CN117903462A - 一种微载体制备及静态3d扩增的方法 - Google Patents

一种微载体制备及静态3d扩增的方法 Download PDF

Info

Publication number
CN117903462A
CN117903462A CN202311422861.4A CN202311422861A CN117903462A CN 117903462 A CN117903462 A CN 117903462A CN 202311422861 A CN202311422861 A CN 202311422861A CN 117903462 A CN117903462 A CN 117903462A
Authority
CN
China
Prior art keywords
microcarrier
polystyrene
cells
plasma
culture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311422861.4A
Other languages
English (en)
Inventor
梁俊
赵玉泽
于珊珊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University of Science and Technology
Original Assignee
Tianjin University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University of Science and Technology filed Critical Tianjin University of Science and Technology
Priority to CN202311422861.4A priority Critical patent/CN117903462A/zh
Publication of CN117903462A publication Critical patent/CN117903462A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/28Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0068General culture methods using substrates
    • C12N5/0075General culture methods using substrates using microcarriers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/08Copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2513/003D culture
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2531/00Microcarriers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/30Synthetic polymers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2535/00Supports or coatings for cell culture characterised by topography

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Polymers & Plastics (AREA)
  • Wood Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明涉及微载体的制备并应用于静态条件下3D间充质干细胞的扩增的方法。本发明的效果和益处是微载体为间充质干细胞提供了粘附表面,3D培养支架为间充质干细胞提供了体内微环境的模拟;不需要旋转生物反应器为干细胞提供悬浮生长环境,避免了流体剪切力对干细胞造成的损伤。

Description

一种微载体制备及静态3D扩增的方法
技术领域
本发明涉及一种微载体制备及静态3D扩增的方法。
背景技术
间充质干细胞等贴壁细胞在许多临床试验中被研究,以探索其在生物治疗和组织再生中的潜力与应用。为了满足高要求的细胞剂量,需要一种快速可靠的体外扩增方法。微载体已被广泛应用于各种生物技术应用,因此成为干细胞扩增和分化的新方法。
生物反应器系统在微载体细胞大规模扩增研究领域已有较长的研究历史。虽然搅拌罐和旋转生物反应器是目前用于细胞规模化生产和动态悬浮培养的主要设备,但它们仍存在一些严重问题,限制了生物过程的扩展、升级和标准化。对于搅拌式生物反应器,搅拌桨的剪切力大小会对细胞培养产生较大影响。旋转生物反应器或低剪切力搅拌桨可以产生相对较低的低剪切应力培养环境,以部分克服搅拌罐装置的局限。然而,旋转式反应器所采用的技术解决方案的复杂性使得这些设备不易扩展,不适合连续介质更换和实时监测。此外,这些生物反应器无法提供细胞体内的模拟环境。因此,需要进一步的技术创新和改进,以解决这些问题,提高细胞培养的效率和效果。
体内细胞是呈三维生长的,所以在进行体外细胞培养时,应该尽可能模拟体内环境,以提高体外培养细胞的品质。三维细胞培养技术(three-dimensional cell culture,TDCC)是近年来发展出的一种技术,它位于单层细胞培养和动物实验之间。通过将具有三维结构的多种材料载体和不同种类的细胞在体外共同培养,使细胞能够在由这些载体构成的立体空间结构中生长。这种技术既可以最大限度地模拟体内环境,又能发挥细胞培养的直观性和条件可控的优势。因此,在体外培养细胞时,利用三维细胞培养技术能更好地保持细胞活力,并模拟体内的微环境。
聚苯乙烯透光性能好,具有较好的强度和易塑性,并且没有毒性,成为细胞培养皿和培养板等细胞培养耗材的首选材料。然而聚苯乙烯表面是憎水的,所以需要经过表面的改性处理,变成亲水后才能适用于细胞培养。等离子体中的粒子能量在PLASMA介质的范围为0~20eV,然而聚合物的键能大多在0~10eV。因此,当等离子体作用到聚苯乙烯微球表面时,它可以打断原有的化学键并形成网状的交联结构。这种表面活性的增加主要是通过纯物理的撞击方式,利用PLASMA等离子体的大量离子、激发态分子、自由基等活性粒子对聚苯乙烯微球表面的原子或附着在表面的原子进行冲击。这不仅消除了聚苯乙烯微球表面原有的污染物和杂质,还产生了刻蚀作用,使聚苯乙烯微载体表面变得更加粗糙,形成许多微细的坑洼、沟壑。这种表面形态的改变不仅增加了材料表面的比表面积,同时也提高了材料的润湿性能。通过等离子处理的聚苯乙烯微载体,经过简单清洗即可重复使用,微载体表面性质不会随着使用寿命发生明显变化,有极大的应用前景。
通过构建3D支架来提供微载体的支撑效果,该方法还能模拟细胞外基质环境,且不需要搅拌桨就能实现均质培养环境。这种方法有望成为干细胞扩增和分化的一种新的有效手段。
发明内容
本发明提供了一种微载体制备及静态3D扩增的方法。该方法通过构建3D支架提供微载体的支撑效果,给细胞提供细胞外基质的模拟效果,不需要搅拌桨即可实现均质培养环环境。有希望成为干细胞扩增和分化的一种新方法。
本发明首先提供一种等离子处理聚苯乙烯微载体的制备方法,包括如下步骤:
准备100mL2.5wt%的PVA溶液,PVA加热溶解,可以先将水煮沸以去除水中溶解的氧气,PVA溶解后放置到泡沫消失后才可使用。去除苯乙烯、二乙烯基苯中的阻聚剂:配置5wt%的NaOH溶液,将苯乙烯、二乙烯基苯分别用等体积氢氧化钠溶液洗三次,再用水洗三次。用苯乙烯和二乙烯基苯溶解过氧化二苯甲酰,再加入正庚烷,混合均匀。苯乙烯∶二乙烯基苯∶正庚烷质量比为=6∶4∶7,引发剂过氧化二苯甲酰的质量为反应单体(苯乙烯和二乙烯基苯)质量的4.5%。将反应原料与PVA溶液混合,在220rpm/min、70℃条件下,反应12h。制备结束后,将聚苯乙烯微球反复用水和乙醇清洗多次。
具体的,制备的聚苯乙烯微球粒径范围为30μm-300μm,通过筛网进一步筛选粒径合适的微载体。
本发明中,通过控制微载体的粒径在特定的范围内和通过筛网进行进一步的筛选,可得到具有较大比表面积、适宜细胞附着的微载体。若微载体的粒径过大,则微载体的比表面积过小,不利于细胞高效扩增培养;若微载体的粒径过小,则细胞在微载体上的附着效果较差,也不利于细胞的培养。
具体的,制备的聚苯乙烯微球无其他官能团修饰,微球表面不携带任何亲水官能团。采用等离子改性聚苯乙烯微球表面,相比于化学法和加热法,等离子改性粉体材料具备安全、环保、高效、以及低成本的优点。
具体的,等离子处理时,功率为60~120w,处理时间为60~900s。
此外,所得聚苯乙烯微球具有可重复使用功能;另外,上述制备方法简单、条件温和、易于操作,原料来源低毒或无毒且价格低廉,有利于规模化生产应用。
本发明同时提供一种微载体的静态培养应用,包括如下步骤:
微载体使用前使用FBS孵育,在静态培养前将细胞和微载体共同孵育12-48h,使细胞黏附在微载体上;
使用3D细胞培养支架将微载体支撑,使微载体在3D支架中分布均匀并且不发生沉降,放入细胞培养箱进行长时间培养。
支架材料包括但不限于明胶、海藻酸钠、壳聚糖、透明质酸、多肽、纤维素等材料,或其修饰物、多种材料组合形成的3D支架材料。
根据本发明方法可以在本领域已知的容器中进行,包括组织培养孔板、烧瓶、摇瓶、旋转烧瓶、搅拌罐生物反应器、基于可弃袋的生物反应器系统,例如波浪细胞培养物系统,和膨胀床生物反应器系统。大规模生产的选项还包括滚瓶、空心纤维系统、单片、多片或堆叠的平板培养系统和单元立方体。
现有技术相比,本发明具有以下有益效果:
本发明中,通过对聚苯乙烯微载体进行等离子处理,使聚苯乙烯微球表面变“粗糙”,增大了材料表面的比表面积,提高材料表面的润湿性能。制备微载体的方法,简单高效、成本低、可操作性强,适于常规细胞的培养,特别适用于干细胞培养和体外规模扩增,并且可以重复使用。引入的3D支架,能够模拟细胞外基质结构“生态位”特点。为微载体表面细胞提供结构和机械支持和保护外,基质还可调节和微调每个细胞过程,包括细胞增殖和生存、细胞分化、细胞迁移和侵袭以及组织形态发生。
附图说明
下面结合附图对本发明进一步说明。
图1是本专利具体实施步骤。
图2是聚苯乙烯微球粒径分布(A)及显微镜图片(B)。
图3是聚苯乙烯微球扫描电子显微镜图片。
图4是聚苯乙烯微球表面纳米级微孔孔径分布图。
图5是等离子处理聚苯乙烯微球表面的细胞粘附。
图6是不同等离子处理时间对聚苯乙烯微载体细胞增殖效果的影响。
图7是有/无3D支架(矩阵(天津)生物科技有限公司提供的CulX I多肽支架)支撑微载体效果图,图A使用的是聚苯乙烯微载体,图B使用的是商业微载体3D
图8是无支架(A)与3D支架(B)(矩阵(天津)生物科技有限公司提供的CulX I多肽支架)培养的激光共聚焦培养对比(活死染色)及细胞计数(C)。
具体实施方式
本下面将结合本发明中的实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,一种微载体制备及静态3D扩增的方法,包括以下步骤:
步骤S01,采用悬浮聚合法合成聚苯乙烯微球;
步骤S02,将聚苯乙烯微球用等离子清洗机进行等离子表面处理;
步骤S03,在静态条件将细胞和微载体共同孵育,使细胞黏附在微载体上;
步骤S04,使用3D细胞培养支架将微载体支撑,使微载体在3D支架中分布均匀并且不发生沉降,在细胞培养箱进行长时间培养。
进一步的,在步骤S03中,所述微载体使用浓度为0.5wt%~5.0wt%。
进一步的,在步骤S03中,所述细胞接种密度为0.5-5×104cells/mL。
实施例1
采用苯乙烯(1.75mL)和(二乙烯基苯)1.15mL的混合溶液,溶解135mg过氧化二苯甲酰,将上述混合物分散在100mL 2.5wt%的聚乙烯醇溶液中。在220rpm/min、70℃反应12h。取出微球,用乙醇和水反复冲洗。用光学显微镜拍照并用Image J统计粒径,结果如图2所示。
实施例2
将制备的聚苯乙烯微球放入烧杯中,覆上封口膜进行冻干,冻干后喷金进行扫描电镜SEM拍摄,并用Image J统计微球表面微孔的孔径,结果如图3和图4所示。。
实施例3
等离子处理聚苯乙烯微球,功率为60~120w,处理时间为60~900s。
实施例4
将等离子处理的聚苯乙烯微载体在培养基中孵育12小时。将第七代大鼠骨髓来源间充质干细胞(BMSC)接种并在37℃、含5%CO2的湿润环境中孵育。细胞达到80%汇合后,用含EDTA的胰酶收获。在无TC处理的48孔板中以每mg接种1-2×104个细胞的密度接种细胞,微载体浓度为1.0wt%。细胞培养5天后,收集微载体,用系列梯度酒精(30%、50%、70%、80%、90%、95%、100%)浸泡脱水,每种浓度酒精脱水2次,每次15min。冻干后喷金进行扫描电镜SEM拍摄。细胞在微载体上的粘附如图5所示。
实施例5
为了研究不同等离子处理时间对聚苯乙烯微球细胞增殖的影响,将不同等离子处理时间(60s、120s、180s、240s、360s)的聚苯乙烯微载体在培养基中孵育12小时。将第六代大鼠骨髓来源间充质干细胞(BMSC)接种并在37℃、含5%CO2的湿润环境中孵育。细胞达到80%汇合后,用含EDTA的胰酶收获。在无TC处理的48孔板中以每mg接种1-2×104个细胞的密度接种细胞,微载体浓度为1.0wt%。细胞培养5天后,收集微载体,用含EDTA的胰酶消化细胞进行计数,计数结果如图6所示。明显看出,随着等离子处理时间的增加,细胞的增殖效果有着明显的提升。
实施例6
使用矩阵(天津)生物科技有限公司提供的CulX I多肽支架为例,加入CulX I多肽3D支架使微载体充分悬浮,使体系中CulX I多肽支架浓度为0.3wt%,与不加入支架的组别进行对比,静置72h后观察。如图7所示,加入3D支架的组别微载体无沉降现象,通过3D支架的支撑能力实现了3D培养。加入是3D支架的组别,微载体立体均匀的分布在整个空间,通过非搅拌作用实现了3D培养。
实施例7
将第9代大鼠骨髓间充质干细胞(BMSC)解冻,并在添加10%FBS和1%青霉素/链霉素(Gibco)的α-MEM培养基中培养。在细胞接种之前,将聚苯乙烯微载体浸入70%(v/v)乙醇中1小时,然后暴露在紫外线下30分钟。在细胞接种之前,将聚苯乙烯微载体在培养基中孵育12小时。将BMSC接种并在37℃、含5%CO2的湿润环境中孵育。细胞达到80%汇合后,用含EDTA的胰酶收获。在无TC处理的48孔板中以每mg接种1×104个细胞的密度接种细胞,微载体浓度为1.0wt%。在培养第2天加入矩阵(天津)生物科技有限公司提供的CulX I多肽3D支架实现3D培养,体系中CulX I多肽支架浓度为0.3wt%。每三天,抽取80%的培养基并用等量的新鲜培养基和CulX I多肽3D支架(终浓度0.3wt%)代替。为了研究细胞附着和生长,在细胞培养的第1天、第3天、第5天、第7天和第9天采集样品并进行细胞计数,并在第1天、第3天和第5天用AM/PI细胞活死染色试剂盒染色后通过激光共聚焦显微镜进行分析。活死染色及细胞计数如图8所示。可以看出,视野下没有红色荧光,也就是没有被PI染色的死细胞,加入CulX I多肽3D支架组别的活细胞的绿色荧光明显比未加入3D支架的组别强度高。同时,细胞计数结果也表明,3D支架组的细胞有更强的增殖能力。
以上述依据本发明的理想实例为启示,通过上述的说明内容,相关人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更以及修改。本项发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

Claims (10)

1.一种微载体制备及其细胞培养领域的应用,所述微载体为等离子处理的聚苯乙烯微载体,进一步使用等离子处理的聚苯乙烯微载体进行贴壁细胞培养。
2.根据权利要求1所述的聚苯乙烯微球,其特征在于:采用苯乙烯和二乙烯基苯通过悬浮聚合合成,使用正庚烷作为制孔剂,合成的聚苯乙烯微球表面多孔(纳米级),以促进细胞黏附。
3.根据权利要求1所述聚苯乙烯微球,其特征在于:所述聚苯乙烯微球粒径范围为10μm-500μm,表面纳米级微孔为0-300nm。
4.根据权利要求1所述聚苯乙烯微载体,其特征在于:所述步骤中聚苯乙烯微球经过等离子表面处理后,表面带有羟基、醛基、羧基等亲水官能团,可促进细胞黏附。
5.根据权利要求1所述聚苯乙烯微载体,其特征在于:采用悬浮聚合法,使用聚乙烯醇作为分散剂,苯乙烯∶二乙烯基苯∶正庚烷=6∶4∶7(质量比),引发剂过氧化二苯甲酰的质量为反应单体(苯乙烯和二乙烯基苯)质量的0.5-4.5wt%,在220rpm/min、70℃反应12h。
6.根据权利要求1所述的等离子处理的聚苯乙烯微载体,其特征在于,所述等离子处理的步骤包括:使用等离子设备,将氧气通入等离子发生装置中进行电离,并喷射在所述聚苯乙烯微球表面。
7.根据权利要求1所述的细胞培养应用,先在静态条件将细胞和微载体共同孵育,使细胞黏附在微载体上;使用3D细胞培养支架将微载体支撑,使微载体在3D支架中分布均匀并且不发生沉降,在细胞培养箱进行长时间静态培养。
8.根据权利要求7所述的3D培养支架,其特征在于:支架材料包括但不限于明胶、海藻酸钠、壳聚糖、透明质酸、多肽、纤维素、蛋白质等材料,或其修饰物、多种材料组合形成的3D支架材料或水凝胶材料。
9.据权利要求1所述的静态培养,其特征在于:细胞和微载体共同孵育12-48h,使细胞贴附在微载体上。再使用3D支架将微载体支撑,使微载体均匀立体的分布在3D支架中,进一步进行长时间静态培养。
10.一种微载体的应用,其特征在于,所述聚苯乙烯微载体经过等离子处理,用于可用于贴壁细胞的大规模扩增。
CN202311422861.4A 2023-10-26 2023-10-26 一种微载体制备及静态3d扩增的方法 Pending CN117903462A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311422861.4A CN117903462A (zh) 2023-10-26 2023-10-26 一种微载体制备及静态3d扩增的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311422861.4A CN117903462A (zh) 2023-10-26 2023-10-26 一种微载体制备及静态3d扩增的方法

Publications (1)

Publication Number Publication Date
CN117903462A true CN117903462A (zh) 2024-04-19

Family

ID=90691213

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311422861.4A Pending CN117903462A (zh) 2023-10-26 2023-10-26 一种微载体制备及静态3d扩增的方法

Country Status (1)

Country Link
CN (1) CN117903462A (zh)

Similar Documents

Publication Publication Date Title
JP6416206B2 (ja) 幹細胞培養のためのポリカプロラクトン・マイクロキャリアーおよびその製造
Yamaguchi et al. Surface modification of poly (L-lactic acid) affects initial cell attachment, cell morphology, and cell growth
Khan et al. Engineered regenerated bacterial cellulose scaffolds for application in in vitro tissue regeneration
US7906333B2 (en) Surface modification of polysaccharide, the modified polysaccharide, and method of culturing and recovery cells using the same
WO2009078819A1 (en) Forming porous scaffold from cellulose derivatives
KR102467863B1 (ko) 세포 배양용 마이크로 캐리어, 이의 제조방법 및 이를 이용하는 세포 배양 방법
Su et al. Hierarchical microspheres with macropores fabricated from chitin as 3D cell culture
WO2011051983A1 (en) In vitro bioengineered animal tissue fiber and its use in the textile industry
JP5669741B2 (ja) 培養システム
Cao et al. Three-dimensional culture of human mesenchymal stem cells in a polyethylene terephthalate matrix
Li et al. A comparative study of the behavior of neural progenitor cells in extrusion-based in vitro hydrogel models
Zhang et al. Injectable cell-laden hydrogels fabricated with cellulose and chitosan nanofibers for bioprinted liver tissues
WO2014143871A2 (en) Thermoresponsive polymer applications for adherent cell culture and recovery
Iwai et al. Induction of cell self‐organization on weakly positively charged surfaces prepared by the deposition of polyion complex nanoparticles of thermoresponsive, zwitterionic copolymers
CN117043315A (zh) 用于由所培养的细胞提取细胞衍生产物的生物反应器和方法以及纳米结构化纤维素产品
CN117903462A (zh) 一种微载体制备及静态3d扩增的方法
Zhang et al. Engineering ellipsoidal cap-like hydrogel particles as building blocks or sacrificial templates for three-dimensional cell culture
Su et al. A novel shell-structure cell microcarrier (SSCM) for cell transplantation and bone regeneration medicine
JPH03266980A (ja) 細胞培養用基材およびそれを用いた細胞集合体の製造方法
Zhijiang Biocompatibility and biodegradation of novel PHB porous substrates with controlled multi-pore size by emulsion templates method
EP3707244B1 (en) Macrocarrier
CN114292743A (zh) 一种电场辅助下的打印装置、水凝胶微球的制备方法及应用
Bobrova et al. Natural silk fiber microcarriers for cell culture
Korovina et al. Maintenance of multipotent mesynchymal stem cells of farm animals in cryogels based on naturally-derived polymers
CN117660304A (zh) 一种基于致孔支撑浴的组织或器官悬浮打印与原位培养方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination