CN117902885A - 一种硬度高且具有非晶-纳米晶双相结构的纳米高熵陶瓷及其制备方法 - Google Patents

一种硬度高且具有非晶-纳米晶双相结构的纳米高熵陶瓷及其制备方法 Download PDF

Info

Publication number
CN117902885A
CN117902885A CN202311613330.3A CN202311613330A CN117902885A CN 117902885 A CN117902885 A CN 117902885A CN 202311613330 A CN202311613330 A CN 202311613330A CN 117902885 A CN117902885 A CN 117902885A
Authority
CN
China
Prior art keywords
entropy
nano
amorphous
ceramic
phase structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311613330.3A
Other languages
English (en)
Inventor
傅乐
王博瀚
余文君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN202311613330.3A priority Critical patent/CN117902885A/zh
Publication of CN117902885A publication Critical patent/CN117902885A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/443Nitrates or nitrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • C04B2235/483Si-containing organic compounds, e.g. silicone resins, (poly)silanes, (poly)siloxanes or (poly)silazanes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明属于高熵陶瓷和纳米陶瓷技术领域,具体涉及一种硬度高且具有非晶‑纳米晶双相结构的纳米高熵陶瓷及其制备方法。所述高熵陶瓷具有非晶‑纳米晶双相结构;所述纳米高熵陶瓷由熵调控的纳米晶粒、非晶SiO2基质、锆的氧化物构成,所述熵调控的纳米晶粒的成分中含有钇、铈、铪、镱、铌中至少三种的元素的氧化物;所述熵调控的纳米晶粒分布在非晶SiO2基质中,非晶SiO2基质呈连续分布,纳米晶粒尺寸小于等于100nm。其制备方法包括采用化学工沉淀法制备非晶高能态陶瓷粉体,然后用快速热压烧结法制备块体纳米陶瓷。本发明微观结构设计合理,制备工艺简单可控,所得产品性能优良,便于工业化应用。

Description

一种硬度高且具有非晶-纳米晶双相结构的纳米高熵陶瓷及 其制备方法
技术领域
本发明属于高熵陶瓷和纳米陶瓷技术领域,具体涉及一种硬度高且具有非晶-纳米晶双相结构的纳米高熵陶瓷及其制备方法。
背景技术
2015年,在高熵合金的基础上衍生出了高熵陶瓷的概念,此后高熵陶瓷家族从最初的氧化物开始,迅速地扩展到硼化物、碳化物、硫化物、硅化物等。相较于传统陶瓷,高熵陶瓷组分多变,可设计性强,内部存在晶格畸变,有望展现出高熵合金中存在的四大高熵效应,即热力学上的高熵效应;晶体学上的晶格畸变效应;动力学上的迟滞扩散效应;以及性能上的鸡尾酒效应,可望赋予材料显著优于单组分的性能。高熵陶瓷的优异性能使其在超高温热环保、热电、核反应堆耐辐照材料、催化、电磁波吸收、储能等领域具有广阔的应用前景。
近年来,研究者发现双相甚至多相高熵陶瓷具有比单相高熵陶瓷更优异和全面的性能,比如Qin等人首次报道了一系列由高熵硼化物与高熵碳化物构成的双相高熵超高温陶瓷,可通过改变相分数调控两相的晶粒尺寸和性能,同时,双相高熵陶瓷的硬度和杨氏模量高于单个二元碳化物和硼化物混合平均值[1]。Kavak等人制备了由(HfTiWZr)B2高熵相和(Hf,Zr)O2和(W,Ti)B等非高熵相混合组成的多相高熵二硼化物陶瓷[2],该材料具有良好的力学性能和耐磨性。Luo等人通过液相烧结在相对低温下制备了(Ti,Zr,Nb,Ta,Mo)C-Co高熵复合材料[3],双相高熵复合材料具有高硬度和高韧性。Liu等人制备了由RENbO4/RE3NbO7组成的高熵稀土铌酸盐复合材料[4],发现该双相高熵陶瓷比单相铌酸盐具有更好的综合性能。因此,开发双相或多相高熵陶瓷对于进一步扩大高熵陶瓷家族数量和提高其性能具有重要意义。
到目前为止,大多数报道的高熵陶瓷都是由微米级的颗粒组成,这意味着高熵陶瓷不能从各种纳米效应中受益。众所周知,将陶瓷材料的晶粒尺寸减小到纳米级,可以显著提高陶瓷材料的各种性能,尤其是力学性能。因此,开发纳米高熵陶瓷具有重要意义。另外,目前大多数块体高熵陶瓷都是通过固相反应经高温烧结而成,烧结温度通常超过1600℃,有的甚至在2000℃以上,而且需要在最高温保温数小时。该传统方法不仅耗时,而且耗能,极大地提高了高熵陶瓷的制备成本,不利于高熵陶瓷的产业化。在温和条件下烧结制备块体非晶-纳米晶双相纳米高熵陶瓷是高熵材料的重要发展方向。
关于双相陶瓷,傅乐等人也做了一些研究,如在论文《Transparent singlecrystalline ZrO2-SiO2 glass nanoceramic sintered by SPS》[5]和《Highlytranslucent and strong ZrO2-SiO2 nanocrystalline glass ceramic prepared bysol-gel method and spark plasma sintering with fine 3D microstructure fordental restoration》[6]中就涉及到了ZrO2-SiO2双相陶瓷的研究,其采用溶胶-凝胶法制备粉体,采用等离子体电火花烧结法制备块体陶瓷,研究发现该体系陶瓷的力学性能与ZrO2含量密切相关,其中ZrO2含量为65mol%的样品平均抗弯强度最高,可达1014MPa,显微硬度为7.57GPa,杨氏模量和断裂韧性分别为152GPa和6.5MPa m1/2.
参考文献:
[1]M.Qin,J.Gild,C.Hu,H.Wang,M.S.Bin Hoque,J.L.Braun,T.J.Harrington,P.E.Hopkins,K.S.Vecchio,J.Luo,Dual-phase high-entropy ultra-high temperatureceramics,J.Eur.Ceram.Soc.40(2020)5037-5050.
https://doi.org/10.1016/j.jeurceramsoc.2020.05.040.
[2]S.Kavak,K.Gürcan,M.Mansoor,M.Kaba,E.Ayas,A.Duygu,First principlescalculations and synthesis of multi-phase(HfTiWZr)B2 high entropy diborideceramics:Microstructural,mechanical and thermal characterization,J.Eur.Ceram.Soc.43(2023)768-782.
https://doi.org/10.1016/j.jeurceramsoc.2022.10.047.
[3]S.C.Luo,W.M.Guo,K.Plucknett,H.T.Lin,Low-temperature densificationof high-entropy(Ti,Zr,Nb,Ta,Mo)C—Co composites with high hardness and hightoughness,J.Adv.Ceram.11(2022)805-813.
https://doi.org/10.1007/s40145-022-0574-6.
[4]X.Liu,P.Zhang,Y.Han,W.Pan,C.Wan,Tailoring thermal and mechanicalproperties of rare earth niobates by coupling entropy and compositeengineering,J.Eur.Ceram.Soc.43(2023)1141-1146.
https://doi.org/https://doi.org/10.1016/j.jeurceramsoc.2022.10.081.
[5]L.Fu,C.Wu,K.Grandfield,E.Unosson,J.Chang,H.Engqvist,W.Xia,Transparent single crystalline ZrO2-SiO2 glass nanoceramic sintered by SPS,J.Eur.Ceram.Soc.36(2016)3487-3494.
https://doi.org/10.1016/j.jeurceramsoc.2016.05.016.
[6]L.Fu,H.Engqvist,W.Xia,Highly translucent and strong ZrO2-SiO2nanocrystalline glass ceramic prepared by sol-gel method and spark plasmasintering with fine 3D microstructure for dental restoration,J.Eur.Ceram.Soc.37(2017)4067-4081.https://doi.org/10.1016/j.jeurceramsoc.2017.05.039.
本发明内容
本发明的目的之一于提供一种具有超高硬度和良好的热稳定性,且具有非晶-纳米晶双相结构和不同熵状态的纳米陶瓷。
本发明的目的之一还在于提供一种在低温烧结条件下制备具有非晶-纳米晶双相结构和不同熵状态的纳米陶瓷的制备方法,该体系纳米陶瓷的微观结构示意图如图1所示,由熵调控的纳米晶粒分布在非晶SiO2基质中,SiO2基质呈连续分布,纳米晶粒尺寸小于等于100nm。
本发明一种硬度高且具有非晶-纳米晶双相结构的纳米高熵陶瓷,所述高熵陶瓷具有非晶-纳米晶双相结构;所述纳米高熵陶瓷由熵调控的纳米晶粒、非晶SiO2基质、锆的氧化物构成,所述熵调控的纳米晶粒的成分中含有钇、铈、铪、镱、铌中至少三种的元素的氧化物;所述熵调控的纳米晶粒分布在非晶SiO2基质中,非晶SiO2基质呈连续分布,纳米晶粒尺寸小于等于100nm。
作为优选,所述熵调控的纳米晶粒的成分中含有钇、铈、铪、镱、铌中至少三种的元素的氧化物。
所述熵调控的纳米晶粒的成分中含有锆的氧化物的摩尔百分含量为55-75%、优选为65-70%。
本发明一种硬度高且具有非晶-纳米晶双相结构的纳米高熵陶瓷,熵调控的纳米晶粒与SiO2的摩尔比为5.5~7.5:4.5~2.5。优选为6-7:4-3,进一步优选为6.5~7:3~3.5、更进一步优选为6.5~6.8:3.5~3.2。
本发明一种硬度高且具有非晶-纳米晶双相结构的纳米高熵陶瓷,熵调控的纳米晶粒为单相高熵纳米粒子。
在本发明中,高熵陶瓷的成分可为:68mol%(Y0.05Ce0.07Hf0.07Nb0.07Yb0.07Zr0.35)Ox-32mol%SiO2
在本发明中,高熵陶瓷的成分可为:66mol%(Y0.05Ce0.07Hf0.07Nb0.07Zr0.40)Ox-34mol%SiO2
在本发明中,高熵陶瓷的成分可为:68mol%(Y0.05Ce0.07Hf0.07Nb0.07Yb0.07Zr0.35)Ox-32mol%SiO2)。本发明一种硬度高且具有非晶-纳米晶双相结构的纳米高熵陶瓷的制备方法,包括采用化学工沉淀法制备非晶高能态陶瓷粉体,然后用快速热压烧结法制备块体纳米陶瓷,具体步骤如下:
1)将乙醇、稀盐酸溶液和硅酸酯溶液混合,搅拌,TEOS发生水解,获得溶液1;
2)将水溶性锆盐溶解于去水中,用乙醇稀释,获得溶液2;
3)根据熵状态不同,将可溶性钇盐、可溶性铈盐、可溶性铪盐、可溶性镱盐、可溶性铌盐中的至少三种,溶解在乙醇中,获得溶液3;
4)将溶液1、溶液2、溶液3混合,搅拌均匀,获得溶液4;
5)向步骤4)获得的溶液4中滴加碱,并搅拌,诱导共沉淀反应,形成白色沉淀,共沉淀完成后,采用抽滤收集沉淀物;
6)将步骤5)中获得的沉淀物进行干燥,然后进行球磨,将获得的细粉进行煅烧;
7)将步骤6)中的煅烧粉体进行热压烧结,获得致密纳米块体高熵陶瓷,热压烧结时,控制温度为1150-1300℃。
本发明一种硬度高且具有非晶-纳米晶双相结构的纳米高熵陶瓷的制备方法,步骤1)中,硅酸酯优先为硅酸四乙酯(TEOS)。
步骤1)中的搅拌方式包括磁搅拌。为了确保均匀,搅拌的时间为20-40分钟。
作为优先,所述步骤1)中,稀盐酸的浓度为0.3-0.5mol/L;TEOS、无水乙醇和稀盐酸的体积比为(10-15):(2-5):(0.5-1.5);水解反应时间为0.25-1h。
本发明一种硬度高且具有非晶-纳米晶双相结构的纳米高熵陶瓷的制备方法,步骤2)中,水溶性锆盐选自八水氯氧化锆(ZrOCl2·8H2O)、五水硝酸锆(Zr(NO3)4·5H2O)中的至少一种。作为优选,所述步骤2)中,八水氯氧化锆溶于无水乙醇后的浓度为0.1~0.3mol/L。
本发明一种硬度高且具有非晶-纳米晶双相结构的纳米高熵陶瓷的制备方法,步骤3)中,可溶性钇盐选自硝酸钇、氯化钇中的至少一种。作为进一步的优选硝酸钇为六水硝酸钇(YN3O9·6H2O)。
本发明一种硬度高且具有非晶-纳米晶双相结构的纳米高熵陶瓷的制备方法,步骤3)中,可溶性铈盐选自硝酸铈、氯化铈中的至少一种。作为进一步的优选硝酸铈为六水硝酸铈(CeN3O9·6H2O)。
本发明一种硬度高且具有非晶-纳米晶双相结构的纳米高熵陶瓷的制备方法,步骤3)中,可溶性铪盐选自四氯化铪(HfCl4)、氢氧化铪(H4HfO4)中的至少一种。
本发明一种硬度高且具有非晶-纳米晶双相结构的纳米高熵陶瓷的制备方法,步骤3)中,可溶性镱盐选自氯化镱、硝酸镱中的至少一种。作为优选,氯化镱为六水氯化镱(YbCl3·6H2O)。
本发明一种硬度高且具有非晶-纳米晶双相结构的纳米高熵陶瓷的制备方法,步骤3)中,可溶性铌盐选自五氯化铌(NbCl5)、硝酸铌中的至少一种。
步骤5)中碱优选为氨水。
为避免严重的结块和沉淀物沉积,步骤5)中,在滴加氨水溶液过程中对溶液进行磁力搅拌,共沉淀完成后,采用抽滤收集沉淀物。
所述步骤6)中,干燥设定温度为50-80℃。干燥时间为10~30h、优选为20~28h。
所述步骤6)中,煅烧温度为500-700℃,煅烧时间为0.5-1.5h。
步骤6)中所述球磨采用行星球磨,球磨转速为500-700转/分钟;时间为2-6h。
步骤6)中,煅烧所用设备包括马弗炉。
所述步骤7)中,快速热压烧结的温度为1150-1300℃,在最高温度保温时间为3-5min,烧结压力为30-60MPa。
根据上述的制备方制备得到致密的,具有不同熵状态的双相纳米陶瓷。
本发明的有益效果:采用本发明方法制备的不同熵状态的纳米陶瓷具有非晶-纳米晶双相结构(图1),同时能灵活调控掺杂离子种类和浓度,获得不同熵状态的陶瓷材料,包括低熵、中熵和高熵;另外,本发明所合成的粉体为非晶高能态粉体,使得从不同熵状态的陶瓷材料能够在较低温度下烧结,降低制备成本,该材料具有很好的工业化前景。同时本发明所得产品的显微硬度远远高于现有产品。
附图说明
图1是本发明纳米陶瓷的微观结构示意图。
图2是本发明实施例1,2和3所制备纳米陶瓷粉体煅烧后的XRD图。
图3是本发明实施例3所制备高熵纳米陶瓷粉体的扫描电镜图。
图4是本发明实施例2所制备中熵纳米陶瓷粉体的透射电镜图。
图5是本发明实施例3所制备高熵纳米陶瓷粉体的透射电镜图。
图6是本发明实施例3所制备高熵纳米陶瓷块体的断口扫描电镜图,(a)为烧结温度为1170℃的高熵纳米陶瓷;(b),(c)为烧结温度为1230℃的高熵纳米陶瓷。
图7是本发明实施例1,2和3所制备的烧结温度为1170℃的纳米陶瓷块体的XRD图。
图8是本发明实施例1,2和3所制备的烧结温度为1230℃的纳米陶瓷块体的XRD图。
图9是本发明对比例1所制备的对照组高熵陶瓷块体的XRD图。
图10是本发明实施例3所制备的烧结温度为1170℃的高熵纳米陶瓷的透射电镜图。
图11为实施例3所制备的烧结温度为1170℃的高熵陶瓷块体的透射电镜能谱分析结果图。
图12是本发明实施例1,2和3所制备的纳米陶瓷在退火热处理后的晶粒尺寸变化趋势图。
图13是本发明实施例1,2和3所制备的纳米陶瓷在退火热处理后的维氏硬度变化趋势图。
具体实施方式
实施例1(低熵陶瓷的制备):
1)将23.5mL TEOS、5mL无水乙醇和1.75mL稀盐酸(浓度为0.4mol/L)混合,进行水解反应0.5h后,获得溶液1;
2)将24.6g ZrOCl2·8H2O粉末溶解于10mL去离子水中,用乙醇稀释至0.2mol/L,获得溶液2;
3)将5.7g YN3O9·6H2O、9.1g CeN3O9·6H2O、6.7g HfCl4混合,溶解在10mL乙醇中,获得溶液3;
4)将溶液1、溶液2、溶液3混合,搅拌均匀,获得溶液4。
5)向步骤4)获得的溶液4中缓慢滴加NH4OH溶液(滴加速度约为5mL/min),诱导共沉淀反应,形成白色沉淀,在滴加氨水溶液过程中对溶液进行磁力搅拌,直到溶液pH到7左右,共沉淀完成,采用抽滤收集沉淀物。
6)将步骤5)中获得的沉淀物放置于鼓风干燥箱在进行干燥,干燥温度为80℃,时间为1天。
7)将步骤6)中获得的沉淀物放置于马弗炉中煅烧,煅烧温度为700℃,煅烧时间为1h;将煅烧后的粉体进行行星球磨,获得的低熵陶瓷粉体,具体成分和简写如表1所示;表1是本发明实施例1,2和3所制备纳米陶瓷的成分、熵状态、烧结参数和样品简称。
8)将步骤7)中获得的低熵陶瓷粉体进行快速热压烧结,尝试两个烧结温度,分别为1170℃和1230℃,当烧结温度为1170℃时,在最高温度保温时间为5min;当烧结温为1230℃时,在最高温度保温时间为4min,烧结压力均为50MPa,获得致密纳米低熵陶瓷块体,烧结参数和样品命名如表1所示。
实施例2(中熵陶瓷的制备):
1)将22.8mL TEOS、4.8mL乙醇和1.68mL稀盐酸(浓度为0.4mol/L)混合,进行水解反应0.5h后,获得溶液1;
2)将21.4g ZrOCl2·8H2O粉末溶解于10mL去离子水中,用乙醇稀释至0.2mol/L,获得溶液2;
3)将5.7g YN3O9·6H2O、9.1g CeN3O9·6H2O、6.7g HfCl4、5.7g NbCl5混合,溶解在10mL乙醇中,获得溶液3;
4)将溶液1、溶液2、溶液3混合,搅拌均匀,获得溶液4;
5)向步骤4)获得的溶液4中缓慢滴加NH4OH溶液(滴加速度约为5mL/min),诱导共沉淀反应,过程与实施例1中步骤5)相同;
6)将步骤5)中获得的沉淀物进行干燥、煅烧、球磨,过程与实施例1中相应步骤相同。获得的中熵陶瓷粉体,具体成分和简写如表1所示;
7)将步骤6)中获得的中熵陶瓷粉体进行快速热压烧结,烧结过程和参数与实施例1中相同,获得致密纳米中熵陶瓷块体,烧结参数和样品命名如表1所示。
实施例3(高熵陶瓷的制备,成分为68mol%(Y0.05Ce0.07Hf0.07Nb0.07Yb0.07Zr0.35)Ox-32mol%SiO2):
1)将21.5mL TEOS、4.7mL乙醇和1.62mL稀盐酸(浓度为0.4mol/L)混合,进行水解反应0.5h后,获得溶液1;
2)将18.7g ZrOCl2·8H2O粉末溶解于10mL去离子水中,用乙醇稀释至0.2mol/L,获得溶液2;
3)将5.7g YN3O9·6H2O、9.1g CeN3O9·6H2O、6.7g HfCl4、5.7g NbCl5、8.1gYbCl3·6H2O混合,溶解在10mL乙醇中,获得溶液3;
4)将溶液1、溶液2、溶液3混合,搅拌均匀,获得溶液4;
5)向步骤4)获得的溶液4中缓慢滴加NH4OH溶液(滴加速度约为5mL/min),诱导共沉淀反应,过程与实施例1中步骤5)相同;
6)将步骤5)中获得的沉淀物进行干燥、煅烧、球磨,过程与实施例1中相应步骤相同。获得的高熵陶瓷粉体,具体成分和简写如表1所示;
7)将步骤6)中获得的中熵陶瓷粉体进行快速热压烧结,烧结过程和参数与实施例1中相同,获得致密纳米高熵陶瓷块体,烧结参数和样品命名如表1所示。
对照组(高熵陶瓷的制备,成分为68mol%(Y0.05Ce0.07La0.07Ta0.07Ba0.07Zr0.35)Ox-32mol%SiO2)
1)将14.3mL TEOS、3.8mL乙醇和1.8mL稀盐酸(浓度为0.4mol/L)混合,进行水解反应0.5h后,获得溶液1;
2)将22.5g ZrOCl2·8H2O粉末溶解于10mL去离子水中,用乙醇稀释至0.2mol/L,获得溶液2;
3)将3.8g YN3O9·6H2O、6.1g CeN3O9·6H2O、4.9g LaCl3·6H2O、5.0g TaCl5、3.4gBaCl2·2H2O混合,溶解在10mL乙醇中,获得溶液3;
4)将溶液1、溶液2、溶液3混合,搅拌均匀,获得溶液4;
5)向步骤4)获得的溶液4中缓慢滴加NH4OH溶液(滴加速度约为5mL/min),诱导共沉淀反应,过程与实施例1中步骤5)相同;
6)将步骤5)中获得的沉淀物进行干燥、煅烧、球磨,过程与实施例1中相应步骤相同。获得的高熵陶瓷粉体,具体成分和简写如表1所示;
7)将步骤6)中获得的中熵陶瓷粉体进行快速热压烧结,烧结过程和参数与实施例1中相同(1230℃-4min),获得致密纳米高熵陶瓷块体,烧结参数和样品命名如表1所示。
结果与分析
图1为本发明所制备的高熵纳米陶瓷的微观结构示意图,由熵调控的纳米晶粒均匀地分布在非晶SiO2基质中,该陶瓷具有纳米晶和非晶双相结构。
实施例1,2和3所制备低熵、中熵和高熵陶瓷粉体的XRD图,如图2所示,从图中可以看到实施例1~3获得粉体结晶程度低,基本为非晶粉体。
实施例3所制备的高熵陶瓷粉体的扫描电镜图像,如图3所示,从图中可以看到该粉体颗粒为无规则形状,尺寸约为20微米,同时还有少量纳米粉体。
实施例2所制备的中熵陶瓷粉体的透射电镜图像,如图4所示,从图4a中可以看到该粉体颗粒团聚在一起,从高分辨图像(图4b)可以看出,粉体基本为非晶状态,但是其中含有少量纳米晶粒。从能谱分析结果可知,该中熵粉体中各构成元素(Zr,Si,O,Y,Ce,Hf)均匀地分布在颗粒内。
实施例3所制备的高熵陶瓷粉体的透射电镜图像,如图5所示,从图4a中可以看到该粉体颗粒为亚微米颗粒,从高分辨图像(图5b)可以看出,粉体基本为非晶状态,但是其中含有少量纳米晶粒。从能谱分析结果可知,该高熵粉体中各构成元素(Zr,Si,O,Y,Ce,Hf,Yb,Nb)均匀地分布在颗粒内。
实施例3所制备高熵陶瓷块体断口的扫描电镜图像,如图6所示,从图6a中可以看到经1170℃烧结后,在断口上基本看不到气孔,说明该高熵陶瓷已达到较高的致密化状态。从图6b中可以看到经1230℃烧结后,在断口上同样基本看不到气孔,断口较为平整,为脆性断裂。在高倍照片下可以看到球形的高熵纳米颗粒(图6c)。
实施例1、2、3所制备的低熵、中熵和高熵陶瓷块体的XRD图,如图7所示,低熵和中熵陶瓷在经1170℃烧结后主要由四方相结构构成,伴随由少量单斜相和结晶CeO2。而高熵陶瓷则为单相固溶体构成,为单一的四方相结构。
实施例1、2、3所制备的低熵、中熵和高熵陶瓷块体的XRD图,如图8所示,低熵陶瓷在经1230℃烧结后主要由四方相和ZrSiO4相构成,伴随由少量的结晶CeO2相。中熵陶瓷在经1230℃烧结后主要由四方相和单斜相构成,伴随由少量的ZrSiO4相和结晶CeO2相。而高熵陶瓷则为单相固溶体构成,为单一的四方相结构。
对照组所制备的对照组高熵陶瓷块体的XRD图,如图9所示,该陶瓷主要由四方相构成,但是同时形成了Y2SiO7相和CeSiO7相,该陶瓷不是单相高熵陶瓷,说明只有具有特定化学成分的陶瓷粉体才能形成单相高熵陶瓷。
实施例3所制备高熵陶瓷块体的透射电镜图像,如图10所示,从图10a中可以看到高熵纳米颗粒表现出暗的衬度,其尺寸约为100纳米,非晶SiO2基质表现出亮的衬度,该高熵陶瓷为多晶体,具有四方相结构(图10b)。在扫描透射图像可以看出(图10b),高熵纳米颗粒表现出亮的衬度,颗粒间相互连接,形成复杂三维结构;非晶SiO2基质表现出暗的衬度,为基质。从高分辨扫描透射图像(图10b)可以看出高熵纳米颗粒晶格完整,无明显晶格缺陷;通过测量可知(图10b),晶格间距分别为3.09和分别对应四方相结构的(101)和(002)晶面。几何相位分析结果表明高熵纳米颗粒内存在由晶格畸变导致的晶格应力(图10b)。
实施例3所制备高熵陶瓷块体的透射电镜能谱分析结果,如图11所示,Zr,O,Y,Ce,Hf,Yb,Nb均匀地分布在纳米颗粒内,形成高熵纳米氧化物颗粒,而Si元素主要分布在基质中,和O元素一起形成SiO2非晶基质。
实施例1、2、3所制备的低熵、中熵和高熵陶瓷块体经不同退火处理后晶粒尺寸变化趋势图,如图12所示,经1170℃烧结后低熵、中熵和高熵陶瓷块体的晶粒尺寸分别为34.2nm,40.8nm,和47.6nm。在退火过程中晶粒粗化明显,经800℃-3h和1000℃-3h热处理后,低熵陶瓷的晶粒尺寸分别增长至37.8nm和58.1nm,中熵陶瓷的晶粒尺寸分别增长至48.5nm和57.5nm,高熵陶瓷的晶粒尺寸分别增长至52.0nm和70.0nm。
表1
实施例1、2、3所制备的低熵、中熵和高熵陶瓷块体经不同退火处理后的维氏硬度变化趋势图,如图13所示,经1170℃烧结后低熵、中熵和高熵陶瓷块体的维氏硬度(显微硬度)分别为9.3GPa,9.6GPa和10.4GPa,经1230℃烧结后低熵、中熵和高熵陶瓷块体的维氏硬度(显微硬度)分别为9.7GPa,9.9GPa和11.0GPa;由此可知,该材料的硬度随着熵的增加而增加。另外,与烧结后的硬度相比,退火处理后该材料的硬度并没有显著变化。经测试,对照组中所制备的对照组样品的维氏硬度为4.9GPa(显微硬度),硬度值明显低于实施例1、2、3所制备的低熵、中熵和高熵陶瓷,说明只有特殊的元素组合才能形成单相高熵纳米粒子,才能获得高硬度。

Claims (10)

1.一种硬度高且具有非晶-纳米晶双相结构的纳米高熵陶瓷,其特征在于:所述高熵陶瓷具有非晶-纳米晶双相结构;所述纳米高熵陶瓷由熵调控的纳米晶粒、非晶SiO2基质、锆的氧化物构成,所述熵调控的纳米晶粒的成分中含有钇、铈、铪、镱、铌中至少三种的元素的氧化物;所述熵调控的纳米晶粒分布在非晶SiO2基质中,非晶SiO2基质呈连续分布,纳米晶粒尺寸小于等于100nm。
2.根据权利要求1所述的一种硬度高且具有非晶-纳米晶双相结构的纳米高熵陶瓷,其特征在于:所述熵调控的纳米晶粒的成分中含有钇、铈、铪、镱、铌中至少三种的元素的氧化物。
3.根据权利要求1所述的一种硬度高且具有非晶-纳米晶双相结构的纳米高熵陶瓷,其特征在于:熵调控的纳米晶粒与SiO2的摩尔比为5.5~7.5:4.5~2.5,进一步优选为6.5~7:3.5~3,更进一步优选为6.5~6.8:3.2~3.5。
4.根据权利要求1所述的一种硬度高且具有非晶-纳米晶双相结构的纳米高熵陶瓷,其特征在于:熵调控的纳米晶粒为单相高熵纳米粒子。
5.根据权利要求1所述的一种硬度高且具有非晶-纳米晶双相结构的纳米高熵陶瓷,其特征在于:高熵陶瓷的成分为:68mol%(Y0.05Ce0.07Hf0.07Nb0.07Yb0.07Zr0.35)Ox-32mol%SiO2;或
高熵陶瓷的成分为:66mol%(Y0.05Ce0.07Hf0.07Nb0.07Zr0.40)Ox-34mol%SiO2;或
高熵陶瓷的成分为:68mol%(Y0.05Ce0.07Hf0.07Nb0.07Yb0.07Zr0.35)Ox-32mol%SiO2
6.一种硬度高且具有非晶-纳米晶双相结构的纳米高熵陶瓷的制备方法,其特征在于,包括下述步骤:
1)将乙醇、稀盐酸溶液和硅酸酯溶液混合,搅拌,TEOS发生水解,获得溶液1;
2)将水溶性锆盐溶解于去水中,用乙醇稀释,获得溶液2;
3)根据熵状态不同,将可溶性钇盐、可溶性铈盐、可溶性铪盐、可溶性镱盐、可溶性铌盐中的至少三种,溶解在乙醇中,获得溶液3;
4)将溶液1、溶液2、溶液3混合,搅拌均匀,获得溶液4;
5)向步骤4)获得的溶液4中滴加碱,并搅拌,诱导共沉淀反应,形成白色沉淀,共沉淀完成后,采用抽滤收集沉淀物;
6)将步骤5)中获得的沉淀物进行干燥,然后进行球磨,将获得的细粉进行煅烧;
7)将步骤6)中的煅烧粉体进行热压烧结,获得致密纳米块体高熵陶瓷,热压烧结时,控制温度为1150-1300℃。
7.根据权利要求6所述的一种硬度高且具有非晶-纳米晶双相结构的纳米高熵陶瓷的制备方法,其特征在于:
步骤1)中,硅酸酯为硅酸四乙酯;
所述步骤1)中,稀盐酸的浓度为0.3-0.5mol/L;TEOS、无水乙醇和稀盐酸的体积比为(10-15):(2-5):(0.5-1.5);水解反应时间为0.25-1h;
步骤2)中,水溶性锆盐选自八水氯氧化锆、五水硝酸锆中的至少一种;作为优选,所述步骤2)中,八水氯氧化锆溶于无水乙醇后的浓度为0.1~0.3mol/L;
可溶性钇盐选自硝酸钇、氯化钇中的至少一种。作为进一步的优选硝酸钇为六水硝酸钇;
可溶性铈盐选自硝酸铈、氯化铈中的至少一种。作为进一步的优选硝酸铈为六水硝酸铈;
可溶性铪盐选自四氯化铪、氢氧化铪中的至少一种;
可溶性镱盐选自氯化镱、硝酸镱中的至少一种。作为优选,氯化镱为六水氯化镱;
可溶性铌盐选自五氯化铌(NbCl5)、硝酸铌中的至少一种。
8.根据权利要求6所述的一种硬度高且具有非晶-纳米晶双相结构的纳米高熵陶瓷的制备方法,其特征在于:步骤5)中碱优选为氨水。
9.根据权利要求6所述的一种硬度高且具有非晶-纳米晶双相结构的纳米高熵陶瓷的制备方法,其特征在于:所述步骤6)中,干燥设定温度为50-80℃;
所述步骤6)中,煅烧温度为500-700℃,煅烧时间为0.5-1.5h;
步骤6)中所述球磨采用行星球磨,球磨转速为500-700转/分钟;时间为2-6h;
步骤6)中,煅烧所用设备包括马弗炉。
10.根据权利要求6所述的一种硬度高且具有非晶-纳米晶双相结构的纳米高熵陶瓷的制备方法,其特征在于:所述步骤7)中,快速热压烧结的温度为1150-1300℃,在最高温度保温时间为3-5min,烧结压力为30-60MPa。
CN202311613330.3A 2023-11-29 2023-11-29 一种硬度高且具有非晶-纳米晶双相结构的纳米高熵陶瓷及其制备方法 Pending CN117902885A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311613330.3A CN117902885A (zh) 2023-11-29 2023-11-29 一种硬度高且具有非晶-纳米晶双相结构的纳米高熵陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311613330.3A CN117902885A (zh) 2023-11-29 2023-11-29 一种硬度高且具有非晶-纳米晶双相结构的纳米高熵陶瓷及其制备方法

Publications (1)

Publication Number Publication Date
CN117902885A true CN117902885A (zh) 2024-04-19

Family

ID=90687752

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311613330.3A Pending CN117902885A (zh) 2023-11-29 2023-11-29 一种硬度高且具有非晶-纳米晶双相结构的纳米高熵陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN117902885A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118405921A (zh) * 2024-07-01 2024-07-30 中南大学 一种纳米级双相高熵锆酸盐材料及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118405921A (zh) * 2024-07-01 2024-07-30 中南大学 一种纳米级双相高熵锆酸盐材料及其制备方法

Similar Documents

Publication Publication Date Title
Vasylkiv et al. Low‐temperature processing and mechanical properties of zirconia and zirconia–alumina nanoceramics
Sarkar et al. Preparation and characterization of an Al2O3–ZrO2 nanocomposite, Part I: Powder synthesis and transformation behavior during fracture
US20070179041A1 (en) Zirconia Ceramic
Taspinar et al. Low‐temperature chemical synthesis of lanthanum monoaluminate
Li et al. A homogeneous co-precipitation method to synthesize highly sinterability YAG powders for transparent ceramics
CN117902885A (zh) 一种硬度高且具有非晶-纳米晶双相结构的纳米高熵陶瓷及其制备方法
Wang et al. Low-temperature fabrication and electrical property of 10 mol% Sm2O3-doped CeO2 ceramics
CN113004035B (zh) 具有纳米核壳结构的稀土改性锆基氧化物
Jayaseelan et al. Pressureless sintering of sol-gel derived alumina–zirconia composites
Li et al. Reactive 10 mol% RE2O3 (RE= Gd and Sm) doped CeO2 nanopowders: Synthesis, characterization, and low-temperature sintering into dense ceramics
Bejugama et al. Effect of Nb2O5 on sintering and mechanical properties of ceria stabilized zirconia
US20070111879A1 (en) Zirconia-alumina nano-composite powder and preparation method thereof
Arun et al. Influence of a grain-locking morphology on properties of doped ZrO2 ceramics made with ultrafine (~ 3 nm) nanoparticles
Wu et al. Effects of H 2 SO 4 on the crystallization and phase transformation of zirconia powder in the precipitation processes
CN101497524A (zh) 致密氧化镁部分稳定氧化锆陶瓷的制备方法
WO2003076336A1 (fr) Oxyde composite au cerium, produit fritte utilisant cet oxyde, et procede d'elaboration correspondant
El Horr et al. Microstructure of Ba1− xLaxTiO3− δ ceramics sintered by Spark Plasma Sintering
JP2645826B2 (ja) 耐熱劣化性高強度ジルコニア・アルミナセラミツクス及びその製造方法
Dell'Agli et al. Weakly-agglomerated nanocrystalline (ZrO2) 0.9 (Yb2O3) 0.1 powders hydrothermally synthesized at low temperature
Wang et al. Synthesis, characterization and sinterablity of 10 mol% Sm2O3-doped CeO2 nanopowders via carbonate precipitation
CN114787086A (zh) 氧化锆粉末、氧化锆烧结体及氧化锆烧结体的制造方法
Dell'Agli et al. Sinterability of 8Y–ZrO2 powders hydrothermally synthesized at low temperature
Li et al. LiNO3 molten salt assisted synthesis of spherical nano-sized YSZ powders in a reverse microemulsion system
Dudnik et al. Properties of nanocrystalline ZrO 2-Y 2 O 3-CeO 2-CoO-Al 2 O 3 powders
CN111499380A (zh) 一种锆铝基多相复合陶瓷及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination