CN117769610A - 被覆构件的制造方法及被覆构件 - Google Patents

被覆构件的制造方法及被覆构件 Download PDF

Info

Publication number
CN117769610A
CN117769610A CN202280051084.4A CN202280051084A CN117769610A CN 117769610 A CN117769610 A CN 117769610A CN 202280051084 A CN202280051084 A CN 202280051084A CN 117769610 A CN117769610 A CN 117769610A
Authority
CN
China
Prior art keywords
coating
film
mgo
sintering
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202280051084.4A
Other languages
English (en)
Inventor
矢部秀隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bomeilicheng Co ltd
Original Assignee
Bomeilicheng Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bomeilicheng Co ltd filed Critical Bomeilicheng Co ltd
Publication of CN117769610A publication Critical patent/CN117769610A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/18Processes for applying liquids or other fluent materials performed by dipping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/02Magnesia
    • C01F5/06Magnesia by thermal decomposition of magnesium compounds
    • C01F5/08Magnesia by thermal decomposition of magnesium compounds by calcining magnesium hydroxide
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • H01F1/18Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets with insulating coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Wood Science & Technology (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Soft Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明提供一种被覆构件,即使进行放电加工也维持绝缘性、且也能够抑制层叠并热处理时的构件彼此的熔接。被覆构件的制造方法,具有:涂布工序,在Fe‑Co系合金基材的表面涂布氢氧化镁溶液;以及烧结工序,在600℃~900℃下对涂布工序后的基材进行烧结,在基材上形成氧化镁被膜。另外,被覆构件,在Fe‑Co系合金基材上具有晶格常数为

Description

被覆构件的制造方法及被覆构件
技术领域
本发明涉及一种被覆构件的制造方法及被覆构件。
背景技术
由于近年来的环境保护意识提高,因此面向汽车的电动化或飞机的混合动力化的努力变得活跃,作为这些要素技术,可列举电动马达的高输出化、小型化、低损失化。作为用于所述电动马达的马达芯的形状,就每单位体积的磁化量大、有利于芯的小型化而言,使用具有将多张软磁性合金薄板层叠而成的结构的层叠芯。
作为使所述层叠芯进一步小型化的方法,有效的是应用具有高的饱和磁通密度的软磁性材料,作为进一步低损失化的方法,有效的是提高所层叠的单板间的电绝缘性(以下,也简单记载为绝缘性)。例如,在专利文献1中公开了一种将具有高的饱和磁通密度的波明德合金(permendur)(Fe-Co系合金)单层材层叠而成的层叠芯,并提出了在单层材表面形成氧化镁、氧化锆、氧化铝等的陶瓷层作为绝缘被膜。另外,在专利文献2中公开了对冷轧后的Fe-Co系合金材进行两个阶段的热处理、并由热处理后的合金材制作层叠芯的主旨,也记载了可为了防止合金材的熔接而通过热处理来形成氧化镁的涂层的主旨。
现有技术文献
专利文献
专利文献1:日本专利特表2012-521649号公报
专利文献2:美国专利申请公开第2020/0299820号说明书
发明内容
发明所要解决的问题
所述专利文献1或专利文献2所公开的将被覆了陶瓷层的波明德合金层叠而成的层叠芯的绝缘性优异。另一方面,在专利文献1中公开了如下方法:通过放电加工对被覆了陶瓷层的波明德合金单层材(以下也记载为被覆构件)进行形状加工,本发明人的研究的结果确认到在对被覆构件进行放电加工时绝缘层会变色。所述变色由作为绝缘层的陶瓷层的溶出引起,无法确保绝缘性,有导致层叠芯的损失增加的担忧。此种问题在专利文献1或专利文献2中未被认识到,而留有研究的余地。另外,作为层叠芯中产生的课题,可列举单层材彼此的熔接。所述熔接在磁性退火时发生,会导致铁损的大幅增加。另外,在剥离已熔接的单层材时会发生单层材的形状不良,随之也担心磁特性的劣化,因此需要抑制熔接的发生。因此,本发明的目的在于提供一种即使实施基于放电加工的形状加工也维持绝缘性、且也可抑制层叠并热处理时的熔接的被覆构件及其制造方法。
解决问题的技术手段
本发明人发现,在烧结温度不合适的情况下,构成氧化镁的晶格会变得不稳定,认为因其不稳定性而产生被膜的溶出。而且,对合适的烧结温度进行了努力研究,从而完成了本发明。
即,本发明的一形态为一种被覆构件的制造方法,具有:涂布工序,在Fe-Co系合金基材的表面涂布氢氧化镁溶液;以及烧结工序,在600℃~900℃下对涂布工序后的基材进行烧结,在基材上形成氧化镁的被膜。
另外,本发明的另一形态为一种被覆构件,在Fe-Co系合金基材上具有晶格常数为的氧化镁的烧结被膜。
发明的效果
通过本发明,可提供一种即使进行放电加工也维持绝缘性、且也能够抑制层叠并热处理时的熔接的被覆构件。
具体实施方式
首先,对本发明的被覆构件的制造方法进行说明。在本发明中,作为软磁性材料的基材使用Fe-Co系合金基材。所谓本发明中的Fe-Co系合金,是指以质量%计Fe+Co为95%以上、并且含有25%~60%的Co的合金材料。由此,可发挥高的磁通密度。
接着,对本发明的Fe-Co系合金中可含有的元素进行说明。为了提高磁特性或冷加工性,本发明的Fe-Co系合金也可含有以质量%计合计最多至5.0%的V、Si、Mn、Al、Zr、B、Ni、Ta、Nb、W、Ti、Mo、Cr中的一种或两种以上的元素。除此之外,作为不可避免地包含的杂质元素,例如可列举C、S、P、O,例如优选为将其各自的上限设为0.1%。
在本发明的被覆构件的制造方法中,首先,为了在Fe-Co合金基材的表面形成包含氧化镁(以下,也记载为MgO)的被膜,进行涂布含有氢氧化镁(以下,也记载为Mg(OH)2)的溶液的涂布工序。选择MgO被膜的原因在于MgO的电绝缘性或与作为基材的Fe-Co系合金的密接性优异。另外,在为了获得所期望的磁特性而对被覆构件进行磁性退火时,绝缘膜暴露于约850℃的氢等还原环境中,但MgO不易被氢还原,即使在高温下也不易蒸发,且也不易发生由热扩散引起的特性的劣化,因此在绝缘性以及耐熔接性的方面也优异。
在本发明中,作为用于形成所述包含MgO的被膜的涂布液,使用将作为MgO的前体的Mg(OH)2的粉末用作溶质并使其分散于溶媒而得的Mg(OH)2溶液(以下,也记载为浆料)。通过将所述浆料用于涂布液,可在金属基材表面以稳定的膜厚均匀地涂布浆料。用作浆料的溶质的Mg(OH)2通过进行加热而热分解,从而成为MgO,因此可容易地形成MgO被膜。另外,由于Mg(OH)2的热分解温度低至约500℃,因此可在低温下稳定地形成MgO被膜。此处,作为Mg(OH)2以外的前体,也可使用碳酸镁(MgCO3)。另外,浆料的溶媒可使用水、醇等两性溶媒及有机溶剂,作为将浆料涂布于金属基材的方法,可使用利用辊将浆料涂敷于基材上的辊涂、将基材浸渍于浆料中并提起的浸涂、丝网印刷。
在本发明中,在涂布工序后,实施在600℃~900℃下对涂布有浆料的基材进行烧结而在基材上形成MgO被膜的烧结工序(以下,将对前体进行热分解而形成MgO的被膜的工序也简单记载为“烧结”)。
关于作为用于制作层叠芯的形状加工方法而使用的放电加工,在水中对被加工材进行加工,但此时有发生MgO被膜的溶出的倾向,由于所述溶出而MgO被膜的膜厚变薄,由此有无法确保电绝缘性的担忧。在本发明中,通过将Mg(OH)2的烧结温度设为600℃~900℃,可抑制对被覆构件进行放电加工时产生的MgO被膜的溶出,从而形成绝缘性以及耐熔接性优异的MgO被膜。作为可获得所述本发明的溶出抑制效果的原因之一,可认为通过合适的烧结温度而提高了构成MgO被膜的晶格的稳定性。在烧结温度小于600℃的情况下,会发生MgO被膜的溶出。另外,在烧结温度超过900℃的情况下,有如下可能性:在Fe-Co系金属基材的晶界析出由γ相的析出引起的微细的结晶粒,所述微细结晶粒阻碍磁壁移动而使保磁力增加,软磁特性劣化。优选的烧结温度的上限为850℃,更优选为800℃,进而优选为700℃。此外,所述MgO被膜的溶出表现为颜色不均,从被覆构件的外观也可容易地观察到。
本发明的烧结工序中的烧结时间只要在不损害本发明的效果的范围内,根据与烧结温度的关系适当设定即可,若为高的烧结温度,则能够缩短烧结时间。例如,将烧结温度设为600℃时的烧结时间可设定为1分钟~30分钟。另外,通过将烧结工序的升温速度设为200℃/h~300℃/h,有可提高构成MgO被膜的晶格的稳定性的倾向,因此优选。进而,冷却优选为设为炉冷,并且优选为应用从烧结温度至室温为止的历时90分钟~180分钟的缓冷。另外,烧结时的环境优选为惰性气体环境或真空环境。这是为了防止下述劣化,即,于在大气中进行烧结的情况下,被覆构件被过度氧化,且被氧化至Fe-Co系金属基材,由此使Fe-Co系金属基材的软磁特性劣化。作为惰性气体环境,例如有氮气环境或氩(Ar)气环境。
在本发明中,在金属基材的表面涂布浆料后进行烧结,但也可在烧结之前设置使溶媒蒸发的干燥工序。干燥工序可在溶媒的沸点附近的低温下实施,因此能够使浆料迅速地干燥,抑制滴液或均匀地形成膜厚。另外,由于干燥工序可在低温下实施,因此也具有能够在大气中实施的优点。
通过所述本发明的制造方法获得的本发明的被覆构件在基材上具有晶格常数为的氧化镁的烧结被膜。通过MgO的晶格常数接近作为理论值的/>有可抑制放电加工后的MgO被膜的溶出的倾向。其中,作为MgO的前体的Mg(OH)2为六方晶系,相对于此,通过烧结而形成的MgO为立方晶系。在本发明中,在烧结工序中通过Mg(OH)2的热分解反应而生成MgO,但例如在烧结温度低至500℃的情况下,热分解反应无法充分地进行,因此生成晶格常数比理论值大的MgO。所述晶格常数大的MgO容易在水中溶出,因此可认为由于在水中的放电加工而会产生颜色不均。此处,MgO的晶格常数可通过X射线衍射法进行测定。此外,关于本发明的被膜是否为经过溶液的涂布及烧结而形成的烧结被膜,可通过被膜的剖面照片(例如以穿透型电子显微镜的倍率100万倍观察到的被膜剖面照片)进行判别。即,关于烧结被膜,在被膜组织中观察到以面积圆相当直径计为10nm~50nm左右的空隙,但通过物理蒸镀法形成的被膜中未观察到所述空隙,因此可根据所述差异确定烧结被膜。
另外,形成于被覆构件的被膜的膜厚只要在可确保电绝缘性的范围内设定即可。若增厚被膜,则电绝缘性会提高,但若过度增厚被膜,则有层叠芯的占空系数降低而导致特性劣化的担忧,因此只要考虑绝缘性以及占空系数来设定膜厚即可。例如,优选的膜厚为10nm~1000nm。
实施例
(实施例1)
作为金属基材,准备3个具有表1所示的组成的Fe-Co系合金的冷轧材(长度110mm×宽60mm×板厚0.2mm),实施碱脱脂。接着,准备在作为溶媒的水中分散作为溶质的Mg(OH)2粉末而成的浆料,通过浸涂法在基材上涂布浆料。在大气中通过110℃×5分钟的加热对结束浆料的涂布后的基材进行干燥。
<本发明例1>
进行如下烧结工序,即将干燥后的基材在氮气环境下以升温速度250℃/h进行升温,直至达到600℃,在600℃下保持30分钟后,历时160分钟炉冷至室温的烧结工序,制作被覆有膜厚0.1μm的MgO被膜的本发明例1的被覆构件。
<本发明例2>
进行如下烧结工序,即将干燥后的基材在氮气环境下以升温速度250℃/h进行升温,直至达到700℃,在700℃下保持30分钟后,历时170分钟炉冷至室温的烧结工序,制作被覆有膜厚0.1μm的MgO被膜的本发明例2的被覆构件。
<比较例1>
进行如下烧结工序,即将干燥后的基材在氮气环境下以升温速度250℃/h进行升温,直至达到500℃,在500℃下保持30分钟后,历时150分钟炉冷至室温的烧结工序,制作被覆有膜厚0.1μm的MgO被膜的比较例1的被覆构件。
[表1]
(质量(mass)%)
通过放电加工将所述制作的各被覆构件加工成外径45mm、内径33mm的环状试样后,通过目视判定有无颜色不均。另外,作为晶格常数的评价,使用理学(Rigaku)股份有限公司制造的X射线衍射装置RINT2500V,线源使用CoKα,利用薄膜法求出形成于金属基材的表面的MgO被膜的晶格常数a。将其结果示于表2。根据表2的结果可确认到,比较例1的被覆构件的MgO被膜的晶格常数a比本发明例大,在放电加工后产生了颜色不均。相对于此,本发明例1、本发明例2的被覆构件的MgO的晶格常数a接近理论值,任一试样在放电加工后均未产生颜色不均。
[表2]
(实施例2)
继而,确认本发明的被覆构件的耐熔接性。将具有实施例1的表1所示的组成的、长度50mm×宽50mm×板厚0.2mm的Fe-Co系合金的冷轧材(A基材)、以及同样地具有实施例1的表1所示的组成的、长度40mm×宽50mm×板厚0.2mm的Fe-Co系合金的冷轧材(B基材)各准备两个。
<本发明例3>
在A基材以及B基材此两者上,在与实施例1的本发明例1相同的条件下形成MgO被膜而制成被覆构件A、被覆构件B。继而,以被覆构件B不从被覆构件A伸出的方式重叠,利用氧化铝板夹住重叠后的被覆构件,利用热处理炉进行850℃、3小时的加热,制作本发明例3的试样。此时,施加于重叠后的被覆构件A、被覆构件B上的表面压力为0.1g/cm2
<比较例2>
对于A基材以及B基材,进行重叠而不进行被覆,制作其他条件与本发明例3相同的比较例2的试样。
对加热后的试样进行观察,结果确认到比较例2中发生熔接,A基材与B基材相互粘接。另一方面,本发明例3中未发生加热后的熔接。另外,即使将施加于被覆构件A、被覆构件B的表面压力变更为0.075g/cm2进行实验,所述结果也相同。根据以上的结果可确认到,本发明的被覆构件即使进行层叠并实施磁性退火也不会发生熔接,是适于层叠芯用途的构件。
(实施例3)
为了确认烧结温度对Fe-Co系合金的软磁特性造成的影响,使用未被覆MgO的Fe-Co系合金的冷轧材实施评价。作为金属基材,准备具有表3所示的组成的板厚0.2mm的Fe-Co系合金的冷轧材,通过放电加工准备外径45mm、内径33mm的环状试样。继而,在氮气环境下以升温速度250℃/h进行升温,在700℃下保持30分钟后,历时120分钟炉冷至室温,由此进行模拟烧结的加热处理,之后在氢气环境下以850℃进行3小时的磁性退火,获得本发明例4的试样。另外,试样的形状、环状试样的加工方法设为相同,在氮气环境下以升温速度250℃/h进行升温,在950℃下保持30分钟后,历时180分钟炉冷至室温,由此进行模拟烧结的加热处理,之后在氢气环境下以850℃进行3小时的磁性退火,获得比较例3的试样。此外,本发明例及比较例的环状试样分别各制作5张。
[表3]
(质量%)
C Si Mn Co V 剩余部分
0.001 0.04 0.05 48.92 1.89 Fe及不可避免的杂质
继而,作为磁特性评价,将本发明例4及比较例3的环状试样分别各重叠5张,实施一次绕组100次、二次绕组50次的绕组。然后,对环状试料施加最大施加磁场5000A/m的直流磁场,对保磁力Hc、最大相对磁导率μm进行测定。将结果示于表4。根据表4而明确,本发明例4的试样的Hc小且μm大,因此具有优异的软磁特性。另一方面,比较例3的试料的Hc大且μm小,因此软磁特性劣化。根据以上内容可确认到,关于超过900℃的温度下的烧结,由于Fe-Co系合金的软磁特性劣化,因此不适合作为烧结温度。
[表4]

Claims (2)

1.一种被覆构件的制造方法,具有:涂布工序,在Fe-Co系合金基材的表面涂布氢氧化镁溶液;以及烧结工序,在600℃~900℃下对涂布工序后的基材进行烧结,在基材上形成氧化镁被膜。
2.一种被覆构件,在Fe-Co系合金基材上具有晶格常数为 的氧化镁的烧结被膜。
CN202280051084.4A 2021-08-30 2022-08-08 被覆构件的制造方法及被覆构件 Pending CN117769610A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2021-140467 2021-08-30
JP2021140467 2021-08-30
PCT/JP2022/030350 WO2023032613A1 (ja) 2021-08-30 2022-08-08 被覆部材の製造方法および被覆部材

Publications (1)

Publication Number Publication Date
CN117769610A true CN117769610A (zh) 2024-03-26

Family

ID=85412233

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202280051084.4A Pending CN117769610A (zh) 2021-08-30 2022-08-08 被覆构件的制造方法及被覆构件

Country Status (5)

Country Link
US (1) US20240247146A1 (zh)
EP (1) EP4397787A1 (zh)
JP (1) JPWO2023032613A1 (zh)
CN (1) CN117769610A (zh)
WO (1) WO2023032613A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024185627A1 (ja) * 2023-03-03 2024-09-12 株式会社プロテリアル Fe-Co系合金基材およびその製造方法、Fe-Co系合金被覆基材およびその製造方法、ならびに積層コア部材

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4479998B2 (ja) * 2004-05-19 2010-06-09 株式会社ダイヤメット 高密度、高強度、高比抵抗および高磁束密度を有する複合軟磁性焼結材の製造方法
KR102174155B1 (ko) * 2018-09-27 2020-11-04 주식회사 포스코 방향성 전기강판용 소둔 분리제 조성물, 방향성 전기강판 및 방향성 전기강판의 제조방법
DE102019107422A1 (de) 2019-03-22 2020-09-24 Vacuumschmelze Gmbh & Co. Kg Band aus einer Kobalt-Eisen-Legierung, Blechpaket und Verfahren zum Herstellen eines Bands aus einer Kobalt-Eisen-Legierung

Also Published As

Publication number Publication date
US20240247146A1 (en) 2024-07-25
JPWO2023032613A1 (zh) 2023-03-09
EP4397787A1 (en) 2024-07-10
WO2023032613A1 (ja) 2023-03-09

Similar Documents

Publication Publication Date Title
TWI464757B (zh) Manufacture of rare earth magnets
US7402226B2 (en) Minute high-performance rare earth magnet for micromini product and process for producing the same
CN108154987B (zh) R-t-b系永久磁铁
KR101906067B1 (ko) R-Fe-B류 소결 자성체 제조방법
US20180122540A1 (en) Soft magnetic alloy and magnetic device
US10748686B2 (en) R-T-B based sintered magnet
EP3511958B1 (en) Soft magnetic alloy and magnetic device
US6275130B1 (en) Corrosion-resisting permanent magnet and method for producing the same
KR20190085474A (ko) 연자성 합금 및 자성 부품
KR102660624B1 (ko) 희토류 소결 자석
CN108154988B (zh) R-t-b系永久磁铁
KR20180048377A (ko) 연자성 합금 및 자성 부품
WO2018062409A1 (ja) 磁心
CN117769610A (zh) 被覆构件的制造方法及被覆构件
JP4276631B2 (ja) 希土類磁石及びその製造方法
EP3581672A2 (en) Soft magnetic alloy and magnetic device
US12116655B2 (en) Soft magnetic alloy and method for producing a soft magnetic alloy
EP4071771B1 (en) Ndfeb permanent magnet with high coercivity and high resistivity and method for preparing the same
US11569075B2 (en) Sputtering target
JP6353901B2 (ja) 磁性材料
EP4032640A1 (en) Method for manufacturing rare earth magnet
Matsuura et al. Influence of Nd oxide phase on the coercivity of Nd-Fe-B thin films
US9514870B2 (en) Rare earth magnet and method for producing the same
WO2019003680A1 (ja) 軟磁性合金および磁性部品
WO2024185627A1 (ja) Fe-Co系合金基材およびその製造方法、Fe-Co系合金被覆基材およびその製造方法、ならびに積層コア部材

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination