CN117812838A - 一种柔性可均向拉伸电极器件及其制备方法和应用 - Google Patents

一种柔性可均向拉伸电极器件及其制备方法和应用 Download PDF

Info

Publication number
CN117812838A
CN117812838A CN202311855354.XA CN202311855354A CN117812838A CN 117812838 A CN117812838 A CN 117812838A CN 202311855354 A CN202311855354 A CN 202311855354A CN 117812838 A CN117812838 A CN 117812838A
Authority
CN
China
Prior art keywords
electrode
silica gel
flexible
preparation
gel substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311855354.XA
Other languages
English (en)
Inventor
刘志远
李韩飞
韩飞
赵行
李光林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Institute of Advanced Technology of CAS
Original Assignee
Shenzhen Institute of Advanced Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Institute of Advanced Technology of CAS filed Critical Shenzhen Institute of Advanced Technology of CAS
Priority to CN202311855354.XA priority Critical patent/CN117812838A/zh
Publication of CN117812838A publication Critical patent/CN117812838A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/20Measuring for diagnostic purposes; Identification of persons for measuring urological functions restricted to the evaluation of the urinary system
    • A61B5/202Assessing bladder functions, e.g. incontinence assessment
    • A61B5/204Determining bladder volume
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/296Bioelectric electrodes therefor specially adapted for particular uses for electromyography [EMG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/389Electromyography [EMG]
    • A61B5/391Electromyography [EMG] of genito-urinary organs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/0507Electrodes for the digestive system
    • A61N1/0514Electrodes for the urinary tract
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36007Applying electric currents by contact electrodes alternating or intermittent currents for stimulation of urogenital or gastrointestinal organs, e.g. for incontinence control
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/118Printed elements for providing electric connections to or between printed circuits specially for flexible printed circuits, e.g. using folded portions
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2503/00Evaluating a particular growth phase or type of persons or animals
    • A61B2503/40Animals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/12Manufacturing methods specially adapted for producing sensors for in-vivo measurements
    • A61B2562/125Manufacturing methods specially adapted for producing sensors for in-vivo measurements characterised by the manufacture of electrodes

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Cardiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Physiology (AREA)
  • Electrotherapy Devices (AREA)

Abstract

本发明公开了一种柔性可均向拉伸电极器件及其制备方法和应用。该制备方法包括以下步骤:(1)制备硅胶基底;所述硅胶基底为ecoflex 00‑20硅胶基底;(2)利用掩模版在所述硅胶基底上通过蒸镀制备图案化电极;(3)对前端进行封装完成器件的柔性部分制备;(4)对软硬接口进行连接并封装完成器件的制备。本发明采用ecoflex 00‑20制备器件的硅胶基底,并通过蒸镀制备图案化电极,最终得到了柔性可均向拉伸电极器件。该器件集多功能于一体,阻值随拉伸形变而增大,可作为形变传感器来反应膀胱的实时容量,此外还具有良好的阻抗稳定性和长期植入的潜力。

Description

一种柔性可均向拉伸电极器件及其制备方法和应用
技术领域
本发明涉及医疗器械技术领域,尤其涉及一种柔性可均向拉伸电极器件及其制备方法和应用。
背景技术
排尿是动物的重要生理过程之一,由神经系统精确控制。创伤或全身性神经疾病引起的神经系统损伤或紊乱可导致泌尿功能障碍。泌尿功能障碍的个体必须依靠适当和充分的膀胱管理。对于没有膀胱充盈感觉的个体,不及时的间歇导尿可能导致膀胱过度充盈,更容易发生意外或严重并发症。因此,开发监测系统,提供需要排尿的通知,监测排尿时的膀胱外壁逼尿肌肌电信号,对于膀胱感觉意识障碍的患者至关重要。目前的刺激电极和监测设备不够灵活或舒适。
柔性电极器件已经用于医疗应用,例如皮肤贴片式电极用于脑电图(EEG)、心电图(ECG)和肌电图(EMG)等领域用于监测生物电信号。这些电极通常由柔性材料制成,如医用胶水和导电材料。与皮肤电极不同,膀胱电极通常需要深入组织内部,而不是用于表面监测。一些类似的技术也已经应用于或具有膀胱监测或治疗的前景,例如膀胱充电技术或膀胱起搏器。其中,膀胱充电技术用于测量膀胱内的液体压力。膀胱起搏器用于治疗膀胱功能障碍,通常包括植入电极以传递刺激信号。这些技术通常涉及植入式传感器或充电器件,并不涉及电刺激。与柔性可均向拉伸电极器件不同,膀胱起搏器采用的是硬性或半硬性电极。
柔性可拉伸电极是由导电材料与柔性基板复合制备得到,导电材料本质上难以实现超可拉伸。同时,在二维水平上实现各向同性可拉伸性比一维水平上实现单轴可拉伸性要困难得多。例如:将导电材料(如石墨烯、碳纳米管、导电聚合物、金银纳米线等)与柔性聚合物混合制备的可拉伸电极,在二维尺度上难以实现各向同性拉伸。具有微裂纹金机制的可拉伸电极在各向同性拉伸过程中会形成纵横交错的裂纹。当均匀拉伸超过一定限度(通常小于2%)时,金膜层会形成许多不相连的金膜岛,使电极失去电学性能。利用导电材料的结构设计也可以实现电极的可拉伸导电性。其中最典型的是广泛使用的蛇形结构,这种结构在二维尺度上也很难达到完美的各向同性拉伸性。综上所述,实现稳定的各向同性可拉伸电极的方法仍然很少。
大部分可靠的医疗器件都是刚性的并且是功能单一的,目前实现各向同性拉伸柔性化电子器件的方法几乎都采用了对衬底进行各向同性预拉伸的方式,这将增加所制备电极的可重复性,但会使所制备的柔性电极的大部分表面不均匀且图案变形。此外,预拉伸衬底方案也难以用于大规模电极制备,其性能和稳定性远不能满足长期稳定植入的需要。
发明内容
针对上述技术问题,本发明提供一种柔性可均向拉伸电极器件及其制备方法和应用。本发明通过简单的一步高温蒸发工艺,在ecoflex-20衬底上蒸发电极,制备出性能优异的软质各向同性可拉伸电极。
为实现上述目的,本发明采取的技术方案为:
一方面,本发明提供一种柔性可均向拉伸电极器件的制备方法,包括以下步骤:
(1)制备硅胶基底;所述硅胶基底为ecoflex 00-20硅胶基底;
(2)利用掩模版在所述硅胶基底上通过蒸镀制备图案化电极;
(3)对前端进行封装完成器件的柔性部分制备;
(4)对软硬接口进行连接并封装完成器件的制备。
作为优选地实施方式,步骤(1)中,所述制备硅胶基底的具体步骤包括:将ecoflex00-20的A组分和B组分混合后,涂覆于平面基底上,固化后得到ecoflex 00-20薄膜硅胶基底;
优选地,所述A组分和B组分的质量比为1:1~1.5;
优选地,所述涂覆为旋涂;
优选地,所述旋涂的转速为200~500转/分;
优选地,所述涂覆的厚度为200~500微米;
优选地,所述固化为加热固化,所述加热的温度为50~70℃,所述加热的时间为5~10分钟。
作为优选地实施方式,步骤(2)中,所述蒸镀的速率为1~2nm/s;
优选地,所述蒸镀的真空度为1×10-3Pa~5×10-3Pa;
优选地,所述图案化电极的种类选自金、银、铂中的任意一种,进一步优选为金;
优选地,所述图案化电极的厚度为250~350nm;
优选地,步骤(2)所述蒸镀后还包括烘烤操作;
优选地,所述烘烤为50~70℃烘烤30~60min;
优选地,所述图案化电极包括膀胱容量检测模块、电刺激模块和肌电信号采集模块。
作为优选地实施方式,步骤(3)中所述封装为采用ecoflex 00-20进行封装;
优选地,所述封装的步骤为旋涂ecoflex 00-20后,加热固化进行封装;
优选地,所述旋涂的转速为1500~3000转/分;
优选地,所述旋涂的厚度为30~50微米;
优选地,所述加热的温度为100~120℃;
优选地,所述加热的时间≥1h;
优选地,所述旋涂前采用聚对苯二甲酸乙二醇酯薄膜对膀胱容量检测模块、电刺激模块、肌电信号采集模块以及器件的软硬接口部分进行遮盖;加热固化前去除遮盖的聚对苯二甲酸乙二醇酯薄膜;
优选地,所述聚对苯二甲酸乙二醇酯薄膜的厚度为50~100微米。
在某些具体的实施方式中,步骤(4)中所述对软硬接口进行连接的具体操作为:采用印刷电路板对软硬接口进行连接,所述印刷电路板上的电极通道一端焊接生物线,另一端与所述柔性部分的电极通道一一对应连接;所述生物线为绝缘材料包裹金属材料形成的导线;所述绝缘材料为具有生物相容性的材料;所述金属材料优选为不锈钢。
又一方面,本发明提供上述制备方法得到的可均向拉伸电极器件。
又一方面,本发明提供上述柔性可均向拉伸电极器件在制备监测膀胱信息和电刺激膀胱器件中的应用。
上述技术方案具有如下优点或者有益效果:
本发明采用ecoflex 00-20制备器件的硅胶基底,并通过蒸镀制备图案化电极,最终得到了柔性可均向拉伸电极器件。本发明制备的器件集多功能于一体,该器件的阻值随拉伸形变而增大,因此可作为形变传感器来反应膀胱的实时容量。
本发明所制备的柔性可均向拉伸电极器件具有稳定且大窗口的均相拉伸性能,该电极的各向同性拉伸比大于200%(面积变化是原来的9倍),单向拉伸比大于700%。此外,在面积变化约600%的条件下,电极可以稳定拉伸5000次。在各种拉伸速率和200%拉伸速率下,电极可实现50000次稳定的单向拉伸循环图。当电极感测点面积为0.3mm2时,阻抗为1×105。在PBS溶液中浸泡数月,电极阻抗保持不变,也证明了其良好的阻抗稳定性和长期植入的潜力。
本发明制备的器件首次实现了采用植入式膀胱电极来评估膀胱的充盈状态、监测肌电图、降低神经源性膀胱过度活动。本发明将电极固定于大鼠的膀胱上后,电极因膀胱壁的周期性运动而变形,从而产生持续变化的阻抗,动态地反映膀胱容量,从而为确定置管时间和评估临床引流效果提供一定的客观依据。同时,电刺激对脊髓损伤大鼠上尿路有抑制DO和保护作用。
附图说明
图1是本发明实施例1中制备的柔性可均向拉伸电极器件的柔性部分的结构图。
图2是本发明实施例1中制备的柔性可均向拉伸电极器件的前端的实物图。
图3是本发明实施例1中制备的柔性可均向拉伸电极器件的整体实物图。
图4是本发明实施例1中柔性可均向拉伸电极器件的拉伸图和拉伸前的微观形貌图。
图5是制备的柔性可均向拉伸电极器件的单向拉伸性能。
图6是本发明实施例1中制备的柔性可均向拉伸电极器件的循环性能图。
图7是本发明实施例1中制备的柔性可均向拉伸电极器件刺激前后的阻抗变化对比图。
图8是本发明实施例1中制备的柔性可均向拉伸电极器件的电极均向拉伸性能展示图。
具体实施方式
下述实施例仅仅是本发明的一部分实施例,而不是全部的实施例。因此,以下提供的本发明实施例中的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明的实施例,本领域技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都属于本发明的保护范围。
在本发明中,若非特指,所有的设备和原料等均可从市场购得或是本行业常用的。下述实施例中的方法,如无特别说明,均为本领域的常规方法。
实施例1:
本实施例提供一种柔性可均向拉伸电极器件,制备方法如下:
(1)将ecoflex 00-20的A组分和B组分按照质量比1:1混合后,放入混合除泡机中混合一分钟、除泡一分钟;将得到的流体混合物在亚克力板上旋涂成厚度为三百微米的薄膜,转速为三百转每分钟;在烘箱中60℃干燥5分钟固化得到硅胶柔性基底,备用;
(2)在步骤(1)得到的硅胶柔性基底上利用掩模版通过蒸镀制备图案化金电极,蒸镀的具体参数为:蒸镀速率1nm/s,金膜厚度为300nm,真空度3×10-3Pa,样品盘高度为60mm;图案化电极包括膀胱容量检测模块、电刺激模块和肌电信号采集模块,具体如图1所示;蒸镀完成后在60℃烘箱中烘烤60分钟,增强金电极与硅胶柔性基底的粘附性;
(3)使用厚度为100微米的聚对苯二甲酸乙二醇酯(PET)薄膜遮住电刺激模块、肌电信号采集模块以及器件的软硬接口部分,然后将ecoflex 00-20以两千转每分钟的转速进行旋涂,厚度为50微米;去除用于遮盖的PET薄膜,然后放入120℃的烘箱中固化1小时,完成柔性部分的制备;
(4)在厚度为200微米的印刷电路板的电极通道一端焊上生物线,另一端与柔性部分的电极通道对准连接;使用封口膜将其缠绕固定后,用734胶涂抹整个印刷电路版以及柔性部分的接口处,进行固化,保证器件的软硬接口部分不会进液,防止短路或断路。
本实施例制备的柔性可均向拉伸电极器件的前端的实物图见图2,整个器件的实物图见图3。
图4所示为本实施例制备的柔性可均向拉伸电极器件的拉伸图和拉伸前的微观形貌图。图5所示为本实施例制备的柔性可均向拉伸电极器件的拉伸性能,可以看出该该电极有着最大超过700%的拉伸导电率。图6所示为本实施例制备的柔性可均向拉伸电极器件的循环性能测试图,该电极在拉伸机测试平台上300%拉伸率下进行3000次循环测试仍然性能稳定。图7所示为本实施例制备的柔性可均向拉伸电极器件在电刺激前后的阻抗变化对比图,该电极在1平方毫米的监测面积,1000Hz频率下的阻抗大约是106Ω,经过电刺激后阻抗下降,说明电极没有损害。图8所示为本实施例制备的柔性可均向拉伸电极器件的电极均向拉伸性能展示图,可以看到当电极由1×1cm2均向拉伸至2×2cm2后,仍然导电,电阻值从100多Ω增加到了1000多Ω。
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种柔性可均向拉伸电极器件的制备方法,其特征在于,包括以下步骤:
(1)制备硅胶基底;所述硅胶基底为ecoflex 00-20硅胶基底;
(2)利用掩模版在所述硅胶基底上通过蒸镀制备图案化电极;
(3)对前端进行封装完成器件的柔性部分制备;
(4)对软硬接口进行连接并封装完成器件的制备。
2.根据权利要求1所述的制备方法,其特征在于,步骤(1)中,所述制备硅胶基底的具体步骤包括:将ecoflex 00-20的A组分和B组分混合后,涂覆于平面基底上,固化后得到ecoflex 00-20薄膜硅胶基底;
优选地,所述A组分和B组分的质量比为1:1~1.5;
优选地,所述涂覆为旋涂;
优选地,所述旋涂的转速为200~500转/分;
优选地,所述涂覆的厚度为200~500微米;
优选地,所述固化为加热固化,所述加热的温度为50~70℃,所述加热的时间为5~10分钟。
3.根据权利要求1所述的制备方法,其特征在于,步骤(2)中,所述蒸镀的速率为1~2nm/s;
优选地,所述蒸镀的真空度为1×10-3Pa~5×10-3Pa;
优选地,所述图案化电极的种类选自金、银、铂中的任意一种,进一步优选为金;
优选地,所述图案化电极的厚度为250~350nm。
4.根据权利要求1所述的制备方法,其特征在于,步骤(2)所述蒸镀后还包括烘烤操作;
优选地,所述烘烤为50~70℃烘烤30~60min。
5.根据权利要求1所述的制备方法,其特征在于,所述图案化电极包括膀胱容量检测模块、电刺激模块和肌电信号采集模块。
6.根据权利要求5所述的制备方法,其特征在于,步骤(3)中所述封装为采用ecoflex00-20进行封装;
优选地,所述封装的步骤为旋涂ecoflex 00-20后,加热固化进行封装;
优选地,所述旋涂的转速为1500~3000转/分;
优选地,所述旋涂的厚度为30~50微米;
优选地,所述加热的温度为100~120℃;
优选地,所述加热的时间≥1h。
7.根据权利要求6所述的制备方法,其特征在于,所述旋涂前采用聚对苯二甲酸乙二醇酯薄膜对膀胱容量检测模块、电刺激模块、肌电信号采集模块以及器件的软硬接口部分进行遮盖;加热固化前去除遮盖的聚对苯二甲酸乙二醇酯薄膜;
优选地,所述聚对苯二甲酸乙二醇酯薄膜的厚度为50~100微米。
8.根据权利要求1所述的制备方法,其特征在于,步骤(4)中所述对软硬接口进行连接的具体操作为:采用印刷电路板对软硬接口进行连接,所述印刷电路板上的电极通道一端焊接生物线,另一端与所述柔性部分的电极通道一一对应连接;所述生物线为绝缘材料包裹金属材料形成的导线;所述绝缘材料为具有生物相容性的材料;所述金属材料优选为不锈钢。
9.权利要求1-8任一所述的制备方法得到的可均向拉伸电极器件。
10.权利要求9所述的柔性可均向拉伸电极器件在制备监测膀胱信息和电刺激膀胱器件中的应用。
CN202311855354.XA 2023-12-29 2023-12-29 一种柔性可均向拉伸电极器件及其制备方法和应用 Pending CN117812838A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311855354.XA CN117812838A (zh) 2023-12-29 2023-12-29 一种柔性可均向拉伸电极器件及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311855354.XA CN117812838A (zh) 2023-12-29 2023-12-29 一种柔性可均向拉伸电极器件及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN117812838A true CN117812838A (zh) 2024-04-02

Family

ID=90431720

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311855354.XA Pending CN117812838A (zh) 2023-12-29 2023-12-29 一种柔性可均向拉伸电极器件及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN117812838A (zh)

Similar Documents

Publication Publication Date Title
Xu et al. Bioinspired perspiration‐wicking electronic skins for comfortable and reliable multimodal health monitoring
Fiedler et al. Contact pressure and flexibility of multipin dry EEG electrodes
US20240090814A1 (en) Rapid manufacturing of absorbent substrates for soft, conformable sensors and conductors
Li et al. High-performance flexible microneedle array as a low-impedance surface biopotential dry electrode for wearable electrophysiological recording and polysomnography
Lienemann et al. Stretchable gold nanowire-based cuff electrodes for low-voltage peripheral nerve stimulation
JP2020534067A (ja) 2d金属炭化物と窒化物(mxenes)を使用する埋め込み型装置
Alahi et al. Recent advancement of electrocorticography (ECoG) electrodes for chronic neural recording/stimulation
AU2004254176A1 (en) Percutaneous electrode array
KR101384761B1 (ko) 호흡과 심전도의 동시 측정이 가능한 스포츠 브라
US20110319786A1 (en) Apparatus and Method for Measuring Physiological Functions
CN112545523B (zh) 一种软硬可调的液态金属神经电极及其制备方法和应用
WO2019119045A1 (en) Anisotropically conductive material for use with a biological surface
CN110584656A (zh) 基于柔性衬底的微针阵列干电极及其制备方法
Yadhuraj et al. Study of PDMS material for ECG electrodes
Chik et al. Flexible multichannel neural probe developed by electropolymerization for localized stimulation and sensing
Terutsuki et al. Totally Organic Hydrogel‐Based Self‐Closing Cuff Electrode for Vagus Nerve Stimulation
Yu et al. Self-closing stretchable cuff electrodes for peripheral nerve stimulation and electromyographic signal recording
Lee et al. A convex-shaped, PDMS-parylene hybrid multichannel ECoG-electrode array
CN117838134A (zh) 一种液态金属柔性电极及其制备方法和应用
CN117812838A (zh) 一种柔性可均向拉伸电极器件及其制备方法和应用
Xu et al. Microneedle array electrode with Ag-PPS modification for superior bio-signal recording on skin
CN113749648A (zh) 一种基于导电水凝胶注射的柔性传感器及其制备方法
KR102568398B1 (ko) 뇌 삽입용 그래핀 복합 전극을 이용한 다중 채널 어레이 소자
Kim et al. Injectable 2D Material‐Based Sensor Array for Minimally Invasive Neural Implants
Hu et al. Stretchable and printable medical dry electrode arrays on textile for electrophysiological monitoring

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination