CN117919443A - 一种乏氧激活治疗诊断联合和自加速药物释放以协同癌症免疫治疗的共价有机框架 - Google Patents

一种乏氧激活治疗诊断联合和自加速药物释放以协同癌症免疫治疗的共价有机框架 Download PDF

Info

Publication number
CN117919443A
CN117919443A CN202410100720.9A CN202410100720A CN117919443A CN 117919443 A CN117919443 A CN 117919443A CN 202410100720 A CN202410100720 A CN 202410100720A CN 117919443 A CN117919443 A CN 117919443A
Authority
CN
China
Prior art keywords
tpa
hypoxia
organic framework
covalent organic
drug release
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202410100720.9A
Other languages
English (en)
Inventor
邴薇
齐迹
刘东方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Nankai University
Changchun University of Technology
Original Assignee
Jilin University
Nankai University
Changchun University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University, Nankai University, Changchun University of Technology filed Critical Jilin University
Priority to CN202410100720.9A priority Critical patent/CN117919443A/zh
Publication of CN117919443A publication Critical patent/CN117919443A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G12/00Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C08G12/02Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes
    • C08G12/04Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with acyclic or carbocyclic compounds
    • C08G12/06Amines
    • C08G12/08Amines aromatic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/706Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0057Photodynamic therapy with a photosensitizer, i.e. agent able to produce reactive oxygen species upon exposure to light or radiation, e.g. UV or visible light; photocleavage of nucleic acids with an agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6927Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores
    • A61K47/6929Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle
    • A61K47/6931Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer
    • A61K47/6935Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer the polymer being obtained otherwise than by reactions involving carbon to carbon unsaturated bonds, e.g. polyesters, polyamides or polyglycerol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6949Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit inclusion complexes, e.g. clathrates, cavitates or fullerenes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/0019Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules
    • A61K49/0021Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules the fluorescent group being a small organic molecule
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/005Fluorescence in vivo characterised by the carrier molecule carrying the fluorescent agent
    • A61K49/0054Macromolecular compounds, i.e. oligomers, polymers, dendrimers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0063Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres
    • A61K49/0069Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres the agent being in a particular physical galenical form
    • A61K49/0089Particulate, powder, adsorbate, bead, sphere
    • A61K49/0091Microparticle, microcapsule, microbubble, microsphere, microbead, i.e. having a size or diameter higher or equal to 1 micrometer
    • A61K49/0093Nanoparticle, nanocapsule, nanobubble, nanosphere, nanobead, i.e. having a size or diameter smaller than 1 micrometer, e.g. polymeric nanoparticle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nanotechnology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Polymers & Plastics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明提供了一种乏氧激活治疗诊断联合和自加速药物释放以协同癌症免疫治疗的共价有机框架,将高效AIE发光剂和DAC被整合到一种缺氧响应性的COF中。该COF由含有偶氮苯基团的单体构建而成,在缺氧条件下能够在偶氮还原酶的存在下降解,促使化疗药物DAC的有序释放。AIEgen诱导的PDT效应有助于强化缺氧,从而加速药物释放的进程。此外,基于偶氮的COF通过PET效应表现出熄灭AIEgen荧光的能力。在缺氧触发的COF降解后,荧光和PDT性质均经历了显著的增强。该纳米药剂通过原位可激活的荧光标志能够敏感地描绘体内肿瘤部位。一旦进入肿瘤组织,这种纳米平台展现了诱导强效PDT效应和高效诱导肿瘤细胞凋亡的潜力。PDT效应与释放的DAC药物相互协同作用,进一步增强了细胞凋亡。

Description

一种乏氧激活治疗诊断联合和自加速药物释放以协同癌症免 疫治疗的共价有机框架
技术领域
本发明属于材料化学技术领域,本发明涉及一种基于光动力/免疫协同抗肿瘤的共价有机框架的制备方法。
背景技术
癌症免疫疗法是一种革命性的方法,利用人体的免疫系统来对抗肿瘤,已经引起了相当大的关注,并且正在成为治疗癌症的主流方法。尽管它具有巨大的潜力,但由于肿瘤通过多种抗药机制的发展,使其能够逃避免疫系统的攻击,导致患者的抗癌免疫反应在临床上经常受到损害。因此,旨在增强肿瘤免疫原性的策略具有推动免疫疗法、引发强有力的免疫反应和加强抗肿瘤免疫力的巨大潜力。最近的研究已经阐明了焦亡(pyroptosis)的潜力,这是一种炎症和溶解性的细胞死亡形式,作为对抗癌症的一种引人注目的策略。与通常被视为免疫耐受过程的凋亡相比,焦亡标志着一种明显炎症性的程序性细胞死亡(PCD),为减轻免疫抑制和促进全身免疫反应抵抗实体肿瘤提供了一个有希望的途径。然而,焦亡诱导剂的应用,如地西他滨(DAC)药物,往往受到潜在毒性、药物抗性和不良副作用的阻碍。因此,开发更有效且更安全的诱导肿瘤焦亡的方法至关重要。
光动力疗法(PDT)利用光敏剂(PSs)在光照射下产生有害的活性氧物质(ROS),在诱导焦亡方面表现出强大的效力。有机光敏剂以其良好的生物相容性、明确定义的化学结构和潜在的降解性而闻名,在临床上具有相当大的转化潜力,其中一些已经获得了临床使用的批准。然而,光动力疗法仍然面临一些挑战。首先,具有高度共轭平面结构的传统有机染料,包括临床使用的亚甲蓝(MB)和吲哚青绿(ICG),受到了聚集引起猝灭效应的阻碍。这显著降低了荧光和光动力疗法的性能。聚集诱导发光(AIE)的出现提供了一个有希望的解决方案,因为AIE发光剂(AIEgens)在聚集状态下表现出增强的荧光亮度和光诱导的ROS产生能力。AIEgens的工作机制涉及限制分子内运动(RIM),允许对光物理能量转化过程进行精确控制。然而,大多数报道的AIE系统处于“始终开启”状态,这可能影响诊疗性能和精准医学。因此,探索在响应特定疾病生物标志物时启用可激活特性的新策略,对实现敏感的生物医学成像和更安全的光动力疗法效果具有重要的前景。光动力疗法面临的另一个障碍是缺氧的肿瘤微环境(TME),因为光触发的ROS产生是一个依赖氧气的过程。光动力疗法可能耗尽氧气,进一步加重肿瘤部位的缺氧。因此,将光动力疗法与缺氧触发的治疗相结合,具有显著的增强癌症免疫疗法的潜力,如作为强效焦亡诱导剂。
共价有机框架(COFs)作为有望用于药物传递应用的多孔材料,表现出巨大的潜力。然而,在从COF载体实现按需或受控药物释放方面仍存在挑战。为了提高药物传递的效率和安全性,迫切需要在疾病部位对基于COF的载体的药物释放进行精确控制。一个吸引人的方法涉及开发对肿瘤微环境(TME)响应的COFs,例如对缺氧响应的COFs。另一方面,COFs还可以作为荧光染料(包括AIEgens)的载体,它们的小尺寸使它们之间可能发生电子相互作用。例如,光诱导电子转移(PET)效应提供了一种有效的熄灭发射的手段,其中发光体在激发态的电子转移到电子受体单元。随后荧光给体和受体单元的分离将恢复发射信号。COFs的这种双重功能,既作为对TME条件响应的药物载体,又作为具有发射熄灭效应的荧光染料的载体,为推进受控药物传递和成像应用提供了一个多功能平台。
发明内容
为推进受控药物传递和成像应用提供一个多功能平台,以解决癌症诊断治疗一体化的问题,本发明提出了一种乏氧激活治疗诊断联合和自加速药物释放以协同癌症免疫治疗的共价有机框架,所采用的技术方案如下:
本发明中一种乏氧激活治疗诊断联合和自加速药物释放以协同癌症免疫治疗的共价有机框架,是将4,4'-偶氮二苯胺、三甲酰基间苯三酚、光敏剂TPA-TM、地西他滨(DAC)和聚氧乙烯聚氧丙烯醚(F-127)溶于四氢呋喃中通过共价反应合成;然后将溶液离心、洗涤和冷冻干燥后获得装载了光敏剂TPA-TM和DAC的共价有机框架;(TD@COFs)。
其中TPA-TM具有以下结构:
R1、R2、R3中1~3个为其余为氢。
具体的制备过程如下:
1)溴代三苯胺TPA衍生物与硼噻吩醛在四(三苯基膦)钯(Pd(PPh3)4和K2CO3的催化下,在四氢呋喃和水的混合溶剂中加热至回流,发生的Suzuki偶联反应;反应结束后,加入水,使用二氯甲烷进行三次提取,将有机相合并,并用MgSO4干燥;在减压下去除溶剂后,以乙酸乙酯和己烷体积比1:5的混合溶液为洗脱剂,通过硅胶色谱纯化残渣,得到产物A;
所述的溴代三苯胺TPA衍生物的结构为:
R1、R2、R3中的1~3个为Br取代,其余为氢;
所述硼噻吩醛的结构为
2)将步骤1)所得产物A与丙二腈,在醋酸铵的催化下,在甲苯和乙酸的混合溶剂中加热至回流,进行缩合反应;反应结束后加入水,使用二氯甲烷进行三次提取;将有机相合并,并用MgSO4干燥,在减压下去除溶剂后,以二氯甲烷和己烷体积比1:2的混合溶液为洗脱剂,通过硅胶色谱纯化残渣,得到产物TPA-TM;
3)在室温下将4,4'-偶氮二苯胺(AD)和TPA-TM溶解四氢呋喃中,随后加入三乙胺进行充分混合,得到溶液A;将三甲酰基间苯三酚(TP)和地西他滨(DAC)溶解在四氢呋喃中,混合均匀的溶液B;
将溶液A和溶液B混合,表面活性剂聚氧乙烯聚氧丙烯醚(F-127),在完全均质化后,将得到的溶液分散在去离子水中;最后,加入催化剂三氟乙酸,在常温下反应五分钟后,将溶液离心、洗涤和冷冻干燥后获得装载了光敏剂和DAC的共价有机框架(TD@COFs)。
优选地,步骤1)中四氢呋喃和水的体积比为4:1;溴代三苯胺TPA衍生物与硼噻吩醛的摩尔比为1:n,n为溴代三苯胺TPA衍生物的溴取代数;
优选地,步骤2)中甲苯和乙酸的体积比为25:1;产物A与丙二腈的摩尔比为1:(1.1~1.3)n,n为溴代三苯胺TPA衍生物的溴取代数。
优选地,步骤3)中TPA-TM分子结构式为:
本发明的有益效果:
本发明通过设计和合成一系列基于三苯胺(TPA)的供体-受体(D-A)型分子,即TPA-TM,其中包含不同数量的电子受体取代物,具体而言,为1~3个2-(噻吩-2-基亚甲基)马隆腈(TM)基团。TPA具有非平面结构和强大的电子给予能力。噻吩环既是供体单元又是共轭π-间隔,而马隆腈是电子亏化的基团。
然后将4,4-偶氮二氨基苯(AD)、三甲酰基间苯三酚(TP)、TPA-TM、地西他滨DAC和聚氧乙烯聚氧丙烯醚(F-127)溶于四氢呋喃中通过共价反应合成;然后将溶液离心、洗涤和冷冻干燥后获得装载了光敏剂和DAC的共价有机框架(TD@COFs)。
通过上述方法本发明将高效AIE发光剂(AIEgen)和DAC被整合到一种缺氧响应性的COF中。该COF由含有偶氮苯基团的单体构建而成,在缺氧条件下能够在偶氮还原酶的存在下降解,促使化疗药物DAC的有序释放。AIEgen诱导的PDT效应有助于强化缺氧,从而加速药物释放的进程。此外,基于偶氮的COF通过PET效应表现出熄灭AIEgen荧光的能力。在缺氧触发的COF降解后,荧光和PDT性质均经历了显著的增强。该纳米药剂通过原位可激活的荧光标志能够敏感地描绘体内肿瘤部位。一旦进入肿瘤组织,这种纳米平台展现了诱导强效PDT效应和高效诱导肿瘤细胞凋亡的潜力。PDT效应与释放的DAC药物相互协同作用,进一步增强了细胞凋亡。由于其卓越的ROS产生能力和自加速的药物释放,该纳米药剂不仅抑制了原发性肿瘤的生长,而且通过引发强烈的免疫反应阻碍了4T1肿瘤携带小鼠体内远距离肿瘤的发展。
附图说明
图1为不同AIE发光剂的表征;其中A图为TPA-1TM、TPA-2TM和TPA-3TM在THF中的吸收,B图为I/I0与水分数的关系。I0和I表示不同水乙腈和乙腈/水混合物的最大PL强度。图C为A/A0与白光照射时间的关系。A0和A表示光照射前后ABDA在378nm处的吸收强度。
图2为本发明实施例4制备的TD@COFs与在Na2S2O4存在的情况下TD@COFs的TEM图和粒径分布柱状图;其中,A为TD@COFs的TEM图,B为在Na2S2O4存在的情况下TD@COFs的TEM图,C为TD@COFs的粒径分布图,D为在Na2S2O4存在的情况下TD@COFs的粒径分布图。
图3为TD@COFs与在Na2S2O4存在的情况下TD@COFs的PL光谱。
图4为TD@COFs与在Na2S2O4存在的情况下TD@COFs的光触发1O2生成。
图5为不同浓度Na2S2O4处理后TD@COFs中DAC释放的HPLC分析。
图6为体外细胞研究;其中为A为在缺氧条件下,对用不同配方处理24小时的4T1细胞进行活/死共染色试验,比例尺:100μm。B为从图A中得出的显示活细胞和死细胞百分比的定量数据。
图7为焦亡诱导表征。A为不同处理后4T1细胞的LDH释放水平。B为不同处理后4T1细胞ATP水平。
图8为在体内肿瘤的抗肿瘤性能。图A为评估在4T1荷瘤小鼠中各种干预措施的治疗效果的时间表示意图。图B为肿瘤生长曲线图和照片(n=5)。图C为不同治疗后小鼠分离肿瘤的重量(n=5)。
图9为体内抗肿瘤免疫作用。图A为双侧肿瘤模型中TD@cofs介导的协同治疗过程示意图。图B为原发肿瘤的肿瘤生长曲线,图C为远处肿瘤的生长曲线,图D为不同治疗后双侧4T1荷瘤小鼠的生存曲线(n=5)。
具体实施方式
下面以具体实施例的形式对本发明技术方案做进一步解释和说明。其中所涉及的术语解释如下:
(1)焦亡(pyroptosis):是一种高度炎症性的、程序化的细胞死亡方式,通常由免疫系统用于清除感染性微生物或受到损伤的细胞。与凋亡不同,焦亡引发细胞内炎症反应,导致细胞破裂并释放细胞内容物,包括促炎细胞因子。焦亡的关键特征是细胞膜的穿孔和细胞内高度炎症性细胞死亡。这一过程由多种细胞因子和酶的激活引发。焦亡在免疫调节和疾病过程中发挥着重要作用。
(2)地西他滨(DAC):全名为5-Aza-2'-deoxycytidine,是一种核苷酸类似物,主要用于治疗一些白血病和其他恶性肿瘤。它属于DNA甲基转移酶抑制剂,通过阻止DNA链的甲基化过程,干扰肿瘤细胞的基因表达,从而促使细胞发生焦亡。DAC的抗癌机制使其成为一种重要的化疗药物,常用于治疗高度甲基化的肿瘤。
(3)AIE发光剂(AIEgens):是一类特殊的荧光物质,其特点是在溶液中呈现弱荧光或非荧光状态,但当被聚集或限制分子运动时,其荧光性能显著增强,这种现象被称为“聚集诱导发光”(AIE)。相较于传统荧光剂,AIEgens在溶液中不易发光,但在特定条件下,如固体态或高浓度状态下,其荧光特性会被有效激发,为生物成像、传感和光电器件等领域提供了广泛应用的新型荧光探针。
(4)光动力治疗(PDT):是一种医学疗法,利用光敏感剂在光照下产生活性氧物质,导致目标组织中的细胞损伤和死亡。该治疗方法结合了光和特定药物的作用,通常用于治疗癌症和其他疾病。在PDT中,患者接受光敏感剂的注射或局部涂抹,随后用特定波长的光照射激活药物,引发活性氧产生,最终导致目标细胞的破坏。PDT具有非侵入性和局部性的优势,逐渐成为肿瘤治疗和皮肤病变治疗的一种有效手段。
(5)共价有机框架(COFs):是一类多孔材料,由有机单体通过共价键连接形成结晶网络。COFs的特点包括高度有序的结构、可控的孔隙大小和化学稳定性。这些框架在药物传递、气体分离等方面具有广泛应用,因其结构灵活性和可调控性而备受关注。
(6)活性氧物质(ROS):是一类包括超氧离子、过氧化氢和羟基自由基等在内的高度活化、富含氧的分子。在生物体内,ROS在正常代谢中产生,但过多的ROS可导致氧化应激,损伤细胞结构和功能,与多种疾病的发生发展密切相关。在癌症治疗中,利用活性氧的毒性,比如光动力治疗中的ROS生成,可用于诱导肿瘤细胞凋亡。
(7)光诱导电子转移(PET):是一种光化学过程,涉及光激发下电子从一个分子到另一个分子的迁移。这过程中,激发态的电子从荧光体或光敏物质传递到相邻的电子受体,导致荧光的熄灭。在研究和应用中,PET被广泛用于设计分子探针、荧光标记和其他光电子学应用,其机制有助于调控光响应性材料的性能。
实施例1【2-((5-(4-(二苯胺基)苯基)噻吩-2-基)甲烯)丙二腈(TPA-1TM)的合成】
合成路线如下:
1)将4-溴-N,N-二苯胺基苯胺(1.62克,5毫摩尔),(5-甲醛基噻吩-2-基)硼酸(0.78克,5毫摩尔),四(三苯基膦)钯(Pd(PPh3)4,60毫克,0.05毫摩尔),和K2CO3(2.07克,15毫摩尔)加入到一个100毫升的双颈圆底瓶中。瓶子进行了三次真空抽满和氩气通气。然后加入四氢呋喃(THF,40毫升)和水(10毫升),将混合物加热至回流并搅拌反应24小时。随后,加入水,使用二氯甲烷进行三次提取。将有机相合并,并用MgSO4干燥。在减压下去除溶剂后,通过硅胶色谱(洗脱剂:乙酸乙酯/己烷1/5)纯化残渣,得到5-(4-(二苯胺基)苯基)噻吩-2-甲醛,为橙黄色固体(收率82%)。
1H NMR(400MHz,CDCl3)δ9.75(s,1H),7.60(d,J=4.0Hz,1H),7.42(d,J=8.8Hz,2H),7.22(d,J=2.1Hz,1H),7.20(t,3H),7.18(d,J=2.0Hz,1H),7.03(t,5H),7.00(s,1H),6.98(s,1H),6.96(s,1H).13C NMR(101MHz,CDCl3)δ182.75,154.71,149.20,147.00,141.26,137.90,129.49,127.26,126.11,125.18,123.89,122.92,122.37.
2)将5-(4-(二苯胺基)苯基)噻吩-2-甲醛(1.61克,4毫摩尔),丙二腈(0.33克,5毫摩尔),和醋酸铵(NH4OAc,0.61克,8毫摩尔)加入到一个250毫升的双颈圆底瓶中。瓶子进行了三次真空抽满和氩气通气处理。然后加入甲苯(50毫升)和乙酸(2毫升),将混合物加热至回流并搅拌反应8小时。随后,加入水,使用二氯甲烷进行三次提取。将有机相合并,并用MgSO4干燥。在减压下去除溶剂后,通过硅胶色谱(洗脱剂:二氯甲烷/己烷1/2)纯化残渣,得到2-((5-(4-(二苯胺基)苯基)噻吩-2-基)甲烯)丙二腈,为红色固体(收率91%)。
1H NMR(400MHz,DMSO-d6)δ8.60(s,1H),7.91(d,J=4.2Hz,1H),7.69(dd,J=6.4,2.3Hz,3H),7.50(d,J=8.8Hz,2H),7.38(t,J=7.9Hz,2H),7.18(t,J=7.4Hz,1H),7.11(d,J=7.6Hz,2H),7.00(t,4H).13C NMR(101MHz,DMSO-d6)δ155.72,152.91,149.09,146.28,143.22,133.67,133.01,130.43,128.29,126.93,125.93,124.98,122.40,116.25,114.52,73.98.HRMS(MALDI-TOF,m/z):[M]+calcd.for C26H17N3S,403.1143;found,403.1145。
实施例2【2,2'-((((苯基氮二基)双(4,1-苯基))双(噻吩-5,2-二基))双(甲烯基亚胺))二丙二腈(TPA-2TM)的合成】
合成路线:
1)将4-溴-N-(4-溴苯基)-N-苯胺基苯胺(2.01克,5毫摩尔),(5-甲醛基噻吩-2-基)硼酸(1.56克,10毫摩尔),四(三苯基膦)钯(Pd(PPh3)4,120毫克,0.1毫摩尔),和K2CO3(2.07克,15毫摩尔)加入到一个100毫升的双颈圆底瓶中。瓶子进行了三次真空抽满和氩气通气处理。然后加入四氢呋喃(THF,40毫升)和水(10毫升),将混合物加热至回流并搅拌反应24小时。随后,加入水,使用二氯甲烷进行三次提取。将有机相合并,并用MgSO4干燥。在减压下去除溶剂后,通过硅胶色谱(洗脱剂:乙酸乙酯/己烷1/3)纯化残渣,得到5,5'-((苯基氮二基)双(4,1-苯基))双(噻吩-2-甲醛)为橙黄色固体(收率73%)。
1H NMR(400MHz,DMSO-d6)δ9.92(d,J=25.1Hz,2H),8.04(ddd,J=16.1,4.0,2.0Hz,2H),7.82–7.72(m,4H),7.66(dd,J=4.0,2.0Hz,2H),7.41(t,J=7.3Hz,2H),7.24–7.05(m,7H).13C NMR(101MHz,Chloroform-d)δ182.66,154.09,148.27,146.36,141.73,137.66,136.92,129.77,127.46,126.50,125.79,124.76,123.75,123.27.
2)将5,5'-((苯基氮二基)双(4,1-苯基))双(噻吩-2-甲醛)(1.39克,3毫摩尔),丙二腈(0.46克,7毫摩尔),和醋酸铵(NH4OAc,0.61克,8毫摩尔)加入到一个250毫升的双颈圆底瓶中。瓶子进行了三次真空抽满和氩气通气处理。然后加入甲苯(50毫升)和乙酸(2毫升),将混合物加热至回流并搅拌反应8小时。随后,加入水,使用二氯甲烷进行三次提取。将有机相合并,并用MgSO4干燥。在减压下去除溶剂后,通过硅胶色谱(洗脱剂:二氯甲烷/己烷1/2)纯化残渣,得到2-((5-(4-(二苯胺基)苯基)噻吩-2-基)甲烯)丙二腈,为红色固体(收率84%)。
1H NMR(400MHz,DMSO-d6)δ8.64(s,2H),7.94(d,J=4.1Hz,2H),7.81–7.73(m,6H),7.42(t,2H),7.26–7.09(m,7H).13C NMR(101MHz,Chloroform-d)δ156.30,150.38,148.73,145.91,140.31,133.62,127.80,126.64,126.17,125.41,123.82,123.66,114.39,113.56,75.81.HRMS(MALDI-TOF,m/z):[M+Na]+calcd.for C34H19N5S2,561.1082;found,584.1137.
实施例3【2,2',2”-(((氮三苯基(苯-4,1-二基))三(噻吩-5,2-二基))三(甲烯基亚胺))三丙二腈(TPA-3TM)的合成】
合成路线:
1)将三(4-溴苯基)胺(2.41克,5毫摩尔),(5-甲醛基噻吩-2-基)硼酸(2.34克,15毫摩尔),四(三苯基膦)钯(Pd(PPh3)4,173毫克,0.15毫摩尔),和K2CO3(2.07克,15毫摩尔)加入到一个100毫升的双颈圆底瓶中。瓶子进行了三次真空抽满和氩气通气处理。然后加入四氢呋喃(THF,40毫升)和水(10毫升),将混合物加热至回流并搅拌反应24小时。随后,加入水,使用二氯甲烷进行三次提取。将有机相合并,并用MgSO4干燥。在减压下去除溶剂后,通过硅胶色谱(洗脱剂:乙酸乙酯/己烷1/2)纯化残渣,得到5,5',5”-(氮三苯基(苯-4,1-二基))三(噻吩-2-甲醛)为橙黄色固体(收率57%)。
1H NMR(400MHz,CDCl3)δ9.87(s,3H),7.74(s,3H),7.61(d,J=8.1Hz,6H),7.36(s,3H),7.19(d,J=8.2Hz,6H).13C NMR(101MHz,CDCl3)δ182.72,153.66,147.55,142.00,137.69,128.41,127.67,124.65,123.61.
2)将5,5',5”-(氮三苯基(苯-4,1-二基))三(噻吩-2-甲醛)(1.15克,2毫摩尔),丙二腈(0.46克,7毫摩尔),和醋酸铵(NH4OAc,0.61克,8毫摩尔)加入到一个250毫升的双颈圆底瓶中。瓶子进行了三次真空抽满和氩气通气处理。然后加入甲苯(50毫升)和乙酸(2毫升),将混合物加热至回流并搅拌反应8小时。随后,加入水,使用二氯甲烷进行三次提取。将有机相合并,并用MgSO4干燥。在减压下去除溶剂后,通过硅胶色谱(洗脱剂:二氯甲烷/己烷1/1)纯化残渣,得到2,2',2”-(((氮三苯基(苯-4,1-二基))三(噻吩-5,2-二基))三(甲烯基亚胺))三丙二腈为红色固体(收率67%)。
1H NMR(400MHz,DMSO-d6)δ8.51(s,3H),7.90(d,J=4.1Hz,3H),7.73(d,J=8.3Hz,6H),7.63(d,J=4.1Hz,3H),7.18(d,J=8.3Hz,6H).13C NMR(101MHz,DMSO-d6)δ155.15,152.66,147.78,142.50,134.20,128.27,127.84,125.15,124.97,114.87,114.11,74.75.HRMS(MALDI-TOF,m/z):[M]+calcd.for C42H21N7S3,719.1021;found,7.
实施例4【TD@CNPs的制备】
合成路线为:
在室温下将6毫克的4,4'-偶氮二苯胺(AD)和1毫克的TPA-2TM溶解在1毫升四氢呋喃中,随后加入10微升三乙胺进行充分混合。接着,在1毫升四氢呋喃中加入4毫克三甲酰基间苯三酚(TP)和2毫克地西他滨(DAC),混合均匀。然后,将这两种溶液混合,加入46毫克聚氧乙烯聚氧丙烯醚(F-127)。在完全均质化后,将得到的溶液分散在18毫升去离子水中。最后,加入20微升三氟乙酸,在足够的反应时间后得到TD@COFs。
效果验证:
验证实验1:不同AIE发光剂的表征
我们研究了这些化合物的光物理性质。如图1中A图所示,在THF中,TPA-1TM、TPA-2TM和TPA-3TM的最大吸收波长分别为484nm、499nm和470nm。TPA-2TM在这些化合物中表现出最长的波长响应。
在白光照射下,以蒽-9,10-双(苯乙炔基)二胺(ABDA)为指标,评价了单线态氧(1O2)的生成。如C图所示,T2NPs在所有化合物中表现出最强的ROS产生能力。
验证实验2:TD@COFs在乏氧环境下粒径和形态的变化
如图2所示,透射电子显微镜(TEM)和动态光散射(DLS)测量结果显示,TD@COFs具有一个平均直径约为120nm的球形结构。
然后评价了TD@COFs的缺氧响应性质和光物理性质。氢化亚硫酸钠(Na2S2O4)通常用于仿生偶氮还原酶,在水溶液中引入TD@COFs,以模拟缺氧条件。如图2所示,我们采用TEM和DLS来研究NP形态的变化,经过Na2S2O4处理后,TD@COFs的形态转变为超过300nm的更大的聚集体,这是由于TD@COFs的降解。记录了TD@COFs的光物理性质和缺氧诱导的变形。
验证实验3:TD@COFs与在Na2S2O4存在的情况下TD@COFs的PL光谱。
与相同浓度的TD@COFs相比,当Na2S2O4存在的TD@COFs降解时,PL强度显著增强(图3)。可能的原因可能是T-2@COFs中TPA-2TM与偶氮基结构之间的PET效应导致TPA-2TM的荧光明显猝灭。经缺氧处理后,偶氮键降解,可使TPA-2TM的荧光恢复。
验证实验4:TD@COFs与在Na2S2O4存在的情况下TD@COFs的光触发1O2生成
缺氧处理后,使用ABDA对不同组分进行检测,其中TD@COFs在光照射下产生ROS的能力有所增强。
验证实验5:不同浓度Na2S2O4处理后TD@COFs中DAC释放的HPLC分析
缺氧处理后,采用高效液相色谱法(HPLC)法监测DAC的按需释放情况。如图5所示,Na2S2O4浓度的升高导致TD@COFs中DAC的释放增加,突出了TD@COFs在控制DAC传递方面的潜力。
验证实验6:体外细胞研究
当DAC和/或TPA-2TM被封装到缺氧反应性共价有机框架载体中时,它们的抗肿瘤作用在常氧条件下减弱,可能是由于共价有机框架载体限制了释放活性DAC和TPA-2TM。在缺氧刺激下(图6),游离DAC和TNPs+光照射组在常氧状态下均表现出相当的肿瘤杀伤能力。有趣的是,与常氧条件相比,TD@COFs表现出显著的更高的毒性,无论是否存在光照暴露。这种增强的毒性可归因于缺氧诱导的共价有机框架降解和随后的TPA-2TM和DAC的释放。
验证实验7:焦亡诱导表征
评估了不同治疗后的4T1肿瘤细胞中乳酸脱氢酶(LDH)和三磷酸腺苷(ATP)的释放水平。作为焦亡过程中细胞内含量泄漏的关键指标,“TD@COFs+L”组的LDH释放含量最高,分别约为“TNPs+L”组和“TD@COFs”组的2.2倍和1.6倍(图7)。同样,“TD@COFs+L”组的细胞内ATP含量显著下降,表明在所有治疗组中ATP释放效率最高。这一结果表明,DAC药物和PDT效应的整合促进了强焦亡的发生。
验证实验8:体内肿瘤的抗肿瘤性能
分别在第0、3、6、9天,注射和照射程序重复4次。每隔一天监测一次肿瘤的生长情况和体重。如图8所示,与PBS组相比,DAC、“TNPs+L”或TD@COFs处理的小鼠表现出中度的肿瘤抑制作用,说明单个DAC或PDT具有一定的杀瘤作用。有趣的是,“TD@COFs+L”组的肿瘤表现出明显的抑制作用。“TD@COFs+L”组第15天(120mm3)的平均肿瘤体积约为PBS(1278mm3)、DAC(649mm3)、TNPs(541mm3)、TNPs+L(1142mm3)、TD@COFs(387mm3)组的3.2倍。此外,在第14天收获的分离肿瘤的重量证实了“TD@COFs+L”治疗与其他干预措施相比具有优越的抗肿瘤效率。这些结果表明,TD@COFs协同传递和靶向释放DAC和TPA-2TM可显著提高肿瘤抑制效率。
验证实验9:体内抗肿瘤免疫作用
如图9所示,在该模型中,在第7天将4T1癌细胞植入雌性BALB/c小鼠的右侧。接种原发肿瘤6天后,将等量的癌细胞植入左侧,以模拟远处肿瘤的存在。体内肿瘤治疗是通过在第0天全身给药不同的制剂,然后在注射后8小时对原发肿瘤进行局部光照射(0.3Wcm-2,5min)。分别在第3、6、9天重复治疗。每两天仔细监测一次两侧肿瘤的进展情况,以评估治疗效果(图9B,C)。未经光照射的TNPs治疗组的原发性肿瘤和远端肿瘤的生长模式与PBS组相似。游离DAC治疗对原发肿瘤和远处肿瘤均有较弱的抑制作用,可能是由于其循环半衰期较短,肿瘤积累较差所致。虽然TNPs+L治疗显著减缓了原发肿瘤的生长,抑制率为61%,但它未能有效抑制未暴露于光下的远处肿瘤(抑制率为50%)。引人注目的是,在“TD@COFs+L”治疗后,原发肿瘤和远处肿瘤的生长均明显延迟,导致显著的抑制率分别为82.2%和78.6%。第22天,“TD@COFs+L”组(149.7)的远处肿瘤平均体积分别比PBS(697.7)、DAC(500.3)、T19.9)、TNPs(349.9)、TNPs+L(270.8)组(276.7)组小4.31和1.81倍。所有的治疗方法对小鼠体重的副作用都可以忽略不计。此外,“TD@COFs+L”组小鼠的存活时间显著延长,5只荷瘤小鼠中有4只存活时间超过37天(见图9D)。
在上述的实施例中通过使用缺氧响应性COF作为载体,增强AIEgens的治疗诊断能力,实现对化疗药物DAC的控制释放,以增强图像引导的焦亡介导的癌症免疫疗法。本发明设计并合成了三种供体-受体(D-A)型AIEgen,具有不同数量的A基团(即1、2和3个A基团)。有趣的是,我们观察到引入两个A单元导致最长的响应波长和最有效的光动力疗法(PDT),超越了具有一个或三个A基团的类似物的性能。高性能的AIEgen和DAC随后被整合到一个缺氧响应性COF中。这个COF由含有偶氮苯基团的单体构建而成,在缺氧条件下可以在偶氮还原酶的存在下降解,促进化疗药物DAC的受控释放。AIEgen诱导的PDT效应有助于加剧缺氧,从而加速药物释放过程。此外,基于偶氮的COF通过PET效应表现出熄灭AIEgen荧光的能力。在缺氧触发的COF降解后,荧光和PDT性质均经历了显著的增强。该纳米药剂通过原位可激活的荧光标志能够敏感地描绘体内肿瘤部位。一旦渗入肿瘤,这种纳米平台展现了诱导强效PDT效应和高效诱导肿瘤细胞凋亡的潜力。PDT效应与释放的DAC药物协同作用,进一步增强了细胞凋亡。由于其出色的ROS产生能力和自加速的药物释放,该纳米药剂不仅抑制了原发性肿瘤的生长,而且通过强烈的免疫反应阻碍了4T1肿瘤携带小鼠远处肿瘤的进展。实现了AIEgen可激活的诊疗性能和自加速的药物释放,推动了协同的焦亡介导的癌症免疫疗法。
本说明书通过层层递进的方式进行阐述,各个实施例之间相同相似部分可相互参考。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (7)

1.一种乏氧激活治疗诊断联合和自加速药物释放以协同癌症免疫治疗的共价有机框架,其特征在于,所述共价有机框架是将4,4'-偶氮二苯胺、三甲酰基间苯三酚、光敏剂TPA-TM、地西他滨和聚氧乙烯聚氧丙烯醚溶于四氢呋喃中通过共价反应合成;然后将溶液离心、洗涤和冷冻干燥后获得装载了光敏剂TPA-TM和地西他滨的共价有机框架;
其中TPA-TM具有以下结构:
R1、R2、R3中1~3个为其余为氢。
2.根据权利要求1所述的乏氧激活治疗诊断联合和自加速药物释放以协同癌症免疫治疗的共价有机框架的制备方法,其特征在于,具体的制备过程如下:
1)溴代三苯胺TPA衍生物与硼噻吩醛在四(三苯基膦)钯和K2CO3的催化下,在四氢呋喃和水的混合溶剂中加热至回流,发生的Suzuki偶联反应;反应结束后,加入水,使用二氯甲烷进行三次提取,将有机相合并,并用MgSO4干燥;在减压下去除溶剂后,以乙酸乙酯和己烷体积比1:5的混合溶液为洗脱剂,通过硅胶色谱纯化残渣,得到产物A;
所述的溴代三苯胺TPA衍生物的结构为:
R1、R2、R3中的1~3个为Br取代,其余为氢;
所述硼噻吩醛的结构为
2)将步骤1)所得产物A与丙二腈,在醋酸铵的催化下,在甲苯和乙酸的混合溶剂中加热至回流,进行缩合反应;反应结束后加入水,使用二氯甲烷进行三次提取;将有机相合并,并用MgSO4干燥,在减压下去除溶剂后,以二氯甲烷和己烷体积比1:2的混合溶液为洗脱剂,通过硅胶色谱纯化残渣,得到产物TPA-TM;
3)在室温下将4,4'-偶氮二苯胺和TPA-TM溶解四氢呋喃中,随后加入三乙胺进行充分混合,得到溶液A;将三甲酰基间苯三酚和地西他滨溶解在四氢呋喃中,混合均匀的溶液B;
将溶液A和溶液B混合,表面活性剂聚氧乙烯聚氧丙烯醚,在完全均质化后,将得到的溶液分散在去离子水中;最后,加入催化剂三氟乙酸,在常温下反应五分钟后,将溶液离心、洗涤和冷冻干燥后获得装载了光敏剂和DAC的共价有机框架。
3.根据权利要求2所述的乏氧激活治疗诊断联合和自加速药物释放以协同癌症免疫治疗的共价有机框架的制备方法,其特征在于,步骤1)中四氢呋喃和水的体积比为4:1。
4.根据权利要求2所述的乏氧激活治疗诊断联合和自加速药物释放以协同癌症免疫治疗的共价有机框架的制备方法,其特征在于,步骤1)中溴代三苯胺TPA衍生物与硼噻吩醛的摩尔比为1:n,n为溴代三苯胺TPA衍生物的溴取代数。
5.根据权利要求2所述的乏氧激活治疗诊断联合和自加速药物释放以协同癌症免疫治疗的共价有机框架的制备方法,其特征在于,步骤2)中甲苯和乙酸的体积比为25:1。
6.根据权利要求2所述的乏氧激活治疗诊断联合和自加速药物释放以协同癌症免疫治疗的共价有机框架的制备方法,其特征在于,步骤2)中产物A与丙二腈的摩尔比为1:(1.1~1.3)n,n为溴代三苯胺TPA衍生物的溴取代数。
7.根据权利要求2所述的乏氧激活治疗诊断联合和自加速药物释放以协同癌症免疫治疗的共价有机框架的制备方法,其特征在于,步骤3)中TPA-TM分子结构式为:
CN202410100720.9A 2024-01-24 2024-01-24 一种乏氧激活治疗诊断联合和自加速药物释放以协同癌症免疫治疗的共价有机框架 Pending CN117919443A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410100720.9A CN117919443A (zh) 2024-01-24 2024-01-24 一种乏氧激活治疗诊断联合和自加速药物释放以协同癌症免疫治疗的共价有机框架

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410100720.9A CN117919443A (zh) 2024-01-24 2024-01-24 一种乏氧激活治疗诊断联合和自加速药物释放以协同癌症免疫治疗的共价有机框架

Publications (1)

Publication Number Publication Date
CN117919443A true CN117919443A (zh) 2024-04-26

Family

ID=90769850

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410100720.9A Pending CN117919443A (zh) 2024-01-24 2024-01-24 一种乏氧激活治疗诊断联合和自加速药物释放以协同癌症免疫治疗的共价有机框架

Country Status (1)

Country Link
CN (1) CN117919443A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118652242A (zh) * 2024-08-20 2024-09-17 内蒙古大学 一种具有i型活性氧生成能力的聚集诱导发光型光敏剂及其制备方法和应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118652242A (zh) * 2024-08-20 2024-09-17 内蒙古大学 一种具有i型活性氧生成能力的聚集诱导发光型光敏剂及其制备方法和应用
CN118652242B (zh) * 2024-08-20 2024-10-18 内蒙古大学 一种具有i型活性氧生成能力的聚集诱导发光型光敏剂及其制备方法和应用

Similar Documents

Publication Publication Date Title
Wei et al. NIR-light triggered dual-cascade targeting core-shell nanoparticles enhanced photodynamic therapy and immunotherapy
CN108727256B (zh) 一种基于三苯胺多吡啶盐的光敏剂及其制备方法与应用
JP6910551B2 (ja) 光増感剤、その誘導体および用途
CN117919443A (zh) 一种乏氧激活治疗诊断联合和自加速药物释放以协同癌症免疫治疗的共价有机框架
Yang et al. Highly effective thieno [2, 3-b] indole-diketopyrrolopyrrole near-infrared photosensitizer for photodynamic/photothermal dual mode therapy
CN108948060B (zh) 三苯胺基树枝配体取代硅酞菁及其制备方法和应用
Li et al. Advancing biomedical applications via manipulating intersystem crossing
CN111689955A (zh) 一类萘并噻二唑自由基型光敏剂及其制备方法与应用
CN111662333A (zh) 一类双三联吡啶铱(ⅲ)配合物及其合成方法
CN110003461A (zh) 多碘修饰的氟硼二吡咯类衍生物及其制备方法和应用
CN111939124B (zh) 一种金属聚合物、金属聚合物纳米胶束及其制备方法和应用
Zhao et al. Recent advances and prospects in organic molecule-based phototheranostic agents for enhanced cancer phototherapy
CN114213419A (zh) 一种兼具荧光成像和i型光动力/光热杀伤癌细胞活性的荧光探针及其制备方法和应用
CN109575061A (zh) 一种水溶性的抗癌光敏剂及其制备和应用
CN114539232B (zh) 一种pH可逆激活近红外二区聚集诱导发光I型光敏剂及其应用
CN112094263A (zh) 基于喹喔啉的D-A-π-A型有机光敏剂及其合成方法和应用
CN113045455B (zh) 具有近红外发射、高单线态氧产率的聚集诱导发光型光敏剂及其制备方法、应用
CN114805372B (zh) 具有双摄取通路的轴向磺酸基修饰酞菁硅及其制备方法及和应用
CN108715591B (zh) 用作光敏剂的近红外吸收卟啉化合物及其应用
WO2023245857A1 (zh) 一种辣椒素衍生化光敏剂及其制备方法与应用
CN107789623B (zh) 哌嗪取代硅酞菁及其在光热治疗中的应用
Zhou et al. A tailored and red-emissive type I photosensitizer to potentiate photodynamic immunotherapy
CN109867797B (zh) 一种近红外响应发光的树枝状大分子复合物及其制备方法与应用
CN104826111A (zh) 上转换NaYF4:Yb3+,Tm3+纳米晶体-竹红菌素复合物的制备方法及制得的复合物在光敏治疗中的应用
CN112121165A (zh) 一种自携氧型光热制剂/蒽内过氧化物/高分子复合纳米粒子的制备方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination