技术领域
本发明属于涂层制备技术领域,涉及一种导热防腐自修复的功能性环氧树脂涂层的制备方法。
背景技术
环氧树脂(EP)涂层因其具有较强的力学性能、耐腐蚀和电绝缘等优点成为受欢迎的涂料树脂之一,在能源管道、建材防腐和电子元器件封装等方面的潜在价值巨大。然而,环氧涂层的导热系数低,需要添加无机导热填料才能提升涂层的导热性能,而且与传统涂料相比,绝大多数涂料只停留在基材保护和装饰层面,难以同时满足耐高温、耐腐蚀、超疏水等需求。因此,开发一种导热防腐自修复的功能性环氧树脂涂层,不仅能够满足基体材料在不同方面的应用需求,而且良好的散热及自修复效果还能延长材料的服役寿命,已经成为本领域亟待解决的技术问题之一。
Zhang等人(Zhang Z H,Wei M,Liu C Q,et al.Preparation and properties ofhyperbranched modified boron nitride epoxy insulating coatings[J].PlasticsScience and Technology,2022,50(8):10-15.)通过超支化改性得到BN-HBP,将BN-HBP加入无溶剂环氧涂料,制备EP/BN-HBP复合涂料,具有较好的体积电阻率和耐腐蚀性能,但其BN粒子易于团聚,增强的导热性能极为有限,并且不具有自修复性能与超疏水性。
中国专利《一种高分子金属用防水防腐隔热复合涂层及其制备方法》(申请号:CN202311326742.9,公开号:CN117106360A,公开日:2023.10.13)公开了一种高分子金属用防水防腐隔热复合涂层及其制备方法,制备的防水防腐隔热复合涂层包括预处理涂层和环氧树脂涂层,解决了涂层与基材结合力较弱的问题,能够获得兼具防水、防腐、隔热效果的复合涂层,然而该方法所得涂层导热性能较差,不适用于具有散热需求的基材使用,并且在损伤后无法实现自修复的效果。
中国专利《一种镁合金自修复超疏水复合防腐涂层及其制备方法》(申请号:CN202311179011.6,公开号:CN117186775A,公开日:2023.09.13)公开了一种镁合金自修复超疏水复合防腐涂层及其制备方法,通过在镁合金表面依次设置微弧氧化陶瓷底层、聚乙烯醇-单宁酸自修复中间层和ZnO-环氧树脂外层实现超疏水功能及防腐性能,并具有一定的自修复效果。然而,该方法自修复效果较弱,遇水溶胀尺寸难以控制,易产生应力,并且同样不适用于具有散热需求基材的使用。
黄鹏等人(黄鹏,裴克梅.改性氮化硼/水性环氧导热绝缘涂层的制备及性能研究[J].中国胶粘剂,2023,32(10):16-22.)通过对BN纳米片羟基化协同硅烷偶联剂改性,制备了一系列偶联剂改性BN纳米片样品,将其加入水性环氧涂料中,制备了水性环氧导热绝缘涂层,BN在环氧基体中分散性良好,具有较好的导热性和电绝缘性,但其耐腐蚀性较弱,并且不具有自修复性能与超疏水性。
发明内容
本发明的目的是提供一种导热防腐自修复的功能性环氧树脂涂层的制备方法,解决了现有技术所得涂层难以同时满足耐高温、高导热、绝缘、超疏水等性能需求的问题。
本发明所采用的技术方案是,一种导热防腐自修复的功能性环氧树脂涂层的制备方法,具体按以下步骤实施:
步骤1,制备同轴包覆BN@SiC复合纤维:
将氮化硼纤维加入NaOH溶液中进行处理,随后放入浸渍液中真空浸渍,干燥后在氮气气氛中进行煅烧处理,得到同轴包覆的BN@SiC复合纤维;
步骤2,制备(HHPA/THPA)@PU自修复微球:
将六氢苯酐(HHPA)与四氢苯酐(THPA)溶于氯仿中,随后与聚氨酯(PU)丙酮溶液混合搅拌乳化,逐步升温调节乳液温度,分离干燥后得到(HHPA/THPA)@PU自修复微球;
步骤3,构建网状纤维结构复合涂料:
将步骤1得到的复合纤维和步骤2中得到的自修复微球进行硅烷偶联剂改性,随后与环氧树脂(EP)、流平剂和消泡剂混合搅拌,得到含有(HHPA/THPA)@PU自修复微球的网状纤维结构BN@SiC复合纤维/EP复合涂料;
步骤4,制备氮化硼/环氧树脂基复合涂层:
将步骤3中得到的网状纤维结构BN@SiC复合纤维/EP复合涂料与复配的HHPA/THPA固化剂及固化促进剂混合,搅拌一定时间后涂覆在铝板表面得到具有多功能性的氮化硼/环氧树脂基复合涂层。
优选方案为:
其中步骤1中NaOH溶液浓度为4mol/L,处理2h,浸渍液为25%~40%质量分数的聚碳硅烷溶解于四氢呋喃中,浸渍时间为0.5~2h,浸渍温度为30~60℃,干燥温度为40~70℃,干燥时间为3~6h,煅烧温度为800~1400℃,保温2.5~4h,得到同轴包覆的BN@SiC复合纤维;
其中步骤2中HHPA与THPA的质量比为9:1,占氯仿质量分数的20%,聚氨酯(PU)丙酮溶液为质量分数25%~35%的聚氨酯溶解于丙酮中,搅拌温度为40℃,时间为1.5~3h,随后以升温速率为0.5~0.8℃/min调节至乳液温度60℃,分离后在60℃下干燥6h得到(HHPA/THPA)@PU自修复微球;
其中步骤3中的硅烷偶联剂选用KH-550、KH-560、KH-570中的任意一种,加入环氧树脂的复合纤维的比例为4~10%,加入自修复微球的比例为6~15%,流平剂为聚二甲基硅氧烷,比例为1%,消泡剂为硅酸盐消泡剂,比例为1%,搅拌时间为10min,温度为70℃,得到含有(HHPA/THPA)@PU自修复微球的网状纤维结构BN@SiC复合纤维/EP复合涂料;
其中步骤4中复配的HHPA/THPA固化剂的质量比为9:1,复合涂料与复配固化剂的比例为100:10~100:25,固化促进剂为2-甲基咪唑,添加量为3%,搅拌温度为70℃,时间为8min,涂覆在基材上得到具有多功能性的氮化硼/环氧树脂基复合涂层。
本发明的有益效果是:本发明制备的导热防腐自修复的功能性环氧树脂涂层,以同轴包覆氮化硼@碳化硅复合纤维及(HHPA/THPA)@PU自修复微球为核心,通过二者同步改性处理,不仅获得了具有防腐、耐高温及自修复效果的涂层,并且使BN@SiC复合纤维在环氧树脂基体中呈网络状纤维结构,形成高效导热通路;调控环氧树脂固化效果后使得自修复微球凸出表面,获得了具有疏水效果的粗糙表面,因此所得涂层将在建筑、工业、汽车以及家电等领域有广阔的应用前景。
附图说明:
图1为本发明制备的氮化硼/环氧树脂基复合涂层示意图。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
本发明所采用的技术方案是,一种导热防腐自修复的功能性环氧树脂涂层的制备方法,具体按以下步骤实施:
步骤1,制备同轴包覆BN@SiC复合纤维:
将氮化硼纤维放入浓度为4mol/L的NaOH溶液中处理2h,随后在含有25%~40%聚碳硅烷的四氢呋喃溶液中真空浸渍0.5~2h,浸渍温度为30~60℃,随后进行干燥处理,干燥温度为40~70℃,干燥时间为3~6h,干燥后放入加热炉在氮气氛围进行煅烧处理,煅烧温度为800~1400℃,保温2.5~4h,得到同轴包覆的BN@SiC复合纤维;
步骤2,制备(HHPA/THPA)@PU自修复微球:
将六氢苯酐(HHPA)与四氢苯酐(THPA)的质量比按9:1溶于氯仿中,占氯仿质量分数的20%,与含有质量分数25%~35%的聚氨酯的丙酮溶液混合搅拌乳化,随后以升温速率为0.5~0.8℃/min调节至乳液温度60℃,分离后在60℃下干燥6h得到(HHPA/THPA)@PU自修复微球;
步骤3,构建网状纤维结构复合涂料:
将步骤1得到的复合纤维和步骤2中得到的自修复微球进行硅烷偶联剂(KH-550、KH-560、KH-570中的任意一种)改性,将4~10%复合纤维和6~15%自修复微球加入到EP中,再加入1%的聚二甲基硅氧烷流平剂和1%的硅酸盐消泡剂,在70℃下搅拌10min,得到含有(HHPA/THPA)@PU自修复微球的网状纤维结构BN@SiC复合纤维/EP复合涂料;
步骤4,制备氮化硼/环氧树脂基复合涂层:
将步骤3中得到的网状纤维结构BN@SiC复合纤维/EP复合涂料与9:1的HHPA/THPA固化剂混合,混合比例为100:10~100:25,同时加入3%的2-甲基咪唑,在70℃下搅拌8min,涂覆在基材上得到具有多功能性的氮化硼/环氧树脂基复合涂层。
本发明采用同轴包覆技术调节氮化硼纤维表面状态,控制聚碳硅烷浓度及浸渍情况得到同轴包覆氮化硼@碳化硅复合纤维,不仅具有良好的耐高温、耐腐蚀性能,还能够形成导热网络,发挥出优异的导热性能;利用乳化-固化法调控水包油(O/W)型乳液结构,合成自修复微球以促进涂层材料的损伤修复效果;同步改性复合纤维及自修复微球,控制其在涂料中均匀分散并与环氧树脂结合,不仅获得了具有导热、防腐、耐高温及自修复效果的涂层,并且通过控制固化效果,使得自修复微球凸出涂层表面,获得了表面粗糙的具有疏水效果的多功能复合涂层。
本发明制备的导热防腐自修复的功能性环氧树脂涂层,以同轴包覆氮化硼@碳化硅复合纤维及(HHPA/THPA)@PU自修复微球为核心,通过二者同步改性处理,不仅获得了具有防腐、耐高温及自修复效果的涂层,并且使BN@SiC复合纤维在环氧树脂基体中呈网络状纤维结构,形成高效导热通路;调控环氧树脂固化效果后使得自修复微球凸出表面,获得了具有疏水效果的粗糙表面,因此所得涂层将在建筑、工业、汽车以及家电等领域有广阔的应用前景。
实施例1
制备氮化硼/环氧树脂基复合涂层:
首先将氮化硼纤维放入4mol/L的NaOH溶液中处理2h,然后在含有40%聚碳硅烷的四氢呋喃溶液中真空浸渍2h,浸渍温度为60℃,随后在70℃下,干燥处理6h,干燥后放入加热炉在氮气氛围进行煅烧处理,煅烧温度为1400℃,保温4h,得到同轴包覆的BN@SiC复合纤维;
将HHPA与THPA的质量比按9:1溶于氯仿中,占氯仿质量分数的20%,与含有质量分数25%的聚氨酯的丙酮溶液混合搅拌乳化,随后以升温速率为0.8℃/min调节至乳液温度60℃,分离后在60℃下干燥6h得到(HHPA/THPA)@PU自修复微球;
将复合纤维和自修复微球进行硅烷偶联剂KH-550改性,随后将改性后的10%复合纤维和15%自修复微球加入到EP中,再加入1%的聚二甲基硅氧烷流平剂和1%的硅酸盐消泡剂,在70℃下搅拌10min,得到含有(HHPA/THPA)@PU自修复微球的网状纤维结构BN@SiC复合纤维/EP复合涂料;
将复合涂料与9:1的HHPA/THPA固化剂以100:25的比例混合,同时加入3%的2-甲基咪唑,在70℃下搅拌8min,涂覆在基材上得到具有多功能性的氮化硼/环氧树脂基复合涂层。
实施例2
制备氮化硼/环氧树脂基复合涂层:
首先将氮化硼纤维放入4mol/L的NaOH溶液中处理2h,然后在含有35%聚碳硅烷的四氢呋喃溶液中真空浸渍1.5h,浸渍温度为50℃,随后在60℃下,干燥处理5h,干燥后放入加热炉在氮气氛围进行煅烧处理,煅烧温度为1200℃,保温3.5h,得到同轴包覆的BN@SiC复合纤维;
将HHPA与THPA的质量比按9:1溶于氯仿中,占氯仿质量分数的20%,与含有质量分数35%的聚氨酯的丙酮溶液混合搅拌乳化,随后以升温速率为0.8℃/min调节至乳液温度60℃,分离后在60℃下干燥6h得到(HHPA/THPA)@PU自修复微球;
将复合纤维和自修复微球进行硅烷偶联剂KH-560改性,随后将改性后的8%复合纤维和12%自修复微球加入到EP中,再加入1%的聚二甲基硅氧烷流平剂和1%的硅酸盐消泡剂,在70℃下搅拌10min,得到含有(HHPA/THPA)@PU自修复微球的网状纤维结构BN@SiC复合纤维/EP复合涂料;
将复合涂料与9:1的HHPA/THPA固化剂以100:20的比例混合,同时加入3%的2-甲基咪唑,在70℃下搅拌8min,涂覆在基材上得到具有多功能性的氮化硼/环氧树脂基复合涂层。
实施例3
制备氮化硼/环氧树脂基复合涂层:
首先将氮化硼纤维放入4mol/L的NaOH溶液中处理2h,然后在含有30%聚碳硅烷的四氢呋喃溶液中真空浸渍1h,浸渍温度为40℃,随后在50℃下,干燥处理4h,干燥后放入加热炉在氮气氛围进行煅烧处理,煅烧温度为1000℃,保温3h,得到同轴包覆的BN@SiC复合纤维;
将HHPA与THPA的质量比按9:1溶于氯仿中,占氯仿质量分数的20%,与含有质量分数30%的聚氨酯的丙酮溶液混合搅拌乳化,随后以升温速率为0.66℃/min调节至乳液温度60℃,分离后在60℃下干燥6h得到(HHPA/THPA)@PU自修复微球;
将复合纤维和自修复微球进行硅烷偶联剂KH-570改性,随后将改性后的6%复合纤维和9%自修复微球加入到EP中,再加入1%的聚二甲基硅氧烷流平剂和1%的硅酸盐消泡剂,在70℃下搅拌10min,得到含有(HHPA/THPA)@PU自修复微球的网状纤维结构BN@SiC复合纤维/EP复合涂料;
将复合涂料与9:1的HHPA/THPA固化剂以100:15的比例混合,同时加入3%的2-甲基咪唑,在70℃下搅拌8min,涂覆在基材上得到具有多功能性的氮化硼/环氧树脂基复合涂层。
实施例4
制备氮化硼/环氧树脂基复合涂层:
首先将氮化硼纤维放入4mol/L的NaOH溶液中处理2h,然后在含有25%聚碳硅烷的四氢呋喃溶液中真空浸渍0.5h,浸渍温度为30℃,随后在40℃下,干燥处理3h,干燥后放入加热炉在氮气氛围进行煅烧处理,煅烧温度为800℃,保温2.5h,得到同轴包覆的BN@SiC复合纤维;
将HHPA与THPA的质量比按9:1溶于氯仿中,占氯仿质量分数的20%,与含有质量分数28%的聚氨酯的丙酮溶液混合搅拌乳化,随后以升温速率为0.55℃/min调节至乳液温度60℃,分离后在60℃下干燥6h得到(HHPA/THPA)@PU自修复微球;
将复合纤维和自修复微球进行硅烷偶联剂KH-550改性,随后将改性后的4%复合纤维和6%自修复微球加入到EP中,再加入1%的聚二甲基硅氧烷流平剂和1%的硅酸盐消泡剂,在70℃下搅拌10min,得到含有(HHPA/THPA)@PU自修复微球的网状纤维结构BN@SiC复合纤维/EP复合涂料;
将复合涂料与9:1的HHPA/THPA固化剂以100:10的比例混合,同时加入3%的2-甲基咪唑,在70℃下搅拌8min,涂覆在基材上得到具有多功能性的氮化硼/环氧树脂基复合涂层。
表1实施例1中氮化硼/环氧树脂基复合涂层、水性环氧导热绝缘涂层以及h-BN@PDA@APTES掺杂EP粉末涂料的热导率、3.5%NaCl盐雾腐蚀长度、体积电阻率、水接触角以及自修复率对比。
从表1中可以看出,实施例1中氮化硼/环氧树脂基复合涂层的热导率最大,盐雾腐蚀长度最小,这是由于氮化硼这是由于同轴包覆的BN@SiC复合纤维在环氧树脂基体中呈网络状纤维结构,形成了高效导热通路,并且BN与SiC为无机陶瓷体,协同增强了涂层的耐腐蚀性。水性环氧导热绝缘涂层与h-BN@PDA@APTES掺杂EP粉末涂料的水接触角和自修复率未作探究,而实施例1中氮化硼/环氧树脂基复合涂层的水接触角和自修复率分别为159°和80.1%,这是由于氮化硼/环氧树脂基复合涂层内部存在自修复微球,环氧树脂固化收缩后,自修复微球凸出表面,形成具有疏水效果的粗糙表面,并且在涂层破损时,自修复微球破裂,内芯中的复配环氧树脂固化剂释放,可以起到自修复涂层的作用;实施例1中氮化硼/环氧树脂基复合涂层的体积电阻率也是最大,这是由于复合涂层所用材料的电绝缘性能良好,因此其具有优异的绝缘性能,并且由于使用的是复配固化剂体系,所以固化时间也大大缩短。
图1是本发明制备的氮化硼/环氧树脂基复合涂层示意图。从图1可以看出,环氧树脂涂层基体中夹杂着自修复微球,同轴包覆的BN@SiC复合纤维在涂层基体中呈网状纤维结构,并且固化后自修复微球凸出涂层形成粗糙表面。

Claims (10)

1.一种导热防腐自修复的功能性环氧树脂涂层的制备方法,其特征在于,具体步骤如下:
步骤1,制备同轴包覆BN@SiC复合纤维
将氮化硼纤维加入NaOH溶液中进行处理,随后放入浸渍液中真空浸渍,干燥后在氮气气氛中进行煅烧处理,得到同轴包覆的BN@SiC复合纤维;
步骤2,制备(HHPA/THPA)@PU自修复微球
将六氢苯酐(HHPA)与四氢苯酐(THPA)溶于氯仿中,随后与聚氨酯(PU)丙酮溶液混合搅拌乳化,逐步升温调节乳液温度,分离干燥后得到(HHPA/THPA)@PU自修复微球;
步骤3,构建网状纤维结构复合涂料
将步骤1得到的复合纤维和步骤2中得到的自修复微球进行硅烷偶联剂改性,随后与环氧树脂(EP)、流平剂和消泡剂混合搅拌,得到含有(HHPA/THPA)@PU自修复微球的网状纤维结构BN@SiC复合纤维/EP复合涂料;
步骤4,制备氮化硼/环氧树脂基复合涂层
将步骤3中得到的网状纤维结构BN@SiC复合纤维/EP复合涂料与复配的HHPA/THPA固化剂及固化促进剂混合,搅拌一定时间后涂覆在铝板表面得到具有多功能性的氮化硼/环氧树脂基复合涂层。
2.根据权利要求1所述的制备方法,其特征在于,所述步骤1中NaOH溶液浓度为4mol/L,处理时间为2h。
3.根据权利要求1所述的制备方法,其特征在于,步骤1中浸渍液溶剂为四氢呋喃,聚碳硅烷所占质量为溶剂体系的25%~40%,浸渍时间为0.5~2h,浸渍温度为30~60℃,干燥温度为40~70℃,干燥时间为3~6h。
4.根据权利要求1所述的制备方法,其特征在于,步骤1中的煅烧处理为:将得到的表面包裹聚碳硅烷的氮化硼纤维置入加热炉中,在800~1400℃下煅烧,保温2.5~4h,得到同轴包覆的BN@SiC复合纤维。
5.根据权利要求1所述的制备方法,其特征在于,步骤2中六氢苯酐与四氢苯酐的质量比为9:1,占氯仿质量分数的20%,聚氨酯(PU)丙酮溶液为质量分数25%~35%的聚氨酯溶解于丙酮中,搅拌温度为40℃,时间为1.5~3h。
6.根据权利要求5所述的制备方法,其特征在于,步骤2中以升温速率为0.5~0.8℃/min调节至乳液温度60℃,分离后在60℃下干燥6h得到(HHPA/THPA)@PU自修复微球。
7.根据权利要求1所述的制备方法,其特征在于,所述步骤3中的硅烷偶联剂选用KH-550、KH-560、KH-570中的任意一种,加入环氧树脂的复合纤维的比例为4~10%,加入自修复微球的比例为6~15%,流平剂为聚二甲基硅氧烷,比例为1%,消泡剂为硅酸盐消泡剂,比例为1%。
8.根据权利要求1所述的制备方法,其特征在于,所述步骤3中搅拌时间为10min,温度为70℃,得到含有(HHPA/THPA)@PU自修复微球的网状纤维结构BN@SiC复合纤维/EP复合涂料。
9.根据权利要求1所述的制备方法,其特征在于,所述步骤4中HHPA/THPA的质量比为9:1,复合涂料与复配固化剂的混合比例为100:10~100:25,所述固化促进剂为2-甲基咪唑,加入量为3%。
10.根据权利要求1所述的制备方法,其特征在于,所述步骤4中的搅拌温度为70℃,时间为8min,涂覆在基材上得到具有多功能性的氮化硼/环氧树脂基复合涂层。
CN202410187425.1A 2024-02-20 2024-02-20 一种导热防腐自修复的功能性环氧树脂涂层的制备方法 Pending CN117986971A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410187425.1A CN117986971A (zh) 2024-02-20 2024-02-20 一种导热防腐自修复的功能性环氧树脂涂层的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410187425.1A CN117986971A (zh) 2024-02-20 2024-02-20 一种导热防腐自修复的功能性环氧树脂涂层的制备方法

Publications (1)

Publication Number Publication Date
CN117986971A true CN117986971A (zh) 2024-05-07

Family

ID=90897076

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410187425.1A Pending CN117986971A (zh) 2024-02-20 2024-02-20 一种导热防腐自修复的功能性环氧树脂涂层的制备方法

Country Status (1)

Country Link
CN (1) CN117986971A (zh)

Similar Documents

Publication Publication Date Title
CN110054864B (zh) 一种高导热复合填料及其聚合物基复合材料的制备方法
CN111875931A (zh) 一种低掺杂量下固态变压器用高导热强绝缘环氧复合材料及其制备方法
CN112625288B (zh) 一种基于mof/气凝胶复合改性的有机-无机杂化隔热膜及其制备方法
CN113025101B (zh) 一种防腐散热石墨烯涂料
CN102585638A (zh) 水性纳米散热降温环保涂料制备方法及其涂料
CN104610849A (zh) 一种用于电子元器件的导热绝缘涂料及其制备方法
CN113145420B (zh) 一种涂设防腐散热石墨烯涂料的涂覆方法
CN111500019A (zh) 一种基于BN-Al2O3改性的高导热绝缘环氧树脂材料及其制法
CN110903608A (zh) 一种高导热环氧复合材料及其制备方法
CN101891957A (zh) 一种有机硅树脂基耐热透波复合材料及制备方法
CN112521834A (zh) 一种水性石墨烯导静电防腐涂料及其制备方法
CN103788726A (zh) 一种钢结构表面的防静电涂料及其制备方法
CN110241616B (zh) 一种增强氧化铝柔性纤维性能的方法
CN111518473A (zh) 一种纳米氧化锆改性环氧有机硅-聚硅氧烷隔热耐蚀涂料及其制备方法
Song et al. Preparation and performance of HGM/PPENK-based high temperature-resistant thermal insulating coatings
CN112126393B (zh) 一种相变储热灌封胶及其制备方法
CN117986971A (zh) 一种导热防腐自修复的功能性环氧树脂涂层的制备方法
CN112063106B (zh) 一种环氧树脂轻质复合材料及其制备方法
KR101579888B1 (ko) 전기영동 및 졸겔을 이용한 판상형 세라믹 적층 유무기 복합 코팅 방법
CN105837122A (zh) 用于输电管道的高绝缘性聚合物混凝土及制备方法
CN110041808A (zh) 一种双组份水性保温隔热底漆及其制备方法
CN110066589A (zh) 一种石墨烯锌铜多元合金防腐涂料及其制备方法
CN114456757B (zh) 一种灌封胶及其制备方法和应用
CN109913004A (zh) 一种陶瓷涂料的制备方法
CN110981407B (zh) 一种磷酸硼铝树脂复合材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination