CN117686711B - 一种纳米酶结合适配体检测食品中大肠杆菌的方法 - Google Patents

一种纳米酶结合适配体检测食品中大肠杆菌的方法 Download PDF

Info

Publication number
CN117686711B
CN117686711B CN202410136540.6A CN202410136540A CN117686711B CN 117686711 B CN117686711 B CN 117686711B CN 202410136540 A CN202410136540 A CN 202410136540A CN 117686711 B CN117686711 B CN 117686711B
Authority
CN
China
Prior art keywords
coli
mwcnts
aptamer
concentration
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202410136540.6A
Other languages
English (en)
Other versions
CN117686711A (zh
Inventor
杨亚玲
李秋兰
杨德志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yunnan Lunyang Technology Co ltd
Original Assignee
Yunnan Lunyang Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yunnan Lunyang Technology Co ltd filed Critical Yunnan Lunyang Technology Co ltd
Priority to CN202410136540.6A priority Critical patent/CN117686711B/zh
Publication of CN117686711A publication Critical patent/CN117686711A/zh
Application granted granted Critical
Publication of CN117686711B publication Critical patent/CN117686711B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56911Bacteria
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Hematology (AREA)
  • Pathology (AREA)
  • Urology & Nephrology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Virology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明涉及化学分析检测技术领域,具体为一种纳米酶结合适配体检测食品中大肠杆菌的方法。本发明采用多壁碳纳米管及磷钼酸修饰四氧化三铁,具有氧空位的优异过氧化酶模拟酶Fe3O4@MWCNTs/Mo。纳米酶对大肠杆菌(E.coli)的强抗菌作用,能将E.coli杀死。活E.coli细胞壁表面电荷为负,当E.coli死亡后,表面结构发生改变,Fe3O4@MWCNTs/Mo与E.coli亲和力增强,活性位点降低,过氧化物酶活性被抑制。Fe3O4@MWCNTs/Mo与大肠杆菌适配体的复合物氧化3,3',5,5'‑四甲基联苯胺(TMB)时,E.coli浓度与氧化型TMB(oxTMB)吸光度呈线性降低,建立E.coli检测新方法,检出限1 CFU/mL,检测时间仅需40min。本检测技术具有灵敏度高、特异性强、操作简单、快速等特点。

Description

一种纳米酶结合适配体检测食品中大肠杆菌的方法
技术领域
本发明涉及化学分析检测技术领域,具体为一种纳米酶结合适配体检测食品中大肠杆菌的方法。
背景技术
致病性微生物污染尤其是食源性致病菌污染是世界关注的公共卫生问题,严重影响人民群众身体健康与生命安全。大肠杆菌是重要的食源性致病菌,可导致严重的食源性疾病,以其为模型开发快速、灵敏新型食源性致病菌检测方法具有重要意义。我国于 2013年发布《食品安全国家 标准食品中致病菌限量标准》(GB29921-2013),设置采样方案及限量值。具体将食品分为: 肉制品、水产制品、粮食制品、即食豆类制品、即食果蔬制品、饮料、冷冻饮品和 即食调味品,共 8 类,除即食调味品中大肠杆菌限量为 n=5,c=2,m=100CFU/g(mL),M=10000CFU/g(mL), 其 余 各 类 均 为 n=5,c=1,m=100 CFU/g(mL),M=1000CFU/g(mL);
纳米酶是一类既有纳米材料的独特性能,又有催化功能的模拟酶。纳米酶作为一类新型的模拟酶,它具有许多其他传统模拟酶所无法企及的优点,人们可以根据纳米材料模拟酶的特性进行研究并加以利用,让纳米酶具有更大的应用前景。四氧化三铁具有过氧化氢纳米模拟酶特性早已得到证实,但由于酶活低、纳米粒子易团聚等缺陷使其应用受到限制。核酸适配体是通过指数富集配体进化系统(Systematic evolution of ligands byexponential enrichment,SELEX)筛选出的单链 DNA 或者RNA 序列,可与目标配体高亲和力、高特异性结合,具有易合成和修饰、稳定性和重现性好、灵敏度高等特点,将纳米酶与核酸适配体结合,进行目标物质的快速、特异性检测成为食品安全控制的研究热点。
发明内容
本发明的目的在于提供一种纳米酶结合适配体检测食品中大肠杆菌的方法,采用多壁碳纳米管(MWCNT)及磷钼酸修饰四氧化三铁,得到具有优异模拟过氧化酶的纳米酶(Fe3O4@MWCNTs/Mo),由于纳米酶对大肠杆菌(E.coli)有强的抗菌作用,能在较低浓度将E.coli杀死,活的E.coli细胞壁上的表面电荷为负值,当E.coli死亡后,细胞壁的表面结构发生了改变,增强了与E.coli的亲和力,Fe3O4@MWCNTs/Mo氧化3,3',5,5'-四甲基联苯胺(TMB)时,大肠杆菌与其适配体的复合物降低了与Fe3O4@MWCNTs/Mo亲和力,从而抑制了氧化反应进行,大肠杆菌浓度与氧化TMB吸光度降低呈线性关系,建立高灵敏、选择性强大肠杆菌检测新方法,检出限为1 CFU/mL,检测时间仅需要40min;将本方法应用于食品中大肠杆菌的检测分析,结果与GB 4789.10‐2016 食品安全国家标准食品微生物学检验-金黄色葡萄球菌计数检验测定方法相符。
一种纳米酶结合适配体检测食品中大肠杆菌的方法,包括以下步骤:
(1)将0.10-0.20 g 多壁碳纳米管(MWCNT)加入到30-50 mL乙二醇和10-20 mL聚乙二醇400的混合物中,再加入1.35-1.50 g FeCl3·6H2O,1.35-1.50 g乙酸钠和0.30-0.40g磷钼酸,搅拌1-2 h;转移至聚四氟乙烯罐中,放入马弗炉,200 ℃下加热12-14 h,冷却至室温,用纯净水和乙醇交替洗涤3次,得到具有磁性的纳米酶Fe3O4@MWCNTs/Mo;
(2)大肠杆菌(E.coli)适配体与Fe3O4@MWCNTs/Mo在37℃恒温箱中孵育25-30 min,制得纳米酶与适配体复合物;
(3)分别在不同梯度浓度的E.coli中加入纳米酶与适配体复合物溶液,Na+和Mg2+的混合溶液,然后加入3,3',5,5'-四甲基联苯胺(TMB)溶液及H2O2,生成蓝色oxTMB,用pH4.0醋酸盐缓冲溶液定容至4 mL,摇匀,静置5-10 min,磁铁分离Fe3O4@MWCNTs/Mo,取上清液,测定吸光度,确定E.coli浓度与吸光度A的线性关系;
(4)取含E.coli的待测样品液与纳米酶与适配体复合物溶液,加入Na+和Mg2+的混合溶液、TMB及H2O2溶液反应,磁铁分离,紫外光度计进行吸光度检测,根据吸光度计算待测样品液中E.coli浓度。
所述的E.coli适配体序列为:GCAATGGTACGGTACTTCCCCATGAGTGTTGTGAAATGTTGGGACACTAGGTGGCATAGAGCCGCAAAAGTGCACGCTACTTTGCTAA。
所述的E.coli溶液的浓度为101 - 106 CFU/mL;Fe3O4@MWCNTs/Mo与适配体溶液的体积比为5-8:1;Fe3O4@MWCNTs/Mo溶液浓度为0.5 mg/mL,适配体浓度为0.25 μmol/L,NaCl的浓度为50mmol/L,体积为20-50 μL,MgCl2的浓度为10mmol/L,体积为20-50 μL,TMB浓度为50 mmol/L,体积20-50 μL,H2O2 浓度为20 mmol/L,体积为20-50 μL。
所述的离心是在8000-10000 r/min下处理10-15min。
本发明的优点在于:
1.本发明制备的Fe3O4@MWCNTs/Mo纳米酶具有氧空位及过氧化物酶活性,对E.coli具有强的抗菌作用,死亡后的E.coli表面结构发生改变,增加了与纳米酶的亲和力,Fe3O4@MWCNTs/Mo活性位点降低、氧空位被占据,其与适配体复合物过氧化物酶活性受到抑制,氧化3,3',5,5'-四甲基联苯胺反应,E.coli浓度与氧化TMB降低呈线性关系,建立快速、灵敏、选择性强E.coli检测新方法,方法具有灵敏度高、操作简便、特异性强特点。
2、本发明在E.coli 的检测中,引入Na+和Mg2+构建盐桥,提高了检测体系的灵敏度及稳定性。
3、适配体与致病菌特异结合,加强了检测的特异性,经在实际样品检测中结果表明,加标回收率达100.1%~103.5%,同时E.coli的检测限为1 CFU/mL。
附图说明
图1为实施例1中Fe3O4@MWCNTs/Mo纳米酶的扫描电镜图TEM(1μm)及TEM(50nm)图;
图2为实施例1中E.coli、Fe3O4@MWCNTs/Mo与Fe3O4@MWCNTs/Mo+E.coli的Zeta电位图;
图3为EDTA对Fe3O4@MWCNTs/Mo氧空位捕获效果图,图中Blank是不添加Fe3O4@MWCNTs/Mo纳米酶的EDTA;
图4为本发明纳米酶细胞毒性实验结果;
图5为实施例1中Fe3O4@MWCNTs/Mo对E.coli的抗菌性能图;
图6为实施例1中E.coli+Aptamer-Fe3O4@MWCNTs/Mo的拟过氧化酶抑制氧化TMB紫外-可见吸收光谱及线性方程;
图7为8种常见病原菌(Salmonella,李斯特菌(Listeria),副溶血性弧菌(V. parahaemolyticus)、金黄色葡萄球菌(S. aureus)、铜绿假单胞菌(P. aeruginosa)、弗氏枸橼酸杆菌(C. freundii)、痢疾志贺菌(S. dysenteriae)和空肠弯曲菌(C. jejuni))对检测E.coli的影响结果。
具体实施方式
下面将结合具体的实施例对本发明的技术方案作进一步详细地描述说明,但本发明的保护范围并不仅限于此。
实施例1:豆制品中E.coli的测定
1、Fe3O4@MWCNTs/Mo的制备:将0.10-0.20 g 多壁碳纳米管(MWCNT)加入到30-50mL乙二醇和10-20 mL聚乙二醇400的混合物中,再加入1.35-1.50 g FeCl3·6H2O,1.35-1.50 g乙酸钠和0.30-0.40 g磷钼酸,搅拌1-2 h;转移至聚四氟乙烯罐中,放入马弗炉,200℃下加热12-14 h,冷却至室温,用纯净水和乙醇交替洗涤3次,得到具有磁性的纳米酶Fe3O4@MWCNTs/Mo。同时,将合成的Fe3O4@MWCNTs/Mo进行TEM(图1)及Zeta电位测试(图2),结果表明,Fe3O4@MWCNTs/Mo呈花椰菜状,有利于细菌的吸附,表面带负电荷。
2、Aptamer-Fe3O4@MWCNTs/Mo的制备:1.0 mg/mL 200 μL Fe3O4@MWCNTs/Mo 加入到0.25 μmol/L25 μL(NaAc-HAc buffer, pH 4.0)的E.coli NH2-aptamer中,在37℃恒温箱中孵育30 min,得到Aptamer-Fe3O4@MWCNTs/Mo;其中NH2-aptamer序列为:GCAATGGTACGGTACTTCCCCATGAGTGTTGTGAAATGTTGGGACACTAGGTGGCATAGAGCCGCAAAAGTGCACGCTACTTTGCTAA。
3、EDTA为氧空位捕获剂,在0.5、1.0、5.0μg/mL的EDTA加入100µg/mL Fe3O4@MWCNTs/Mo纳米酶100μL、10mmol/L TMB 50µL、40mmol/L H2O2 50µL,测定吸光度;图3结果表明,随着EDTA浓度的增加,吸光度随之下降,表明Fe3O4@MWCNTs/Mo纳米酶存在氧空位,氧空位的存在可提高表面氧气的吸附与活化,进而对底物的氧化有促进作用。
4、细胞毒性测试:通过测定HUVECs细胞的活力来评估纳米酶的生物毒性。具体,分别用不同浓度的VCN(0、2.5、4.5、6.5、8.5 μg/mL)处理HUVECs细胞,并孵育24-72 h。根据细胞存活率评价细胞毒性。结果显示,孵育72 h后,HUVECs细胞的存活率约为100 %(图4),表明Fe3O4@MWCNTs/Mo纳米酶具有良好的生物相容性。
5、Fe3O4@MWCNTs/Mo的抗菌性能:选择大肠杆菌(E. coli,ATCC 25922,购自中国微生物菌种保藏中心)。采用平板计数法,通过计数CFU数来判定Fe3O4@MWCNTs/Mo的抗菌性能。首先,将上述菌种在固体Luria-Bertani(LB)培养基和固体营养肉汤培养基孵育24 h,用接种环挑取少量形成的菌落,接种到对应液体培养基(5 mL)中,然后,在37℃、180rpm恒温摇床下震荡孵育12 h后即可获得细菌悬浮液(1×108 CFU/mL),用无菌磷酸盐缓冲液(PBS)稀释到1×105 CFU/mL。将培养的细菌与纳米酶及H2O2混合,Fe3O4@MWCNTs/Mo浓度为10、15、20、25、30、40 μg/mL,H2O2浓度为20 μmol/L,在37℃下将孵育60min,菌悬液经过稀释后(100 μL)均匀涂布在LB固体培养基和营养肉汤固体培养基上,在37℃下培养24 h,通过菌落数的生长判断抗菌性能。结果如图5所示,空白对照组几乎没有抗菌性能,30 μg/mL的Fe3O4@MWCNTs/Mo对E. coli有90%以上的杀菌率。
6、E.coli的工作曲线制作
(1)E.coli培养:分别将E.coli菌株均在L-B培养基中37℃培养12 h,3000 rpm离心5 min,用磷酸盐缓冲液(PBS, 10 mM, pH 7.4)洗涤菌体两次,获得对数生长期;
(2)E.coli工作曲线制作:在5 mL具塞比色管中加入50 µL Aptamer-Fe3O4@MWCNTs/Mo,浓度为50mmol/L NaCl 50 μL,浓度为10mmol/L MgCl2 50 μL,不同浓度的E.coli菌悬液100 μL,10 mmol/L TMB 100 μL,20 mmol/L的 H2O2 200 μL,用pH4.0醋酸盐缓冲溶液定容至5mL,摇匀,静置5-10 min,磁铁分离油酸包覆四氧化三铁,取上清液,在654nm波长处,测定吸光度A,以E.coli浓度为横坐标,A为纵坐标,绘制标准曲线,得到回归方程。见图6,得到回归方程、相关系数、相对标准偏差、线性范围等见表1。
7、方法特异性考察:图7为8种常见病原菌(李斯特菌(Listeria),沙门氏菌(Salmonella)、副溶血性弧菌(V. parahaemolyticus)、金黄色葡萄球菌(S. aureus)、铜绿假单胞菌(P. aeruginosa)、弗氏枸橼酸杆菌(C. freundii)、痢疾志贺菌(S. dysenteriae)和空肠弯曲菌(C. jejuni))对检测体系的影响结果,E.coli浓度为102 CFU/mL,以上干扰物质浓度为103 CFU/mL,结果表明,仅有E.coli及有明显的抑制作用,其它物质几乎没有变化,方法具有好的选择特异性。
8、豆制品样品中E.coli的测定
(1)样品处理:分别取适量的嫩豆腐、老豆腐、内酯豆腐、 盐卤豆腐25g,剪碎,各加入 225mL的 PBS 缓冲溶液,均质 15min,10000 r/min离心10min,取出上清液得样品测定液;
(2)样品测定:在5 mL具塞比色管中加入50 µL Aptamer-Fe3O4@MWCNTs/Mo,浓度为50mmol/LNaCl 50 μL,浓度为10mmol/L MgCl2 50 μL,述处理过的样品测定液,10 mmol/LTMB 100 μL,20 mmol/L的 H2O2 200 μL,用pH 4.0醋酸盐缓冲溶液定容至5mL,摇匀,静置5-10 min,磁铁分离油酸包覆四氧化三铁,取上清液,在654 nm波长处,测定吸光度A,代入步骤5回归方程,样品中E.coli未检出;
(3)回收率与精密度实验:通过对牛奶样品中E.coli的加标定量,验证所构建生物传感器的可行性。分别在豆制品中加入3个不同浓度的E.coli,除用缓冲液稀释外,不经任何预处理直接测定,同时通过标准平板计数法进行测定,结果见表2。测得E.coli的加标回收率在100.1%~103.5%,RSD在2.5%~3.4%,本方法有好的的准确性和精密度,与金标法相差无几。
表1线性方程、相关系数、相对标准偏差、线性范围
表2 样品加标回收率及RSD(n = 3)
实施例2:牛奶样品中E.coli的测定
1、Fe3O4@MWCNTs/Mo的制备:将0.10-0.20 g 多壁碳纳米管(MWCNT)加入到30-50mL乙二醇和10-20 mL聚乙二醇400的混合物中,再加入1.35-1.50 g FeCl3·6H2O,1.35-1.50 g乙酸钠和0.30-0.40 g磷钼酸,搅拌1-2 h;转移至聚四氟乙烯罐中,放入马弗炉,200℃下加热12-14 h,冷却至室温,用纯净水和乙醇交替洗涤3次,得到具有磁性的纳米酶Fe3O4@MWCNTs/Mo。同时,将合成的Fe3O4@MWCNTs/Mo进行TEM及Zeta电位测试(图1,2),结果表明,Fe3O4@MWCNTs/Mo呈花椰菜状,有利于细菌的吸附,表面带负电荷。
2、Aptamer-Fe3O4@MWCNTs/Mo的制备:同实施例1。
3、E.coli的工作曲线制作:同实施例1。
4、牛奶样品中E.coli的测定
(1)样品处理:取5 mL牛奶样品于10℃、7000×g离心10 min,去除上层奶油,将牛奶样品用蒸馏水按1∶20比例稀释,过0.45μm滤膜;
(2)样品测定:同实施例1,样品未检出E.coli

Claims (2)

1.一种纳米酶结合适配体检测食品中大肠杆菌的方法,包括以下步骤:
(1)将0.10-0.20g多壁碳纳米管MWCNT加入到30-50mL乙二醇和10-20mL聚乙二醇400的混合物中,再加入1.35-1.50g FeCl3·6H2O,1.35-1.50g乙酸钠和0.30-0.40g磷钼酸,搅拌1-2h;转移至聚四氟乙烯罐中,放入马弗炉,200℃下加热12-14h,冷却至室温,用纯净水和乙醇交替洗涤3次,得到具有磁性的纳米酶Fe3O4@MWCNTs/Mo;
(2)大肠杆菌E.coli适配体与Fe3O4@MWCNTs/Mo在37℃恒温箱中孵育25-30min,制得纳米酶与适配体复合物;
(3)分别在不同梯度浓度的E.coli中加入纳米酶与适配体复合物溶液,Na+和Mg2+的混合溶液,然后加入3,3',5,5'-四甲基联苯胺TMB溶液及H2O2,生成蓝色oxTMB,用pH4.0醋酸盐缓冲溶液定容至4mL,摇匀,静置5-10min,磁铁分离Fe3O4@MWCNTs/Mo,取上清液,测定吸光度,确定E.coli浓度与吸光度A的线性关系;
(4)取含E.coli的待测样品液与纳米酶与适配体复合物溶液,加入Na+和Mg2+的混合溶液、TMB及H2O2溶液反应,磁铁分离,紫外光度计进行吸光度检测,根据吸光度计算待测样品液中E.coli浓度;大肠杆菌E.coli适配体序列为:GCAATGGTACGGTACTTCCCCATGAGTGTTGTGAAATGTTGGGACACTAGGTGGCATAGAGCCGCAAAAGTGCACGCT ACTTTGCTAA。
2.根据权利要求1所述的方法,其特征在于:所述的E.coli溶液的浓度为101-106CFU/mL;Fe3O4@MWCNTs/Mo与适配体溶液的体积比为5-8:1;Fe3O4@MWCNTs/Mo溶液浓度为0.5mg/mL,适配体浓度为0.25μmol/L,NaCl的浓度为50mmol/L,体积为20-50μL,MgCl2的浓度为10mmol/L,体积为20-50μL,TMB浓度为50mmol/L,体积20-50μL,H2O2浓度为20mmol/L,体积为20-50μL。
CN202410136540.6A 2024-01-31 2024-01-31 一种纳米酶结合适配体检测食品中大肠杆菌的方法 Active CN117686711B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410136540.6A CN117686711B (zh) 2024-01-31 2024-01-31 一种纳米酶结合适配体检测食品中大肠杆菌的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410136540.6A CN117686711B (zh) 2024-01-31 2024-01-31 一种纳米酶结合适配体检测食品中大肠杆菌的方法

Publications (2)

Publication Number Publication Date
CN117686711A CN117686711A (zh) 2024-03-12
CN117686711B true CN117686711B (zh) 2024-05-14

Family

ID=90135591

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410136540.6A Active CN117686711B (zh) 2024-01-31 2024-01-31 一种纳米酶结合适配体检测食品中大肠杆菌的方法

Country Status (1)

Country Link
CN (1) CN117686711B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018098402A1 (en) * 2016-11-28 2018-05-31 Sonanutech Inc. Methods, compositions, and kits for detecting bacteriophage in a sample
CN109884029A (zh) * 2019-03-01 2019-06-14 吉林大学 银/石墨烯量子点纳米酶、sers检测试剂盒及应用
WO2021019196A1 (en) * 2019-07-31 2021-02-04 University Of Dundee Analyte biosensing
CN116448697A (zh) * 2023-05-25 2023-07-18 云南伦扬科技有限公司 一种基于磷钼掺杂介孔锆-卟啉MOFs纳米酶结合适配体快速检测食品中致病菌的方法
CN117309785A (zh) * 2023-05-30 2023-12-29 云南伦扬科技有限公司 一种基于氧氮空位纳米酶快速检测氟离子的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2017231678A1 (en) * 2016-03-08 2018-09-20 Children's National Medical Center Functionalized prussian blue nanopartices, combination prussian blue nanoparticle-based nano-immunotheraphy and applications thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018098402A1 (en) * 2016-11-28 2018-05-31 Sonanutech Inc. Methods, compositions, and kits for detecting bacteriophage in a sample
CN109884029A (zh) * 2019-03-01 2019-06-14 吉林大学 银/石墨烯量子点纳米酶、sers检测试剂盒及应用
WO2021019196A1 (en) * 2019-07-31 2021-02-04 University Of Dundee Analyte biosensing
CN116448697A (zh) * 2023-05-25 2023-07-18 云南伦扬科技有限公司 一种基于磷钼掺杂介孔锆-卟啉MOFs纳米酶结合适配体快速检测食品中致病菌的方法
CN117309785A (zh) * 2023-05-30 2023-12-29 云南伦扬科技有限公司 一种基于氧氮空位纳米酶快速检测氟离子的方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
A comprehensive review of detection methods for Escherichia coli O157:H7;Zhuangzhuang Bai 等;TrAC Trends in Analytical Chemistry;20220731;第152卷;116646 *
A facile synthesis of Fe3O4/nitrogen-doped carbon hybrid nanofibers as a robust peroxidase-like catalyst for the sensitive colorimetric detection of ascorbic acid;Jiang Y 等;J Mater Chem B;20170721;第5卷(第27期);5499-5505 *
Colorimetric detection for raloxifene based on Cu-PTs nanozyme with peroxidase-like activity;Yang X 等;J Pharm Biomed Anal;20231214;第239卷;115922 *
Fluorescence detection of dopamine based on the peroxidase-like activity of Fe3O4-MWCNTs@Hemin;Xiao F 等;Mikrochim Acta;20230612;第190卷(第7期);259 *
Novel phosphomolybdic acid/single-walled carbon nanohorn-based modified electrode for non-enzyme glucose sensing;Jingchao Chen 等;Journal of Electroanalytical Chemistry;20170101;第784卷;41-46 *
基于Nafion固定磷钼酸和石墨烯共修饰PEDOT膜电极的电化学过氧化氢传感器;周浩贤;张俊明;屈志宇;张潘宇;樊友军;;电化学;20160228(第01期);57-63 *

Also Published As

Publication number Publication date
CN117686711A (zh) 2024-03-12

Similar Documents

Publication Publication Date Title
Dai et al. Electrochemical determination of Salmonella typhimurium by using aptamer-loaded gold nanoparticles and a composite prepared from a metal-organic framework (type UiO-67) and graphene
Kang et al. Fabrication of Bacillus cereus electrochemical immunosensor based on double-layer gold nanoparticles and chitosan
El-Moghazy et al. Electrochemical biosensor based on genetically engineered bacteriophage T7 for rapid detection of Escherichia coli on fresh produce
Jampasa et al. Ultrasensitive electrochemiluminescence sensor based on nitrogen-decorated carbon dots for Listeria monocytogenes determination using a screen-printed carbon electrode
CN113866408A (zh) 基于核酸适配体、纳米粒子和量子点标记检测食源性肠道致病菌o157:h7的方法
Duan et al. Detection of volatile marker in the wheat infected with Aspergillus flavus by porous silica nanospheres doped Bodipy dyes
CN106018508A (zh) 基于适体修饰多孔氧化铝膜的李斯特菌高灵敏检测新方法
Peng et al. A sensitive electrochemical aptasensor based on MB-anchored GO for the rapid detection of Cronobacter sakazakii
CN117686711B (zh) 一种纳米酶结合适配体检测食品中大肠杆菌的方法
JP2011224001A (ja) ペクチネータス(Pectinatus)属菌の培養及び識別のための培地並びに綿棒サンプルの採取方法
CN116448697A (zh) 一种基于磷钼掺杂介孔锆-卟啉MOFs纳米酶结合适配体快速检测食品中致病菌的方法
CN111537584A (zh) 一种亚甲基蓝-纳米花、电化学适配体生物传感器体系及其制备方法和应用
CN116875478A (zh) 一种用于犬猫除臭的动物双歧杆菌乳亚种King31及菌剂、制备方法和应用
CN115558702A (zh) 一种用于牛奶中大肠杆菌的比色检测方法
CN110079475B (zh) 利用多种抗生素抑制杂菌的微生物发酵降解琼脂的方法
CN111647537B (zh) 一种耐盐辣椒素降解菌、应用及餐厨垃圾处理方法
Zhang et al. Reliable detection of Listeria monocytogenes by a portable paper-based multi-biocatalyst platform integrating three biomarkers: Gene hly, acetoin, and listeriolysin O protein
CN118086151B (zh) 一株凝结芽孢杆菌nj-1及其在发酵乳中的应用
CN116590008B (zh) 一种用于大肠杆菌o157:h7检测的基于背景消除的比率荧光探针及制备方法
CN116124853B (zh) 一种检测草酸的电化学生物传感器、制备方法及应用
CN117551588B (zh) 一种快速改良养殖用水的复合菌剂及其应用
US10768177B2 (en) Bacteriophage-based electrochemical biosensor
CN113699083B (zh) 一种芽孢杆菌Bacillus pseudomycoides及其应用
CN115902211A (zh) 一种快速检测食源性致病菌的方法
CN105349615A (zh) 食品和餐饮具中金黄色葡萄球菌快速检测冷水凝胶试纸片及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant