CN117701601A - GhFKBP17-2基因在防治棉铃虫和/或培育抗棉铃虫植物新品种中的应用 - Google Patents

GhFKBP17-2基因在防治棉铃虫和/或培育抗棉铃虫植物新品种中的应用 Download PDF

Info

Publication number
CN117701601A
CN117701601A CN202311846586.9A CN202311846586A CN117701601A CN 117701601 A CN117701601 A CN 117701601A CN 202311846586 A CN202311846586 A CN 202311846586A CN 117701601 A CN117701601 A CN 117701601A
Authority
CN
China
Prior art keywords
ghfkbp17
cotton
gene
seq
bollworms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311846586.9A
Other languages
English (en)
Inventor
金双侠
王雅欣
陈格非
朱传应
李雪珂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong Agricultural University
Original Assignee
Huazhong Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong Agricultural University filed Critical Huazhong Agricultural University
Priority to CN202311846586.9A priority Critical patent/CN117701601A/zh
Publication of CN117701601A publication Critical patent/CN117701601A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8286Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for insect resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y502/00Cis-trans-isomerases (5.2)
    • C12Y502/01Cis-trans-Isomerases (5.2.1)
    • C12Y502/01008Peptidylprolyl isomerase (5.2.1.8), i.e. cyclophilin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Insects & Arthropods (AREA)
  • Pest Control & Pesticides (AREA)
  • Medicinal Chemistry (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明属于农业生物的技术领域,具体涉及GhFKBP17‑2基因在防治棉铃虫和/或培育抗棉铃虫植物新品种中的应用。本发明所述GhFKBP17‑2基因的核苷酸序列如SEQ ID NO.1所示。实验证明,通过促进植物中GhFKBP17‑2基因转录和脯氨酸顺反异构酶的功能酶活性,提升棉花JA(茉莉酸)防御反应,进而防治棉铃虫,而抑制植物中GhFKBP17‑2基因的表达后,增加了棉铃虫对棉花的侵蚀。

Description

GhFKBP17-2基因在防治棉铃虫和/或培育抗棉铃虫植物新品 种中的应用
技术领域
本发明属于农业生物的技术领域,具体涉及GhFKBP17-2基因在防治棉铃虫和/或培育抗棉铃虫植物新品种中的应用。
背景技术
棉铃虫是一种重要的多食性农业害虫,取食棉花、玉米、大豆、小麦、茄子、番茄、辣椒等多种粮食蔬菜作物,严重危害了我国农作物的产量和质量。
目前,化学农药是防治棉铃虫的主要手段,但大量的化学农药不仅会引起害虫抗药性的增强,同时也会带来污染环境、破坏生态甚至会存在食品安全的问题,此外尽管中国专利CN 108588072B和中国专利CN 103849625A分别公开了通过干扰棉铃虫CYP4L11基因和棉铃虫COPIβ基因而实现防治棉铃虫的目的,但GhFKBP17-2基因与棉铃虫的关系还未见报道。
发明内容
本发明的目的在于提供了GhFKBP17-2基因在防治棉铃虫和/或培育抗棉铃虫植物新品种中的应用,通过正向调控GhFKBP17-2基因能够实现防治棉铃虫的目的。
为了实现上述目的,本发明提供如下技术方案:
本发明提供了GhFKBP17-2基因在防治棉铃虫和/或培育抗棉铃虫植物新品种中的应用,所述GhFKBP17-2基因的核苷酸序列如SEQ ID NO.1所示。
优选的,所述植物包括棉花。
优选的,所述GhFKBP17-2基因用于提升棉花茉莉酸防御反应,进而防治棉铃虫。
本发明提供了含有GhFKBP17-2基因的生物材料在防治棉铃虫的应用。
优选的,所述生物材料包括:含有GhFKBP17-2基因的重组载体、重组微生物、转基因植物细胞系、转基因植物组织或转基因植物器官。
优选的,所述重组载体包括所述重组表达载体包括pPGWB417-GhFKBP17-2。
本发明提供了用于抑制GhFKBP17-2基因表达的生物材料,包括sgRNA、含有所述sgRNA的表达载体或含有所述sgRNA的工程菌;
所述sgRNA的核苷酸序列如SEQ ID NO.3或SEQ ID NO.4所示。
优选的,所述表达载体包括pRGEB32-GhU6.7-GhFKBP17-2-Cas9。
本发明提供了一种抗棉铃虫植物的培育方法,包括如下步骤:
促进目的植物中GhFKBP17-2基因的表达,得到所述抗棉铃虫植物。
优选的,通过向所述目的植物中导入所述GhFKBP17-2基因得到所述抗棉铃虫植物。
有益效果:
本发明提供了GhFKBP17-2基因在防治棉铃虫和/或培育抗棉铃虫植物新品种中的应用,所述GhFKBP17-2基因的核苷酸序列如SEQ ID NO.1所示。实验证明,通过促进植物中GhFKBP17-2基因转录和脯氨酸顺反异构酶的功能酶活性,提升棉花JA防御反应,进而防治棉铃虫。
基于上述目的,本发明还提供了一种抗棉铃虫植物的培育方法,包括如下步骤:促进目的植物中GhFKBP17-2基因的表达,得到所述抗棉铃虫植物。以此得到抗棉铃虫植物提高了对棉铃虫的抗性,实现了防治的效果。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍。
图1为应用例1不同处理棉铃虫的取食偏好;
图2为应用例1中棉铃虫对WT和CR-GhFKBP17-1叶片的损伤率;
图3为应用例1中棉铃虫对WT和CR-GhFKBP17-3叶片的损伤率;
图4为应用例1中不同处理中棉花叶片的损伤率;
图5为应用例1中不同处理对棉铃虫体型的影响;
图6为应用例1中不同处理对棉铃虫体重的影响;
图7为应用例2中不同处理后棉花的长势;
图8为应用例2中不同棉花叶片和花蕾的损伤情况;
图9为实施例3中的各验证结果(其中,A表示注射TRV:00和TRV:GhFKBP17-2的棉花植株;B表示QRT检测表达量;C表示取食不同材料棉铃虫的体型;D表示取食不同材料棉铃虫的体重;E和F表示叶片损伤情况结果;G表示JA相关基因表达量;H表示SA相关基因表达量);
图10表示实施例4中的各实验结果(其中,A表示棉铃虫取食诱导不同棉花材料前后JA基因的表达量;B表示棉铃虫取食诱导不同棉花材料前后SA基因的表达量;C表示棉铃虫取食诱导不同棉花材料前后JA的含量;D表示棉铃虫取食诱导不同棉花材料前后SA的含量;E表示不同棉花材料脯氨酸顺反异构酶活(PPIase)活性);
图11为不同实验阶段的示意图(其中,A表示pRGEB32-GhU6.7-GhFKBP17-2-Cas9的载体构建;B表示超表达载体pPGWB417-GhFKBP17-2的构建;C表示农杆菌介导的遗传转化;D表示超表达(OE)材料的阳性鉴定;E表示超表达(OE)材料的表达量检测;F表示蛋白检测;G表示敲除(CR)材料的阳性鉴定;H-I表示敲除(CR)材料的编辑位点编辑效率的鉴定);
图12表示实施例2中pRGEB32-GhU6.7-NPT2的示意图;
图13表示实施例1中sgRNA1的设计图;
图14表示实施例1中sgRNA2的设计图。
具体实施方式
本发明提供了GhFKBP17-2基因在防治棉铃虫和/或培育抗棉铃虫植物新品种中的应用,所述GhFKBP17-2基因的核苷酸序列如SEQ ID NO.1所示,为:5’-ATGGCAACTTCGTTTAGCTCTCCACCATTTCTATCTTACCCACTAACAAGAACTCCCCG CTTCTCTTCTTCCTCGCAAACACCTCCTCCTAACTCACAACCACCGAATCCACCACCATCTCCTAAATTAACCACAACTTCATCTGAGCAGCAACCACCGGTAACTGTGCGAGAACCAAAGCCCCCCAAACCTACCACCACTGTTGAAACCACTGATTGGATAGCTTCCTCCTTGACCAGGCGCTTCGGCCTTGGTGCTGGCCTTGCATGGGCTGCCTTCCTTGCTGTTGGAGTCATCTCTGAACAAATTAAGACTCGCATTGAAGTTTCTGAACAAGAAGCAAATACAAGAGATGTTGAGAAGCAAGACGAGGTGGTGCTGCCTAATGGCATAAGGTACTATGAGTTGAGAATTGGTGGAGGGGCTTCTCCAAGGAATGGAGACTTGGTGGTGCTTGATCTAAAAGGGAAAATTGAAAGCAGAGGTGAAGTATTTGTTGATACATTTGATGGAGACAAGAAGCCACTTGCTCTGGTAATGGGATCAAGGCCTTACACCAAAGGAATGTGTGAAGGGATAGAATATATAGTGAGATCAATGAAAGCAGGAGGCAAAAGGAGAGTCATAGTTCCTCCCAATTTGGGGTTCGGAGAAAAGGGTGCAGATTTGGGAACGGGTGCCCAGATTCCACCCTTTGCAACCCTTGAGTACATAGTTGAAGTTGATAAAGTCTCCATTGCACCTGCATGA-3’;其编码的氨基酸序列如SEQID NO.2所示,具体为:MATSFSSPPFLSYPLTRTPRFSSSSQTPPPNSQPPNPPPSPKLTTTSSEQQPPVTVREPKPPKPTTTVETTDWIASSLTRRFGLGAGLAWAAFLAVGVISEQIKTRIEVSEQEANTRDVEKQDEVVLPNGIRYYELRIGGGASPRNGDLVVLDLKGKIESRGEVFVDTFDGDKKPLALVMGSRPYTKGMCEGIEYIVRSMKAGGKRRVIVPPNLGFGEKGADLGTGAQIPPFATLEYIVEVDKVSIAPA*。本发明所述植物优选包括棉花;所述GhFKBP17-2基因用于提升棉花JA防御反应,进而防治棉铃虫。
本发明提供了含有GhFKBP17-2基因的生物材料在防治棉铃虫的应用;所述生物材料优选包括:含有GhFKBP17-2基因的重组表达载体、重组微生物、转基因植物细胞系、转基因植物组织或转基因植物器官。本发明所述用于构建所述重组表达载体的初始载体优选包括质粒,更优选为pPGWB417;所述重组表达载体优选包括pPGWB417-GhFKBP17-2;本发明所述pPGWB417-GhFKBP17-2优选将SEQ ID NO.1所示的核苷酸序列导入载体pPGWB417得到;构建所述重组载体时,优选在GhFKBP17-2基因的5’端加上启动子35S。
本发明用于构建所述重组微生物的初始微生物优选包括酵母、细菌、藻或真菌;所述细菌优选为根癌农杆菌。本发明所述重组微生物优选将重组表达载体转入到初始微生物中得到。本发明对导入的方法没有特殊的要求,采用本领域熟知的技术即可。
本发明所述转基因植物细胞系、转基因植物组织或转基因植物器官优选通过将所述重组微生物导入到目的植物中得到。本发明所述导入的方法没有特殊的要求,采用本领域熟知的技术即可。
本发明提供了用于抑制GhFKBP17-2基因表达的生物材料,包括sgRNA、含有所述sgRNA的表达载体或含有所述sgRNA的工程菌;所述sgRNA的核苷酸序列如SEQ ID NO.3或SEQ ID NO.4所示;所述SEQ ID NO.3具体为:5’-GTTAGGAGGAGGTGTTTGCG-3’;所述SEQ IDNO.4具体为:5’-TTGCTGCTCAGATGAAGTTG-3’;含有所述sgRNA的载体骨架的核苷酸序列如SEQ ID NO.5所示,具体为:5’-AAGCATCAGATGGGCAAACAAAGCACCAGTGGTCTAGTGGTAGAATAGTACCCTGCCA CGGTACAGACCCGGGTTCGATTCCCGGCTGGTGCAGTTAGGAGGAGGTGTTTGCGGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCAACAAAGCACCAGTGGTCTAGTGGTAGAATAGTACCCTGCCACGGTACAGACCCGGGTTCGATTCCCGGCTGGTGCATTGCTGCTCAGATGAAGTTGGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGC-3’;所述含有sgRNA的表达载体包括pRGEB32-GhU6.7-GhFKBP17-2-Cas9。
本发明中还提供了一种抗棉铃虫植物的培育方法,包括如下步骤:促进目的植物中GhFKBP17-2基因的表达,得到所述抗棉铃虫植物。本发明优选通过向所述目的植物中导入所述GhFKBP17-2基因得到所述抗棉铃虫植物;所述转入的方式没有特殊的要求,采用本领域熟知的技术即可。
实验证明,为了抑制植物免疫,效应子PPI5特异性结合GhFKBP17-2,阻断了GhFKBP17-2基因的转录和酶活性,进而抑制JA和SA(水杨酸)水平以及JA和SA相关基因的表达。也就是说,棉铃虫效应子PPI5通过靶向和抑制GhFKBP17-2的转录和编码脯氨酸顺式反式异构酶的活性,降低了植物的防御反应,使植物更容易受到棉铃虫的入侵,而通过促进植物中GhFKBP17-2基因转录和脯氨酸顺反异构酶的功能酶活性,有利于提升棉花JA防御反应,能够达到防治棉铃虫的目的。因此通过向目的植物中导入GhFKBP17-2基因得到的抗棉铃虫植物,提高了植物对棉铃虫的抗性,进而实现了防治棉铃虫的效果。
为了进一步说明本发明,下面结合附图和实施例对本发明提供的GhFKBP17-2基因在防治棉铃虫和/或培育抗棉铃虫植物新品种中的应用进行详细地描述,但不能将它们理解为对本发明保护范围的限定。
实施例1:利用Gateway技术构建GhFKBP17-2过表达载体,过表达载体的示意图见图11中的B。
(1)基因片段扩增
从https://cottonfgd.net上下载Ghir_D08G019080.1(GhFKBP17-2)序列(如SEQID NO.1所示),在GhFKBP17-2基因两端加上BP接头合成引物,通过BP重组反应构建中间载体,以棉花cDNA(棉花品种为Gossypium hirsutum,jin668)为模板进行扩增,获得PCR扩增产物;
其中,BP接头合成引物的核苷酸序列如下:
BP-F:5’-GGGGACAAGTTTGTACAAAAAAGCAGGCTGC-3’(SEQ ID NO.6);
BP-R:5’-GGGGACCACTTTGTACAAGAAAGCTGGGTG-3’(SEQ ID NO.7);
用于PCR扩增引物的核苷酸序列如下:
BP-GhFKBP17-2F:5’-GGGACAAGTTTGTACAAAAAAGCAGGCTGCAT GGCAACTTCGTTTAGCT-3’(SEQ ID NO.8);
BP-GhFKBP17-2R:5’-GGGACCACTTTGTACAAGAAAGCTGGGTGTGC AGGTGCAATGG-3’(SEQID NO.9)。
(2)电泳检测
配制质量百分数为1%的琼脂糖凝胶,每个孔加入5μL的步骤(1)中的PCR扩增产物,电泳分离DNA片段,电压设在160~180V,15min后使用凝胶成像仪观察并拍照保存。
(3)PCR产物纯化
采用magen公司的D2111-03琼脂糖凝胶DNA回收试剂盒对PCR产物进行纯化,得到纯化后的DNA,将纯化后的DNA保存于-20℃,备用。
(4)BP连接
将步骤(3)中纯化后的DNA进行BP连接(具体连接体系见表1),混匀后25℃放置4h左右,得到连接产物。
表1BP反应体系
(5)热激转化至TOP10:
将步骤(4)中的5μL连接产物与40μL的TOP10感受态混合,冰上放置30min,42℃热激90s,再在冰上静置5min,得到热激产物;取300μL的SOC加入新的2mL离心管,将热激产物加入SOC中(SOC以水为溶剂,含有20g/L的蛋白胨、5g/L的酵母提取物、0.584g/L的NaCl、0.1864g/L的KCl、3.963g/L的葡萄糖,2.033g/L的MgCl2·6H2O和2.465g/L的MgSO4·7H2O),37℃震荡45min,涂于ZEO+固体培养基上,37℃培养过夜,挑单克隆于500μLZEO+抗性液体LB,37℃震荡3h,使用(引物:M13 F/gene-R)阳性检测,电泳跑胶,挑阳性送测序。对测序正确的菌株加入终浓度为15%~20%的甘油进行保菌,其中M13 F和gene-R的核苷酸序列如下:
M13 F:5’-TGTAAAACGACGGCCAGT-3’(SEQ ID NO.10);
gene-R(BP-GhFKBP17-2R):SEQ ID NO.9;
(6)质粒提取:提取步骤(5)中的阳性菌株的质粒,使用TIANGEN公司的DP105-02快速质粒小提试剂盒,得到BP质粒。
(7)LR反应体系
对步骤(6)中得到的质粒进行LR反应体系(具体反应体系见表2),室温(22~26℃)放置4h左右后,得到LR反应产物;将LR反应产物转化至TOP10(转化的过程与上述步骤(5)方法相同),之后将转化产物涂布于(Spe+)皿,挑单克隆检测(引物:35S-F/Gene-R),电泳跑胶,挑阳性送测序。对测序正确的菌株于甘油终浓度为15%~20%的液体中进行保菌,以此得到获得的重组质粒是pGWB417-GhFKBP17-2,其中35S-F和Gene-R的核苷酸序列如下:
35S-F:5’-GACGCACAATCCCACTATCC-3’(SEQ ID NO.11);
Gene-R(BP-GhFKBP17-2R):SEQ ID NO.9;
表2LR反应体系
(8)提取质粒:提取步骤(7)中的阳性菌株的质粒,方法与步骤(6)的方法相同。
(9)农杆菌电击转化:
先准备LB培养基(培养基中含有质量浓度为0.1%的Spe+和质量浓度为0.2%的Rif+),农杆菌感受态(GV3101)、冰盒、SOC、灭过菌的2mL的离心管、电转仪、电转杯、整个过程在超净台上完成。
将电转杯清洗,紫外交联仪灭菌20min,设置电转仪电压1800V,取步骤(8)中2μL的质粒加入农杆菌感受态中,吸打混匀,电转杯放置冰上预冷,将混合物转移至电转杯中,放入电转仪,双击Pulse;向电转杯中加入300μL SOC,吸出至无菌2mL离心管中,28℃,摇菌1~1.5h后涂皿,等皿干后封口倒置,在28℃恒温培养箱1-2d后挑单克隆,28℃,摇菌18h,PCR检测(PCR检测引物:35S-F/Gene-R),甘油保菌,其中35S-F的核苷酸序列如SEQ ID NO.9所示,Gene-R的核苷酸序列如SEQ ID NO.7所示。
实施例2:利用CRISPR/Cas9技术敲除效应子蛋白互作基因,CRISPR/Cas9介导的棉花GhFKBP17-2基因敲除载体的示意图见图11中的A。
(1)查询目的基因的序列及靶标
在CRISPR-P 2.0网站(http://cbi.hzau.cn/crispr/)上进行靶标的搜索,选择最佳PAM位点上游的3bp左右的位置的唯一酶切位点,设计sgRNA1(如SEQ ID NO.3所示,具体为:5’-GTTAGGAGGAGGTGTTTGCG-3’)和sgRNA2(如SEQ ID NO.4所示,具体为:5’-TTGCTGCTCAGATGAAGTTG-3’),GC含量在40%~60%,使用PrimerPremier 5.0设计引物,以此来扩增带sgRNA的载体骨架引物,其中,sgRNA1和sgRNA2的设计示意图分别见图13和图14:
GhFKBP17-21R:5’-CGCAAACACCTCCTCCTAACtgcaccagccgggaat-3’(SEQ IDNO.12);
Gh FKBP17-22F:5’-GTTAGGAGGAGGTGTTTGCGgttttagagctagaaata-3’(SEQ IDNO.13);
Gh FKBP17-22R:5’-CAACTTCATCTGAGCAGCAAtgcaccagccgggaat-3’(SEQ IDNO.14);
infGh FKBP17-2R:5’-ttctagctctaaaacCAACTTCATCTGAGCAGCAA-3’(SEQ IDNO.15)。
(2)利用上述设计的正反引物分别从pGTR载体中扩增出两条PCR1和PCR2片段,并使用重叠延伸PCR将两个小片段进行连接,得到PCR产物;
其中,用于扩增PCR1的引物核苷酸序列如下:
正向引物(pRGEB32-7s):5’-AAGCATCAGATGGGCAAAC AAAGCACCAGTGGTCTAG-3’(SEQID NO.16);
反向引物(GhFKBP17-21R):SEQ ID NO.12;
用于扩增PCR2的引物核苷酸序列如下:
正向引物(Gh FKBP17-22F):SEQ ID NO.13;
反向引物(Gh FKBP17-22)R:SEQ ID NO.14;
以扩增PCR1和PCR2为模板,重叠延伸的PCR引物核苷酸如下:
infPRGEB32-7s:5’-AAGCATCAGATGGGCAAACAAA-3’(SEQ ID NO.17);
infGh FKBP17-2R:SEQ ID NO.15。
(3)用BSA1酶对pRGEB32载体进行酶切,在37℃条件下酶切5.5h,之后电泳检测酶切效果、对酶产物进行纯化、经检测酶切纯化载体浓度为100~200ng/μL),得到纯化后的目的片段,其中具体酶切体系见表3。
表3酶切体系
(4)对步骤(3)中纯化后的目的片段进行In-fusion连接,具体连接体系见表4,混合体系置于37℃下水浴30min,然后在冰上放置5min,得到In-fusion连接产物,可-20℃保存备用。
表4In-fusion连接反应体系
(5)将步骤(4)中的In-fusion连接产物转化至TOP10(转化的方法与实施例1中步骤(5)相同),涂(Amp+)皿(Amp+的质量浓度为0.1%)。挑单克隆摇菌并使用u6-7s:5′-TGTGCCACTCCAAAGACATCAG-3′(SEQ ID NO.36)和Inf Gh FKBP17-2R(SEQ ID NO.15)引物进行PCR阳性检测,跑胶电泳,挑阳性送测序。测序正确取2-3个克隆保菌(加入终(体积)浓度为15%~20%的甘油)。
(6)电转农杆菌
凝胶电泳呈阳性且测序结果正确后,电转(和实施例1中电转方法)至农杆菌GV3101中,再次使u6-7s:5′-TGTGCCACTCCAAAGACATCAG-3′(SEQ ID NO.36)和Inf GhFKBP17-2R(SEQ ID NO.15)引物进行阳性检测,通过琼脂糖凝胶电泳,有阳性条带后进行保菌(加入终(体积)浓度为15%~20%的甘油),为后续农杆菌的侵染做准备。
实施例3:农杆菌介导的遗传转化实验,流程见图11中的C:
组培过程中用到的相关培养基母液配制:
表5MS大量组成表(所用试剂均为国药产品)
表6微量元素组成表(所用试剂均为国药产品)
取上述母液Ⅰ200mL,母液Ⅱ50mL,加蒸馏水定容至1L后得到用于培养基使用的微量。
表7铁盐组成表(所用试剂均为国药产品)
两种试剂均先用少量蒸馏水单独配置,溶解完全后,最终两种溶液混合并定容至1L。
表8B5有机物配制(所用试剂均为sigma产品)
表9各种激素配制(所用试剂均为sigma产品)
质量浓度(g/L) 备注
2,4-D 0.1 无水乙醇助溶
6-BA 1 -
NAA 1 -
L-Gly(甘氨酸) 2 国药产品
肌醇 10 -
IAA 0.5 -
IBA 0.5 NaOH助溶
KT 0.5 NaOH助溶/盐酸助溶*
NH4NO3 165 国药产品
采用上述表5~表9中的溶液制备培养基,具体如下:
共培养培养基(2,4-D培养基):以水为溶剂,每1L的总量中含有以下组分:MS大量50mL、微量10mL、铁盐10mL、肌醇10mL、硝酸铵10mL、L-Gly 1mL、B5有机物1mL、2,4-D 1mL、KT0.2mL、六水合氯化镁0.9~1.0g、葡萄糖30g和Phytagel 2.6g,培养基的pH值为5.85~5.95;
2,4-D筛选培养基:以水为溶剂,每1L的总量中含有以下组分:MS大量50mL、微量10mL、铁盐10mL、肌醇10mL、硝酸铵10mL、L-Gly 1mL、B5有机物1mL、2,4-D 1mL、KT 0.2mL、六水合氯化镁0.9~1.0g、葡萄糖30和Phytagel 2.6g,培养基的pH值为5.85~5.95;灭菌后,将培养基冷却至60℃以下(注意不要太凉,否则培养基会凝固),以1:1000比例,加入卡那霉素(母液浓度50mg/mL)、头孢霉素(母液浓度400mg/mL),混匀后,分装。
分化培养基:以水为溶剂,每1L的总量中含有以下组分:MS大量50mL、微量10mL、铁盐10mL、肌醇10mL、硝酸钾50mL、L-Gly 1mL、B5有机物1mL、IBA 1mL、KT 0.3mL、谷氨酰胺1g、天冬酰胺0.5g、葡萄糖30g和Phytagel 2.6g,培养基的pH值为6.1~6.2;
生根培养基:以水为溶剂,每1L的总量中含有以下组分:MS大量25mL、微量5mL、铁盐5mL、肌醇10mL、L-Gly 1mL、B5有机物1mL、葡萄糖15g和Phytagel 2.6g,培养基的pH值为5.90~5.95;
Hoagland营养液配方:以水为溶剂,每1L的总量中含有以下组分:1M硝酸钾5mL、1M硝酸钙5mL、1M磷酸二氢钾1mL、1M硫酸镁2mL、微量3mL、铁盐3mL和1M氢氧化钾1mL;
LB培养基:以水为溶剂,每1L的总量中含有以下组分:胰蛋白胨10g、酵母提取物5g、氯化钠5g和琼脂(固体培养基)10g;
抗生素母液配置:
卡那霉素(50mg/mL):3.5g卡那加72g无菌水溶解得到;
头孢(400mg/mL):头孢24g加66g无菌水溶解后得到;
Spe(壮观霉素100mg/mL):2g壮观霉素粉末加20g无菌水溶解后得到;
Amp(氨苄霉素100mg/mL):2g氨苄霉素粉末加20g无菌水溶解后得到;
Rif(利福平50mg/mL):以无水乙醇,5MNaOH作为助溶剂;将2g利福平粉末和10mL无水乙醇混合,尽量把粉末扩散。加2~3滴5M NaOH助溶,再加10mL无水乙醇摇匀。再加两滴氢氧化钠,摇匀后,再加10mL无水乙醇,室温摇床过夜。再加10mL无水乙醇,最终使得粉末完全溶解,注意氢氧化钠不能加过量,否则颜色会很深。
具体实验过程如下:
a)无菌苗制备
将Jin668的棉籽去壳后,在超净工作台上,无菌条件下,利用84消毒液对种子消毒10min,之后用灭菌水清洗种子,然后在每瓶无菌苗培养基中放入5粒种子,28℃暗培养,培养1天后扶苗,之后在28℃条件下继续暗培养5~7d,得到下胚轴伸长的幼苗;其中,无菌苗培养基以水为溶剂,含有25mL/L的MS大量、15g/L的葡萄糖和2.6g/L的Phytagel,无菌苗培养基的pH值为6.1~6.2;
b)切苗与侵染
无菌条件下将Jin668幼苗下胚轴用锋利的刀片切成0.5~1cm长的切段,转入到经活化的农杆菌菌液(含有150μMAS(乙酰丁香酮)和OD600为0.1农杆菌的MGL培养基)中,搅匀,静置3-5min,倒掉菌液,滤纸吸干残余菌液,吹10min使表面稍为干燥,分散布于垫有滤纸的共培养培养基中,保证每段下胚轴均接触到滤纸。在农杆菌与受体材料(棉花下胚轴段)在18℃暗培养箱共培养36h。
之后转移到2,4-D筛选培养基中,放入28℃的光照培养室培养。
c)继代
2,4-D培养基继代,一个月左右继代一次,直至有胚性愈伤产生;
分化培养:将上述2,4-D皿中的胚性愈伤转到分化培养基中,一个月左右继代直至有小苗子产生。
生根培养:将上述分化培养基中的小苗子转到生根培养基中,直至小苗子的根系发达,有新的子叶长出。
水培炼苗:将上述生根培养基中长的足够健壮的苗子转到水中,进行炼苗,一周左右后,转移到温室带土的钵子中,经阳性植物鉴定,分别得到编号为OE-GhFKBP17-1、OE-GhFKBP17-3、OE-GhFKBP17-6、OE-GhFKBP17-8、OE-GhFKBP17-9、CR-GhFKBP17-1、CR-GhFKBP17-3、CR-GhFKBP17-5和CR-GhFKBP17-10的植株,分别对过表达GhFKBP17-2基因的植物(OE-GhFKBP17-1、OE-GhFKBP17-3、OE-GhFKBP17-6、OE-GhFKBP17-8和OE-GhFKBP17-9)进行阳性检测和GhFKBP17表达量检测,结果见图11中的D和图11中的E;敲除GhFKBP17-2基因的植物(CR-GhFKBP17-1、CR-GhFKBP17-3、CR-GhFKBP17-5和CR-GhFKBP17-10)进行PCR检测,结果见图11中的G,并对敲除的材料进行编辑位点的基因检测,结果见图11中的E和H。
应用例1:温室验证实验
棉铃虫卵:产自河南济源白云实业有限公司,在昆虫取食实验中,分别称重2龄或3龄的棉铃虫幼虫,体重大概为0.015~0.033g,作为相同条件下的对照。
将转基因植株(CR-GhFKBP17-1和CR-GhFKBP17-3)和对照植株(WT1和WT2)的完全展开的叶片放置在带有滤纸的培养皿(直径9.0cm)中,让20~28头棉铃虫取食4~7d统计体重,体型。培养皿保持在培养箱条件下(16h光照,8h黑暗;17.5℃,湿度60~70%)饲养昆虫,每天更换新鲜叶片。记录昆虫的体重和大小,结果见表10和图5~图6(图5表示不同处理对棉铃虫体型的影响;图6表示不同处理对棉铃虫体重的影响);
表10不同处理对棉铃虫的影响
由表10、图5和图6可以看出,与取食野生型植物叶片相比,取食CR-GhFKBP17-1和CR-GhFKBP17-3的叶片后,棉铃虫的体重增长更快。
在温室条件下,分别取野生型WT实施例3中培养得到的CR-GhFKBP17-1和CR-GhFKBP17-3的棉花幼叶均匀放置在铺有湿滤纸的方形培养皿中,然后将20只棉铃虫幼虫均匀放置在每个棉花叶片周围,让棉铃虫随机取食24h,之后统计棉铃虫分布在不同棉花叶片上的数量和棉花叶片的取食面积,结果见表11、表12和图1~4(图1表示不同处理棉铃虫的取食偏好;图2从左到右依次展示的棉铃虫对不同棉花叶片的损伤情况;棉铃虫对WT和CR-GhFKBP17-1叶片的损伤率;图3从左到右依次展示棉铃虫对WT和CR-GhFKBP17-3叶片的损伤率;图4为不同处理中棉花叶片的损伤率)
表11不同处理后棉铃虫的偏好性影响
表12不同处理对棉花叶片损伤率的影响
由11、12和图1~4可以看出,在20只幼虫中,约有13只更倾向于取食CR-GhFKBP17,只有7只倾向于取食WT叶片;棉铃虫消耗的CR-GhFKBP17-1和CR-GhFKBP17-3叶片损伤面积比WT植株显著增加了15.51%~38.8%。
应用例2:大田验证实验
分别将野生型WT和实施例3中制备得到的CR-GhFKBP17棉花分别种质的相同的网室内,每种材料为一个处理,每个处理种植10株,每个处理重复3次,种植期间各处理均进行常规浇水、施肥和除草,等待田间自然发虫,然后统计棉花株高情况,结果见表11和图7(在图7中从左到右依次表示野生型WT的长势,CR-GhFKBP17-1的长势和CR-GhFKBP17-3的长势);棉花叶片损伤率,见表12、图8(在图8中表示左图表示棉花叶片损伤率,右图表示花蕾损伤情况)。
表11不同处理对棉花株高的影响
表12不同处理对棉花叶片损伤率的影响
由表11、12和图7~8可以看出,与对照(WT)植株相比,而CR-GhFKBP17-1和CR-GhFKBP17-3的虫害痕迹较多,CR-GhFKBP17株高显著降低了37.9%;;此外,CR-GhFKBP17-1和CR-GhFKBP17-3植株的花蕾出现了更明显的棉铃虫洞,败育率也比对照(WT)植株高。
实施例3:VIGS实验:参考文献(Gao,W.,Long,L.,Zhu,L.F.,Xu,L.,Gao,W.H.,Sun,L.Q.,et al.(2013)Proteomic and virus-induced gene silencing(VIGS)Analysesreveal that gossypol,brassinosteroids,and jasmonic acid contribute to theresistance of cotton to Verticillium dahliae.Mol Cell Proteomics,12,3690-3703.)中的方法开展,步骤如下:
(1)以pTRV1和pTRV2载体用于VIGS检测,根据infusion载体构建方法将目的基因GhFKBP17插入pTRV2载体中,得到pTRV2-CLA和pTRV2-GFP分别用作阳性和阴性对照;将pTRV2-CLA和pTRV2-GFP分别导入农杆菌GV3101中。将含pTRV1的农杆菌(OD600为0.6~0.8)和含有pTRV2-GhFKBP17-2的农杆菌(OD600为0.6~0.8)按照体积比1:1混合,将混合物注射到生长7天左右(棉花子叶完全伸展)的棉花子叶中,在25℃、光周期为16h/8h的培养室中生长,培养20天左右,3~5片真叶如图9的A所示(在图9的A中,从左至右的前三盆代表注射TRV:00的棉花植株即pTRV1和pTRV2混合注射后的植物;从左至右的后三盆代表注射TRV:GhFKBP17-2的棉花植株即pTRV1和pTRV:GhFKBP17-2混合注射后的植物)。
(2)让棉铃虫自由取步骤(1)中TRV:00的棉花植株和TRV:GhFKBP17-2的棉花植株,分别检测GhFKBP17-2的表达量,结果见图9中的B,并对取食不同棉花材料的棉铃中体型(图9中的C)、体重图(9中的D)和棉花叶片的损伤率(9中的E~F)进行统计。
由图9中的B~F可以看出,注射TRV:GhFKBP17-2后GhFKBP17-2的表达量显著下降;且棉铃虫更倾向取食注射TRV:GhFKBP17-2的植株材料,棉铃虫在TRV:GhFKBP17-2中的取食行为与CR-GhFKBP17-2一致,抑制棉花中GhFKBP17-2的转录可促进棉铃虫的取食活性。
(3)分别取步骤(1)中的注射TRV:00的棉花植株和注射TRV:GhFKBP17-2的棉花植株供棉铃虫自由采食,并于0h和6h,分别取棉花样品迅速放置在液氮中,保存在-80℃,提取棉花叶片RNA(采用RNAprep Pure多糖多酚植物总RNA提取试剂盒型号为DP441),并反转成cDNA,通过qRT-PCR检测JA、SA相关基因的表达量水平,结果见图9中的G~H,其中用于qRT-PCR检测的引物如下(图9中的基因为PR4、MYC3、JAZ3、ICS、PR2和NPR1);(注:图10中的基因为JAZ3、MYC2、MYC3、ICS、PR5和PR2,采用下述引物)
棉花内参基因:ubq7-F:5’-GAAGGCATTCCACCTGACCAAC-3’(SEQ ID NO.18)和ubq7-R:5’-CTTGACCTTCTTCTTCTTGTGCTTG-3’(SEQ ID NO.19);
1J-GhJAZ3-F:5’-TTCGCTTTGCCTTCGGTTATT-3’(SEQ ID NO.20)
1J-GhJAZ3-R:5’-TGCCTACTCGTTGCCTGTTGT-3’(SEQ ID NO.21)
4J-GhMYC2-2-F:5’-CCCAGCTTCCGTGCTTTATTTT-3’(SEQ ID NO.22)
4J-GhMYC2-2-R:5’-GGAGGAAGGACTTTGATGGGT-3’(SEQ ID NO.23)
1S-GhICS-F:5’-GTCTTCAGCCACCTAATGGACCCGC-3’(SEQ ID NO.24)
1S-GhICS-R:5’-GCTCTGGATTCACCTCTAGCACG-3’(SEQ ID NO.25)
5S-GhPR5-F:5’-CCCGTCACCCTGGTAGAGTT-3’(SEQ ID NO.26)
5S-GhPR5-R:5’-TGCATATTGGCAATCCCCTG-3’(SEQ ID NO.27)
4S-GhPR2-F:5’-TACGCTCTGTTCACCGCCCA-3’(SEQ ID NO.28)
4S-GhPR2-R:5’-CACTCGTCCCGACTGCTCCC-3’(SEQ ID NO.29)
2S-GhNPR1-F:5’-AAGCCTTGCCTCAACCCATT-3’(SEQ ID NO.30)
2S-GhNPR1-R:5’-CGTCACAGTATGCCACAGCGTAGT-3’(SEQ ID NO.31)
7J-GhPR4-F:5’-TAGCCGTGTTCCAGCAGATTG-3’(SEQ ID NO.32)
7J-GhPR4-R:5’-TTTTGGCTTTTTCTCTTTATC-3’(SEQ ID NO.33)
6J-GhMYC3-F:5’-AGGAAACTCTCCGTTCGCTGTG-3’(SEQ ID NO.34)
6J-GhMYC3-R:5’-CTACTATCGGCCTCCTTAACAACG-3’(SEQ ID NO.35)
由图9中的G~H可以看出,VIGS沉默GhFKBP17-2后,JA相关基因表达量较对照显著下降,棉铃虫取食诱导以后,植物响应棉铃虫取食反应JA相关基因表达量提高,但相较于对照相比,沉默GhFKBP17-2的植株JA相关基因表达被显著抑制。这些结果证明棉铃虫通过抑制GhFKBP17-2的表达进一步抑制植物JA的防御反应来保证自身的取食和生长发育。
实施例4
(1)蛋白酶偶联PPIase(反异构酶活)实验,以此来确定GhFKBP17-2是否具有PPIase活性,以及它是否在植物免疫中发挥重要作用,结果见图10中的E,参考文献(①Fan,G.,Yang,Y.,Li,T.,Lu,W.,Du,Y.,Qiang,X.,et al.(2018)A Phytophthora capsici RXLREffector Targets and Inhibits a Plant PPIase to Suppress EndoplasmicReticulum-Mediated Immunity.Molecular plant,11,1067-1083.②Domingues,M.N.,Campos,B.M.,de Oliveira,M.L.,de Mello,U.Q.and Benedetti,C.E.(2012)TALeffectors target the C-terminal domain of RNA polymerase II(CTD)by inhibitingthe prolyl-isomerase activity ofa CTD-associated cyclophilin.PLoS One,7,e41553.)中记录的方法提取待测定植株的总蛋白,具体步骤为:
用RIPA裂解缓冲液(其中含有质量分数为0.1%的PMSF,具体为碧云天P0013cRIPA裂解液)分别提取WT、OE-GhFKBP17-1、OE-GhFKBP17-3、CR-GhFKBP17-1和CR-GhFKBP17-3的棉花叶片蛋白,将实验缓冲液(实验缓冲液以双蒸水为溶剂,含有35mM的HEPES和体积浓度为0.015%的TritonX-100,实验缓冲液的pH为8.0)中蛋白质与5mM的succinyl-Ala-Leu-Pro-Phe-paranitroanilide(型号为#S8511,购买自Sigma公司)混合,在冰上孵育10min,每个样品置于预冷至8℃的分光光度计中,之后立即加入10mM的α-凝乳胰蛋白酶(产品型号为C3142,购买自Sigma-Aldrich公司),记录每秒390nm的吸光度,持续30s。通过SDS-PAGE和免疫印迹分析(图11中的F)检测转基因材料的GhFKBP17-2蛋白表达情况。
由图10中的E可以看出,通过凝乳胰蛋白酶偶联试验分析PPIase活性发现,390nm处较高的吸光度表明PPIase活性增加;与H2O自发反应相比,加入OE-GhFKBP17-1或OE-GhFKBP17-3后,4-硝基苯胺的积累速度更快,39nm处吸光度更高;CR-GhFKBP17-1和CR-GhFKBP17-3在390nm处的吸光度与H2O的自发反应一致,表明OE-GhFKBP17-1和OE-GhFKBP17-3具有更高的PPIase活性;由此可知,PPI5通过影响GhFKBP17-2的植物激素水平以及转录和PPIase活性来促进棉虫更好的取食一致,即通过敲除材料中激素水平,激素相关基因表达量、转录水平,PPIase酶活功能以及棉铃虫生测实验结果一起证明了GhFKBP17-2正向调控植物的抗虫性。
(2)植物叶片中茉莉酸(JA)、茉莉酰基异亮氨酸(JA-ile)和水杨酸(SA)含量分析
为了测定JA和SA的内源浓度,将分别取WT、OE-GhFKBP17-1、OE-GhFKBP17-3、CR-GhFKBP17-1和CR-GhFKBP17-3的叶片约100mg,用80%(v/v)的冷甲醇均质两次,并在4℃黑暗中摇匀过夜。联合提取物的溶出、过滤、储存和定量文献:Hu,Q.,Min,L.,Yang,X.,Jin,S.,Zhang,L.,Li,Y.,et al.(2018)Laccase GhLac1 Modulates Broad-Spectrum BioticStress Tolerance via Manipulating Phenylpropanoid Pathway and Jasmonic AcidSynthesis.Plant Physiol,176,1808-1823.的描述进行。每个样品加入7.5ng(±)的9-,10-二氢JA(OlChemim)和75ng的1-萘乙酸(Sigma-Aldrich)作为JA,JA-ile和SA含量测定的内标(参考文献:Alariqi,M.,Ramadan,M.,Wang,Q.,Yang,Z.,Hui,X.,Nie,X.,et al.(2023)Cotton 4-coumarate-CoA ligase 3enhanced plant resistance toVerticillium dahliae by promoting jasmonic acid signaling-mediated vascularlignification and metabolic flux.Plant J,115,190-204.),结果见图10中的C~D。
由图10可以看出,与未饲喂棉铃虫的WT相比,OE-GhFKBP17-1和OE-GhFKBP17-3中JA相关基因(GhMYC2、GhMYC3)和SA相关基因(GhICS、GhPR2、GhPR5)的表达水平显著高于未饲喂棉铃虫的WT;而CR-GhFKBP17-1和CR-GhFKBP17-3中JA相关基因(GhJAZ3、GhMYC2、GhMYC3)和SA相关基因(GhICS、GhPR5)的转录水平与WT相似(图10中的A~B),尽管棉铃虫取食诱导后WT和CR-GhFKBP17的JA相关基因表达都会上调,但因为植物会对取食做出反应,因而CR-GhFKBP17的JA相关基因表达显著要低于WT诱导的JA相关基因表达。
与WT相比,OE-GhFKBP17-1和OE-GhFKBP17-3中JA相关基因的转录相似,而CR-GhFKBP17-1/3中JA相关基因的转录明显较低(图10中的A)。棉铃虫取食4h诱导的SA相关基因转录与非诱导基因无显著差异(图10中的B)。JA水平与WT、OE-GhFKBP17-1/3和CR-GhFKBP17-1/3中JA相关基因的表达一致(图10中的C)。被棉铃虫感染前后,CR-GhFKBP17-1/3的SA水平显著高于WT(图10中的D)。
综上所示,PPI5通过抑制GhFKBP17-2在棉花中的转录和PPIase活性来抑制JA介导的免疫应答,从而保证棉铃虫的生长发育。即本申请首次发现棉花亲环蛋白GhFKBP17-2在棉花中正向调控植物防御棉铃虫入侵:CR-GhFKBP17-2失去PPIase酶活功能,亲环蛋白的PPIase对他发挥防御作用十分重要,失去酶活功能的材料防御降低。
尽管上述实施例对本发明做出了详尽的描述,但它仅仅是本发明一部分实施例,而不是全部实施例,人们还可以根据本实施例在不经创造性前提下获得其他实施例,这些实施例都属于本发明保护范围。

Claims (10)

1.GhFKBP17-2基因在防治棉铃虫和/或培育抗棉铃虫植物新品种中的应用,其特征在于,所述GhFKBP17-2基因的核苷酸序列如SEQ ID NO.1所示。
2.根据权利要求1所述的应用,其特征在于,所述植物包括棉花。
3.根据权利要求1或2所述的应用,其特征在于,所述GhFKBP17-2基因用于提升棉花茉莉酸防御反应,进而防治棉铃虫。
4.含有GhFKBP17-2基因的生物材料在防治棉铃虫的应用。
5.根据权利要求4所述的应用,其特征在于,所述生物材料包括:含有GhFKBP17-2基因的重组表达载体、重组微生物、转基因植物细胞系、转基因植物组织或转基因植物器官。
6.根据权利要求5所述的应用,其特征在于,所述重组表达载体包括pPGWB417-GhFKBP17-2。
7.用于抑制GhFKBP17-2基因表达的生物材料,其特征在于,包括sgRNA、含有所述sgRNA的表达载体或含有所述sgRNA的工程菌;
所述sgRNA的核苷酸序列如SEQ ID NO.3或SEQ ID NO.4所示。
8.根据权利要求7所述的生物材料,其特征在于,所述含有所述sgRNA的表达载体包括pRGEB32-GhU6.7-GhFKBP17-2-Cas9。
9.一种抗棉铃虫植物的培育方法,其特征在于,包括如下步骤:
促进目的植物中GhFKBP17-2基因的表达,得到所述抗棉铃虫植物。
10.根据权利要求9所述的培育方法,其特征在于,通过向所述目的植物中导入所述GhFKBP17-2基因,得到所述抗棉铃虫植物。
CN202311846586.9A 2023-12-29 2023-12-29 GhFKBP17-2基因在防治棉铃虫和/或培育抗棉铃虫植物新品种中的应用 Pending CN117701601A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311846586.9A CN117701601A (zh) 2023-12-29 2023-12-29 GhFKBP17-2基因在防治棉铃虫和/或培育抗棉铃虫植物新品种中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311846586.9A CN117701601A (zh) 2023-12-29 2023-12-29 GhFKBP17-2基因在防治棉铃虫和/或培育抗棉铃虫植物新品种中的应用

Publications (1)

Publication Number Publication Date
CN117701601A true CN117701601A (zh) 2024-03-15

Family

ID=90158864

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311846586.9A Pending CN117701601A (zh) 2023-12-29 2023-12-29 GhFKBP17-2基因在防治棉铃虫和/或培育抗棉铃虫植物新品种中的应用

Country Status (1)

Country Link
CN (1) CN117701601A (zh)

Similar Documents

Publication Publication Date Title
AU2017271409B2 (en) Compositions, kits and methods for weed control
EP3716757A1 (en) Compositions, kits and methods for weed control
JP2021523726A (ja) アブラムシに高致死性のRNAi標的遺伝子およびその使用
GUO et al. Rapid and convenient transformation of cotton (Gossypium hirsutum L.) using in planta shoot apex via glyphosate selection
CN109055396B (zh) 拟南芥ppr1基因在调控植物抗镉性能中的应用
CN110669762B (zh) 用于控制昆虫侵袭的核苷酸序列及其方法
Purwantoro et al. Efficient floral dip transformation method using Agrobacterium tumefaciens on Cosmos sulphureus Cav.
KR101615873B1 (ko) 신규한 알칼리지니스 피칼리스균주 및 이의 용도
KR100994443B1 (ko) 두 가지 제초제에 대하여 저항성을 가지는 항생제 마커프리형질전환 콩 식물체
Okeyo-Ikawa et al. In planta seed transformation of Kenyan cowpeas (Vigna unguiculata) with P5CS gene via Agrobacterium tumefaciens.
CN116178515A (zh) Glyma.19G262700蛋白质在培育抗大豆胞囊线虫植物中的应用
CN113913456A (zh) 一种提高番茄对南方根结线虫抗性的方法
CN117701601A (zh) GhFKBP17-2基因在防治棉铃虫和/或培育抗棉铃虫植物新品种中的应用
CN110669761B (zh) 用于控制昆虫侵袭的核苷酸序列及其方法
CN110551718B (zh) 用于控制昆虫侵袭的核苷酸序列及其方法
CN116622725B (zh) 杂交鹅掌楸LhMFT2基因及应用
CN113403321B (zh) OsAKR4C10在创建非转基因草甘膦抗性水稻种质资源中的应用
CN115948460B (zh) 辣椒抗疫病相关基因CaWRKY66及其应用
CN111713204B (zh) 效应因子RxLR129113表达的效应蛋白在促进植物生长方面的应用
CN111500624B (zh) CrSMT基因在提高植物对于生物胁迫以及非生物胁迫抗性中的用途
CN110669760B (zh) 用于控制昆虫侵袭的核苷酸序列及其方法
KR100951062B1 (ko) 배추 유래의 해충 저항성 디펜신을 코딩하는 비알디 1 유전자, 이를 이용한 형질전환체 및 상기 유전자를 발현시켜 해충 저항성을 증진시키는 방법
CN102559703A (zh) 一种来自葡萄冠瘿病拮抗菌水生拉恩氏菌的抗草甘磷除草剂基因AroA-Ra及其应用
CN110592087A (zh) Sgr基因的沉默在芸薹属植物中的应用
CN118685410A (zh) 组成型启动子及其用途

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination