CN117678019A - 记录层和散热层之间有光学耦合多层的热辅助磁记录(hamr)介质 - Google Patents

记录层和散热层之间有光学耦合多层的热辅助磁记录(hamr)介质 Download PDF

Info

Publication number
CN117678019A
CN117678019A CN202280048863.9A CN202280048863A CN117678019A CN 117678019 A CN117678019 A CN 117678019A CN 202280048863 A CN202280048863 A CN 202280048863A CN 117678019 A CN117678019 A CN 117678019A
Authority
CN
China
Prior art keywords
layer
multilayer
seed
magnetic recording
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202280048863.9A
Other languages
English (en)
Inventor
P-O·朱伯特
P·C·多尔西
H·C·何
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Western Digital Technologies Inc
Original Assignee
Western Digital Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Western Digital Technologies Inc filed Critical Western Digital Technologies Inc
Publication of CN117678019A publication Critical patent/CN117678019A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/706Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material
    • G11B5/70605Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material metals or alloys
    • G11B5/70621Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material metals or alloys containing Co metal or alloys
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • G11B5/65Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition
    • G11B5/653Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition containing Fe or Ni
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/1278Structure or manufacture of heads, e.g. inductive specially adapted for magnetisations perpendicular to the surface of the record carrier
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • G11B5/66Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers
    • G11B5/672Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers having different compositions in a plurality of magnetic layers, e.g. layer compositions having differing elemental components or differing proportions of elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/7368Non-polymeric layer under the lowermost magnetic recording layer
    • G11B5/7369Two or more non-magnetic underlayers, e.g. seed layers or barrier layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/7368Non-polymeric layer under the lowermost magnetic recording layer
    • G11B5/7375Non-polymeric layer under the lowermost magnetic recording layer for heat-assisted or thermally-assisted magnetic recording [HAMR, TAMR]
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/74Record carriers characterised by the form, e.g. sheet shaped to wrap around a drum
    • G11B5/82Disk carriers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1387Means for guiding the beam from the source to the record carrier or from the record carrier to the detector using the near-field effect
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B2005/0002Special dispositions or recording techniques
    • G11B2005/0005Arrangements, methods or circuits
    • G11B2005/0021Thermally assisted recording using an auxiliary energy source for heating the recording layer locally to assist the magnetization reversal

Landscapes

  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

本发明公开了一种热辅助磁记录(HAMR)盘,该HAMR盘有磁记录层(通常为FePt化学有序合金)、位于该记录层下方的种子‑热障层(通常为MgO)、散热层以及位于该散热层和该种子‑热障层之间的交替的等离激元材料和非等离激元材料的光学耦合多层。与散热层不同,该多层具有非常低的平面内和平面外热导率,因此不起到散热层的作用。该多层的低热导率还允许该多层起到热障的作用。由于该多层中的这些等离激元材料,该多层提供极好的与该HAMR盘驱动器的近场换能器(NFT)的光学耦合。

Description

记录层和散热层之间有光学耦合多层的热辅助磁记录(HAMR) 介质
相关申请的交叉引用
本申请要求2021年8月6日提交的名称为“HEAT-ASSISTED MAGNETIC RECORDING(HAMR)MEDIUM WITH OPTICAL-COUPLING MULTILAYER BETWEEN THE RECORDING LAYER ANDHEAT-SINK LAYER”的美国非临时申请17/395,820号的权益并据此以引用方式并入其全部内容以用于所有目的。
背景技术
技术领域
本发明整体涉及一种用作热辅助磁记录(HAMR)介质的垂直磁记录介质,并且更具体地,涉及一种具有改进的光学和热特性的HAMR介质。
相关领域的描述
在常规的连续颗粒磁记录介质中,磁记录层是盘的整个表面之上的连续颗粒磁性材料层。在磁记录盘驱动器中,用于盘上的记录层的磁性材料(或介质)被选择为具有足够的矫顽磁性,使得限定数据“位元”的磁化数据区域被精确地写入,并保持其磁化状态,直到被新的数据位元覆写。随着面数据密度(可记录在盘的单位表面积上的位元的数量)的增加,构成数据位元的磁性晶粒可小到使得它们可轻易地因磁化位元内的热不稳定性或搅动(所谓的“超顺磁性”效应)而消磁。为了避免所存储磁化的热不稳定性,需要具有高磁晶各向异性(Ku)的介质。磁性晶粒的热稳定性在很大程度上由KuV确定,其中V是磁性晶粒的体积。因此,具有高Ku的记录层对于热稳定性是重要的。然而,增大Ku也增大介质的矫顽磁性,这可超出写入头的写入字段能力。
由于已知记录层的磁性材料的矫顽磁性依赖于温度,因此针对热稳定问题提出的一种解决方案是热辅助磁记录(HAMR),其中磁记录材料在写入期间被局部加热以将矫顽磁性降低到足以进行写入,但其中矫顽磁性/各向异性又足够高,以在盘驱动器的环境温度(即,约15℃-60℃的正常操作温度范围)下实现所记录位元的热稳定性。在一些提出的HAMR系统中,磁记录材料被加热至接近或高于其居里温度。然后,通过常规磁阻读取头在环境温度下回读所记录的数据。
最常见类型的提出的HAMR盘驱动器使用激光源和光学波导以及近场换能器(NFT)。“近场”换能器是指“近场光学器件”,其中光通过具有亚波长特征的元件,并且光耦合到位于距第一元件亚波长距离的第二元件,诸如磁记录介质之类的基板。NFT通常位于气体轴承滑块的气体轴承表面(GBS)处,该气体轴承滑块还支撑读/写头并且骑跨或“归档”在盘表面上方。
一种类型的提出的具有垂直磁各向异性的高Ku HAMR介质是在L10相中化学有序的FePt(或CoPt)合金。整体形式的化学有序的FePt合金被称为面心四方(FCT)L10有序相材料(也叫作CuAu材料)。L10相的c轴是易磁化轴并且垂直于盘基板取向。为了获得L10相的期望化学有序,FePt合金需要在沉积后进行退火或在基板保持在高温(例如,约500℃至700℃)的情况下进行沉积。
FePt合金磁性层通常还包含在FePt晶粒之间形成并减小晶粒大小的分离子,如C、SiO2、TiO2、TaOx、ZrO2、SiC、SiN、TiC、TiN、B、BC或BN。在HAMR介质中,种子-热障层如MgO用于诱导FePt磁性晶粒产生期望(001)织构并且影响它们的几何微结构,并且还充当热障层,使得来自NFT的热量不会太快地从FePt记录层消散。散热层位于种子-热障层下方,以先将热量横向地(平面内)移动,然后竖直地(即,在记录层的平面外方向上)向下移动到基板,因此记录层中将存在较少的横向热量扩散。
发明内容
选自Au、Ag和Cu的散热层为HAMR介质提供良好的热和光学特性。Au、Ag和Cu的高横向(平面内)热导率允许热量先横向移动,然后非常快速地竖直向下移动到基板。而且,Au、Ag和Cu是等离激元材料。等离激元材料的一种定义是在感兴趣波长下消光系数k是折射率n的至少两倍大的金属或金属合金。因此,等离激元材料还提供极好的与NFT的光学耦合,这在记录层中产生受限热源。
然而,将厚的Au、Ag、Cu等离激元层直接结合在种子-热障层(通常为MgO)下方是困难的。记录层需要具有正确的颗粒结构和结晶取向以实现期望的磁特性。记录层由通常由薄的氧化/氮化分离材料分开的FePt L10晶粒制成,并且需要高温沉积工艺。记录层还需要具有均匀的厚度并且需要非常平滑,使得滑块可保持在盘表面上方仅几纳米处。然而,Au、Ag和Cu膜在高温下显著变粗糙,并且在加热时也易于相互扩散。为此,Au、Ag或Cu散热层和种子-热障层之间需要中间层。但将散热层和记录层分开太大的距离对介质的热和光学性能是不利的。例如,当在10nm至25nm厚的中间层下方使用时,等离激元Au、Ag、Cu的光学益处消失。
在本发明实施方案中,交替的等离激元材料和非等离激元材料的光学耦合多层位于种子-热障层和散热层之间,而不需要中间层。另选地,该多层可位于种子-热障层内。与散热层不同,该多层具有非常低的平面内和平面外热导率,因此不起到散热层的作用。为此,该多层下方需要单独的散热材料层。该多层的低热导率还允许该多层起到热障的作用。由于该多层中的等离激元材料,该多层提供极好的与NFT的光学耦合。由于层压,该多层在退火时提供良好的稳定性。
重要的是,HAMR介质在记录层中具有高的热梯度(TG),这意味着正在记录的位元的边缘处存在急剧的温度下降。类似地,应最小化实现可接受的热梯度所需要的激光功率(LP)以延长NFT的寿命,该热梯度主要由记录层下方的层的光学和热特性确定。本发明实施方案中的光学耦合多层提高了没有单个等离激元层的HAMR介质的TG/LP比。
为了更全面地理解本发明的实质和优点,应当参考结合附图所作的以下具体描述。
附图说明
图1是根据现有技术的热辅助磁记录(HAMR)盘驱动器的顶视图。
图2描绘了根据现有技术的在HAMR盘驱动器中使用的气体轴承滑块和HAMR盘的一部分的剖视图,该剖视图由于难以示出非常小的特征部而未按比例绘制。
图3是示出根据现有技术的具有Au、Ag或Cu的单个等离激元散热层的HAMR盘的剖视图。
图4是示出根据本发明实施方案的HAMR盘的剖视图。
图5是示出根据本发明另一实施方案的HAMR盘的剖视图。
图6是针对具有各种厚度和交替层重复次数的RuAl/Au和RuAl/Rh多层测量的平面内热导率(TCIP)的表,多层在玻璃基板上形成,具有薄的2nm Au或Rh封盖以防止多层的氧化。
图7示出了来自各种厚度的RuAl(1nm)/Au(1nm)多层对比各种厚度的单个Au等离激元层的计算机建模的热梯度/激光功率(TG/LP)的图形数据。
图8示出了来自各种厚度的RuAl(1nm)/Rh(1nm)多层对比各种厚度的单个Au等离激元层的计算机建模的TG/LP的图形数据。
具体实施方式
图1是根据现有技术的热辅助磁记录(HAMR)盘驱动器100的顶视图。在图1中,HAMR盘驱动器100被示出为包括具有连续磁记录层31的盘200,该连续磁记录层具有同心的圆形数据磁道118。仅示出了靠近盘200的内径和外径的若干代表性磁道118的一部分。
驱动器100具有支撑致动器130的外壳或基部112和用于使磁记录盘200旋转的驱动马达。致动器130可为具有刚性臂131并围绕枢轴132旋转(如箭头133所示)的音圈马达(VCM)旋转致动器。头悬架组件包括悬架135和头载体诸如气体轴承滑块120,该悬架具有附接到致动器臂131的端部的一端,该头载体附接到悬架135的另一端。悬架135允许滑块120保持非常接近盘200的表面,并且使其能够在盘200沿箭头20的方向旋转时在由该盘生成的气体(通常为空气或氦气)轴承上“倾斜”和“滚动”。滑块120支撑HAMR头(未示出),该HAMR头包括磁阻读取头、感应式写入头、近场换能器(NFT)和光学波导。例如,具有780至980nm波长的半导体激光器90可用作HAMR光源,并且被描述为支撑在滑块120的顶部上。作为另外一种选择,激光器可位于悬架135上并通过光学通道耦合到滑块120。在盘200沿箭头20的方向旋转时,致动器130的移动允许滑块120上的HAMR头访问盘200上的不同数据磁道118。滑块120通常由复合材料形成,诸如氧化铝/碳化钛(Al2O3/TiC)的复合材料。图1中仅示出了具有相关联的滑块和读写头的一个盘表面,但通常在由主轴马达旋转的轮毂上堆叠有多个盘,其中单独的滑块和HAMR头与每个盘的每个表面相关联。
在以下附图中,X方向表示垂直于滑块的气体轴承表面(GBS)的方向,Y方向表示磁道宽度或跨磁道方向,并且Z方向表示沿磁道方向。图2是示出根据现有技术的HAMR头的示例的示意性横剖视图,该HAMR头也能够用作本发明实施方案中的HAMR头。在图2中,盘200被示出为常规盘,其中HAMR记录层31为具有磁化区域或“位元”34的可磁化材料的连续非图案化磁记录层。位元34在物理上彼此相邻,并且相邻位元的边界被称为磁跃迁37。这些位元被记录在各个数据扇区中。记录层31通常由具有垂直磁各向异性的高各向异性(Ku)的基本上化学有序的FePt合金(或CoPt合金)形成。盘包括通常由无定形类金刚石碳(DLC)形成的外涂层36和通常为粘结的全氟聚醚(PFPE)的液体润滑剂层38。
气体轴承滑块120由悬架135支撑。滑块120具有面向记录层的表面122,外涂层124沉积在该表面上。外涂层124通常为DLC外涂层,其厚度在约10至的范围内,并且其外表面形成滑块120的GBS。任选的粘附膜或内涂层(未示出)诸如/>至/>氮化硅(SiNx)膜可在沉积外涂层124之前沉积在表面122上。滑块120支撑磁写入头50、磁阻(MR)读取头60和磁通读取头屏蔽件S1和S2。记录磁场由写入头50产生,写入头由线圈56、用于传输线圈56所生成的通量的主磁极53、具有端部52的写入极55、和返回极54构成。线圈56所生成的磁场通过磁极53传输到位于光学近场换能器(NFT)74附近的写入极端部52。写入头50通常能够以不同的时钟速率工作,以便能够以不同的频率写入数据。当来自波导73的光入射时,也被称为等离激元天线的NFT 74通常使用低损耗金属(例如,Au、Ag、Al或Cu),该低损耗金属被成形为使得将表面电荷运动集中在位于滑块GBS处的尖端处。振荡尖端电荷产生强烈的近场图案,从而加热记录层31。NFT 74的金属结构可产生谐振电荷运动(表面等离激元)以进一步增强记录层31的强度和加热。在记录的时刻,盘200的记录层31被由NFT 74产生的光学近场加热,并且同时,通过施加由写入极端部52产生的记录磁场将区域或“位元”34磁化并因此写入到记录层31上。
半导体激光器90安装到滑块120的顶部表面。用于将来自激光器90的光引导至NFT74的光学波导73形成于滑块120内。激光器90通常能够以不同的功率水平工作。确保波导73芯材料的折射率大于包覆材料的折射率的材料可用于波导73。例如,Al2O3可用作包覆材料,并且TiO2、Ta2O5和SiOxNy可用作芯材料。作为另外一种选择,SiO2可用作包覆材料,并且Ta2O5、TiO2、SiOxNy或Ge掺杂的SiO2用作芯材料。将光传送至NFT 74的波导73优选地为单模波导。
图3是示出根据现有技术的具有连续颗粒记录层(RL)31的HAMR盘200的剖视图。记录层31可由如现有技术中提出的具有或不具有分离子的基本上化学有序的FePt合金(或CoPt合金)构成。盘200是具有大致平坦表面的基板201,代表性层通常通过溅射顺序地沉积在该基板上。硬盘基板201可以是任何可商购获得的高温玻璃基板,但也可以是另选的基板,诸如硅或碳化硅。粘附层202,通常约10-200nm的无定形粘附层材料如CrTa或NiTa合金,沉积在基板201上。
任选的透磁材料的软垫层(SUL)204可形成在粘附层202上,该软垫层充当来自写入头的磁通量的通量返回路径。SUL 204可由同样与FePt的高温沉积工艺相容的透磁材料诸如CoFeZr和CoZr的某些合金形成。SUL 204也可以是由通过非磁性膜诸如Al或CoCr的导电膜分开的多个软磁性膜形成的层压或多层SUL。SUL 204也可以是由通过介导反铁磁性耦合的夹层膜诸如Ru、Ir或Cr或其合金分开的多个软磁性膜形成的层压或多层SUL。SUL 204可具有在约5nm至100nm范围内的厚度。
种子层205,例如RuAl或NiAl层,沉积在SUL 204上,或者如果不使用SUL的话,则沉积在粘附层202上。然后散热层206沉积在种子层205上。散热层206有利于将热量从RL传递出去,以防止热量扩散到与期望写入数据的区域相邻的RL区域,从而防止在相邻数据轨道中重写数据。散热层206可由等离激元材料Au、Ag或Cu形成,这些等离激元材料具有高热导率并且允许极好的与NFT的耦合,从而产生受限热源。然而,当在高温下退火时,Au、Ag和Cu显著变粗糙。为此,用于RL的种子-热障层210不能直接形成在散热层206上。因此,Au、Ag或Cu散热层206和种子-热障层210之间需要中间层(IL)207。种子-热障层210形成在IL 207上,并且既充当用于RL 31的种子层又充当热障层。种子-热障层210通常为MgO,但已提出其他材料,包括CrRu、CrMo、TiN以及MgO与TiO2的混合物(MTO)如(Mg0.2Ti0.8)O。然而,IL 207增加了RL 31和散热层206之间的距离,这降低了散热层206的光学和热性能。转让给与本申请相同的受让人的US 8605555B1描述了一种HAMR介质,该HAMR介质在散热层和FePt RL之间具有无定形IL如CrTi、CrTa或NiTa,以降低由散热层引起的粗糙度。转让给与本申请相同的受让人的US 9558777 B2描述了一种HAMR介质,该HAMR介质具有可由包括等离激元Au、Ag、Cu和Rh的许多金属和合金形成的散热层,但在散热层和MgO种子层之间需要IL如无定形NiTa。已经提出了选自非等离激元材料Cr、W、Mo和Ru的散热层来代替Au、Ag或Cu,因为非等离激元材料在退火时不会变粗糙,并且因此可不需要中间层。然而,这些材料提供的光学和热特性不是最佳的。
形成RL 31的垂直介质是具有垂直磁各向异性的高各向异性(Ku)的基本上化学有序的FePt合金(或CoPt合金)。基本上化学有序意思是FePt合金具有Fe(y)Pt(100-y)形式的组合物,其中y在约45至55原子百分比之间。此类在L10中有序的FePt(和CoPt)合金因其高磁晶各向异性和磁化特性(这是高密度磁记录材料所期望的)而闻名。整体形式的基本上化学有序的FePt合金被称为面心四方(FCT)L10有序相材料(也叫作CuAu材料)。L10相的c轴是易磁化轴并且垂直于盘基板取向。基本上化学有序的FePt合金也可以是基于FePt L10相的伪二元合金,例如(Fe(y)Pt(100-y))-X,其中y在约45至55原子百分比之间,并且元素X可以是Ni、Au、Cu、Pd、Mn和Ag中的一者或多者,并且以约0%至约20%原子百分比的范围存在。尽管伪二元合金通常具有与二元合金FePt类似地高的各向异性,但伪二元合金允许对RL的磁性和其他特性进行附加控制。例如,Ag促进了L10相的形成,并且Cu降低了居里温度。尽管将用FePt RL描述根据本发明实施方案的HAMR介质,但本发明实施方案也完全适用于具有CoPt(或基于CoPt L10相的伪二元CoPt-X合金)RL的介质。
基于FePt L10相的颗粒薄膜表现出强的垂直各向异性,这潜在地导致用于超高密度磁记录的小的热稳定晶粒。为了制造小晶粒FePt L10介质,可作为磁记录层的一体部分使用分离晶粒的某种形式的分离子。因此,在HAMR介质中,RL 31通常还包含在FePt晶粒之间形成并减小晶粒大小的分离子,诸如C、SiO2、TiO2、TaOx、ZrO2、SiC、SiN、TiC、TiN、B、BC和BN中的一者或多者。虽然图3将RL 31描述为单个磁性层,但记录层可以是多层,例如多个堆叠的FePt子层,每个子层具有不同的分离子,如转让给与本申请相同的受让人的US 9,406,329-B1中所描述。
FePt RL在盘基板201保持在升高的温度下例如约500℃至700℃之间时溅射沉积,通常溅射沉积到约4nm至15nm之间的厚度。FePt RL可从具有大致相等的Fe和Pt原子量以及期望量的X添加剂和分离子的单个复合靶溅射沉积,或者从单独的靶共溅射。
任选的封盖层212诸如Co薄膜可形成在RL 31上。保护性外涂层(OC)36沉积在RL31上(或沉积在任选的封盖层212上),通常沉积到约1-5nm之间的厚度。OC 36优选地为无定形类金刚石碳(DLC)层。DLC也可以是氢化和/或氮化的,如本领域众所周知的。在完成的盘上,液体润滑剂38如全氟聚醚(PFPE)涂覆在OC 36上。
图4是根据本发明实施方案的HAMR盘的剖视图,示出了种子-热障层210和散热层206之间的光学耦合多层300。在图4中,省略了任选的SUL层。种子-热障层210优选地为MgO或MTO。多层300包括交替的非等离激元材料的层302和等离激元材料的层304。每个层302、304具有在0.5-2nm范围内的厚度,并且多层300的总厚度优选地在3-20nm的范围内。
图5是根据本发明另一实施方案的HAMR盘的剖视图,示出了第一种子热障膜220和第二种子热障膜230之间的光学耦合多层300。膜220、230中的每个膜可由MgO或MTO形成。
下表1列出了可用于层302和304的各种金属和金属合金以及它们在830nm波长下的对应n值和k值。此外,各种金属氮化物如CrN、VN、WN、MoN可适合作为非等离激元材料,因为它们像Au和Ag一样具有晶格常数并且表现出低的整体热导率。
表1
等离激元 n k
Au 0.1 5.3
Ag 0.1 5.0
Cu 0.3 5.3
Rh 2.8 7.0
非等离激元
Ru50Al50 4.3 4.4
Ni50Ta50 3.9 4.0
Cr50Ta50 4.3 4.4
多层300由通过薄非等离激元材料分开的交替的薄等离激元层制成。每个单独层的厚度相对于每种材料的电子平均自由程是小的,这显著地降低了每个单独层的热导率。因此,多层300具有优选地小于约20W/mK的低平面内热导率(TCIP),因此不起到散热层的作用。为此,多层300下方需要散热层206,并且散热层可由任何已知的散热材料包括Cr、W、Mo、Ru、Rh、Au、Ag或Cu以及它们的合金形成。然而,Cr、W和Mo以及它们的合金是优选的,因为它们在退火时不会变粗糙。图6是列出针对具有各种厚度和交替层重复次数的RuAl/Au和RuAl/Rh多层测量的TCIP的表,多层在玻璃基板上形成,具有薄的2nm Au或Rh封盖以防止多层的氧化。RuAl/Au多层表现出约20W/mK的TCIP。RuAl/Rh多层表现出约10W/mK的TCIP。多层300还具有各向异性热导率,即,平面外热导率(TCOP)低于TCIP。这因热载体、电子和/或声子在平面外方向上遇到许多界面从而增强散射并降低传导性而产生。根据界面的材料和质量,金属之间的界面热传导通常在500MW/m2K至4000MW/m2K的范围内。这产生根据每个界面的热传导和层厚度而具有在0.5W/mK至10W/mK范围内的TCOP的多层。基于TCIP测量,RuAl/Au多层的TCOP估计为大约10W/mK,并且RuAl/Rh多层的TCOP估计在5W/mK至10W/mK之间。通过比较,常规散热材料如Cr具有大约40-45W/mK的TCIP和大约40-45W/mK的TCOP
HAMR介质堆叠的光学性能可通过热梯度TG(沿轨道方向的温度变化)与写入48nm宽轨道所需的激光功率(LP)的比率来建模。比率越高,介质的光学效率越好。图7示出了来自TCIP=20W/mK并且TCOP=10W/mK的各种厚度的RuAl(1nm)/Au(1nm)多层对比各种厚度的单个Au等离激元层的计算机建模的图形TG/LP数据。基准(TG/LP=1)是针对种子-热障层下方没有等离激元层的堆叠的。3nm厚的多层是RuAl(1nm)/Au(1nm)/RuAl(1nm),其中RuAl直接在散热层上并且直接在种子-热障层下方。9nm厚的多层是3nm厚的多层的4次重复。图8示出了与图7相同的来自计算机建模的图形TG/LP数据,但是针对两种情况的RuAl(1nm)/Rh(1nm)多层,一种情况是其中TCIP=10W/mK并且TCOP=5W/mK,且一种情况是其中TCIP=10W/mK并且TCOP=10W/mK。
图7和图8两者的建模数据示出了多层提供的光学耦合,即TG/LP相对于基准的改进,其中改进随着多层厚度(增加的重复层压的次数)而增强。对于各种厚度的RuAl(2nm)/Au(2nm)和RuAl(2nm)/Au(2nm)多层的建模数据,也示出了TG/LP的类似改进。如图7和图8所示,TG/LP随着多层厚度的增加而增加,其中厚度的优选范围在约3-20nm之间。
虽然已参考优选的实施方案具体示出并描述了本发明,但本领域的技术人员将理解,在不脱离本发明的实质和范围的情况下可在形式和细节上作出各种更改。因此,所公开的本发明被认为仅是示例性的,并且在范围上仅限于所附权利要求书中指定的范围。

Claims (20)

1.一种热辅助磁记录介质,包括:
基板;
散热层,所述散热层位于所述基板上;
磁记录层,所述磁记录层包含选自FePt合金和CoPt合金的化学有序合金;
用于所述记录层的种子-热障层,其中所述记录层位于所述种子-热障层上并与之接触;和
多层,所述多层包括交替的等离激元材料的层和非等离激元材料的层,所述多层位于所述散热层和所述种子-热障层之间。
2.根据权利要求1所述的介质,其中所述等离激元材料选自Au、Ag、Cu和Rh。
3.根据权利要求1所述的介质,其中所述非等离激元材料选自RuAl合金、NiTa合金、CrTa合金以及Cr、V、W或Mo的氮化物。
4.根据权利要求1所述的介质,其中所述等离激元材料的层和所述非等离激元材料的层中的每个层具有大于或等于0.5nm并且小于或等于2nm的厚度。
5.根据权利要求1所述的介质,其中所述多层具有大于或等于3nm并且小于或等于20nm的厚度。
6.根据权利要求1所述的介质,其中所述散热层由选自Cr、W、Mo和它们的合金的材料形成。
7.根据权利要求1所述的介质,其中所述种子-热障层选自MgO和MTO。
8.根据权利要求1所述的介质,其中所述多层中的非等离激元材料的层位于所述散热层上并与之接触。
9.根据权利要求1所述的介质,其中所述磁记录层还包含具有Pt和选自Fe和Co的元素的基本上化学有序的合金,以及选自C、SiO2、TiO2、TaOx、ZrO2、SiC、SiN、TiC、TiN、B、BC和BN中的一者或多者的分离子。
10.根据权利要求1所述的介质,其中所述多层位于所述散热层上并与之接触,并且所述种子-热障层在所述多层上并与之接触。
11.根据权利要求1所述的介质,其中所述种子-热障层包括第一膜和第二膜,其中所述多层位于所述第一膜和所述第二膜之间,所述第一膜位于所述散热层上并与之接触,所述第二膜位于所述多层上并与之接触,并且所述记录层位于所述第二膜上并与之接触。
12.根据权利要求11所述的介质,其中所述第一种子-热障层膜和所述第二种子-热障层膜中的每一者选自MgO和MTO。
13.根据权利要求11所述的介质,其中所述等离激元材料选自Au、Ag、Cu和Rh,并且所述非等离激元材料选自RuAl合金、NiTa合金、CrTa合金以及Cr、V、W或Mo的氮化物。
14.一种热辅助磁记录(HAMR)盘驱动器,包括:
根据权利要求1所述的介质,其中所述介质是可旋转HAMR盘;和
载体,所述载体保持在所述盘的磁记录层附近并支撑近场换能器。
15.一种热辅助磁记录(HAMR)盘,包括:
盘基板;
散热层,所述散热层位于所述基板上;
多层,所述多层位于所述散热层上,包括交替的等离激元材料的层和非等离激元材料的层,所述等离激元材料选自Au、Ag、Cu和Rh,并且所述非等离激元材料选自RuAl合金、NiTa合金、CrTa合金以及Cr、V、W或Mo的氮化物;
种子-热障层,所述种子-热障层位于所述多层上并与之接触,选自MgO和MTO;和
磁记录层,所述磁记录层位于所述种子-热障层上并与之接触,包含选自FePt合金和CoPt合金的化学有序合金。
16.根据权利要求15所述的盘,其中所述等离激元材料的层和所述非等离激元材料的层中的每个层具有大于或等于0.5nm并且小于或等于2nm的厚度,并且其中所述多层具有大于或等于3nm并且小于或等于20nm的厚度。
17.一种热辅助磁记录(HAMR)盘驱动器,包括:
根据权利要求15所述的盘;和
气体轴承滑块,所述气体轴承滑块保持在所述盘的磁记录层附近并支撑近场换能器。
18.一种热辅助磁记录(HAMR)盘,包括:
盘基板;
散热层,所述散热层位于所述基板上;
第一种子-热障膜,所述第一种子-热障膜位于所述散热层上,选自MgO和MTO;
多层,所述多层位于所述第一种子-热膜上,包括交替的等离激元材料的层和非等离激元材料的层,所述等离激元材料选自Au、Ag、Cu和Rh,并且所述非等离激元材料选自RuAl合金、NiTa合金、CrTa合金以及Cr、V、W或Mo的氮化物;
第二种子-热障膜,所述第二种子-热障膜位于所述多层上并与之接触,选自MgO和MTO;和
磁记录层,所述磁记录层位于所述第二种子-热障膜上并与之接触,包含选自FePt合金和CoPt合金的化学有序合金。
19.根据权利要求18所述的盘,其中所述等离激元材料的层和所述非等离激元材料的层中的每个层具有大于或等于0.5nm并且小于或等于2nm的厚度,并且其中所述多层具有大于或等于3nm并且小于或等于15nm的厚度。
20.一种热辅助磁记录(HAMR)盘驱动器,包括:
根据权利要求18所述的盘;和
气体轴承滑块,所述气体轴承滑块保持在所述盘的磁记录层附近并支撑近场换能器。
CN202280048863.9A 2021-08-06 2022-05-04 记录层和散热层之间有光学耦合多层的热辅助磁记录(hamr)介质 Pending CN117678019A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US17/395,820 US11437064B1 (en) 2021-08-06 2021-08-06 Heat-assisted magnetic recording (HAMR) medium with optical-coupling multilayer between the recording layer and heat-sink layer
US17/395,820 2021-08-06
PCT/US2022/027543 WO2023014415A1 (en) 2021-08-06 2022-05-04 Heat-assisted magnetic recording (hamr) medium with optical-coupling multilayer between the recording layer and heat-sink layer

Publications (1)

Publication Number Publication Date
CN117678019A true CN117678019A (zh) 2024-03-08

Family

ID=83149850

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202280048863.9A Pending CN117678019A (zh) 2021-08-06 2022-05-04 记录层和散热层之间有光学耦合多层的热辅助磁记录(hamr)介质

Country Status (4)

Country Link
US (2) US11437064B1 (zh)
CN (1) CN117678019A (zh)
DE (1) DE112022002269T5 (zh)
WO (1) WO2023014415A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11735217B2 (en) * 2020-06-29 2023-08-22 Western Digital Technologies, Inc. Heat assisted magnetic recording media with amorphous magnetic grain boundary material
US11437064B1 (en) * 2021-08-06 2022-09-06 Western Digital Technologies, Inc. Heat-assisted magnetic recording (HAMR) medium with optical-coupling multilayer between the recording layer and heat-sink layer

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6579590B2 (en) * 2001-11-16 2003-06-17 Hitachi Global Storage Technologies Netherlands B.V. Thermally-assisted magnetic recording disk with multilayered thermal barrier
US8339740B2 (en) * 2010-02-23 2012-12-25 Seagate Technology Llc Recording head for heat assisted magnetic recording with diffusion barrier surrounding a near field transducer
US8605555B1 (en) 2012-04-19 2013-12-10 WD Media, LLC Recording media with multiple bi-layers of heatsink layer and amorphous layer for energy assisted magnetic recording system and methods for fabricating the same
US8576672B1 (en) 2012-05-25 2013-11-05 Seagate Technology Llc Heat sink layer
US8765273B1 (en) 2012-08-21 2014-07-01 Seagate Technology Llc Tuned heatsink layers
US9443545B2 (en) 2013-12-24 2016-09-13 HGST Netherlands B.V. Thermally stable Au alloys as a heat diffusion and plasmonic underlayer for heat-assisted magnetic recording (HAMR) media
US9940962B2 (en) * 2014-08-29 2018-04-10 Seagate Technology Llc Low power thermally assisted data recording media
US9558777B2 (en) 2014-11-26 2017-01-31 HGST Netherlands B.V. Heat assisted magnetic recording (HAMR) media having a highly ordered crystalline structure
US9822441B2 (en) 2015-03-31 2017-11-21 WD Media, LLC Iridium underlayer for heat assisted magnetic recording media
US9916868B1 (en) * 2015-05-22 2018-03-13 Seagate Technology Llc Heat-assisted rotating disk magnetometer for ultra-high anisotropy magnetic measurements
US9779771B1 (en) * 2015-07-28 2017-10-03 Seagate Technology Llc Capping layer for magnetic recording stack
US10236026B1 (en) * 2015-11-06 2019-03-19 WD Media, LLC Thermal barrier layers and seed layers for control of thermal and structural properties of HAMR media
US9530445B1 (en) * 2016-01-21 2016-12-27 HGST Netherlands B.V. Perpendicular heat-assisted magnetic recording (HAMR) medium with a perovskite oxide intermediate layer
US9697859B1 (en) * 2016-04-01 2017-07-04 WD Media, LLC Heat-assisted magnetic recording (HAMR) medium including a bi-layer that enables use of lower laser current in write operations
US10276199B1 (en) * 2016-06-29 2019-04-30 WD Media, LLC High thermal gradient heatsink for heat assisted magnetic recording media
US9940953B1 (en) * 2016-10-25 2018-04-10 Seagate Technology Llc Si-based overcoat for heat assisted magnetic recording media
US10650854B1 (en) * 2017-04-17 2020-05-12 Western Digital Technologies, Inc. Heat-assisted magnetic recording (HAMR) medium with improved corrosion resistance
US9824710B1 (en) * 2017-05-01 2017-11-21 Western Digital Technologies, Inc. Heat-assisted magnetic recording (HAMR) medium with thermal barrier layer in multilayered heat-sink structure
US10109309B1 (en) * 2017-09-01 2018-10-23 Western Digital Technologies, Inc. Heat-assisted magnetic recording (HAMR) medium with heat-sink layer having anisotropic thermal conductivity
US10276202B1 (en) * 2018-04-23 2019-04-30 Western Digital Technologies, Inc. Heat-assisted magnetic recording (HAMR) medium with rhodium or rhodium-based alloy heat-sink layer
US11437064B1 (en) * 2021-08-06 2022-09-06 Western Digital Technologies, Inc. Heat-assisted magnetic recording (HAMR) medium with optical-coupling multilayer between the recording layer and heat-sink layer

Also Published As

Publication number Publication date
US11437064B1 (en) 2022-09-06
DE112022002269T5 (de) 2024-04-04
US20230048634A1 (en) 2023-02-16
US11869556B2 (en) 2024-01-09
WO2023014415A1 (en) 2023-02-09

Similar Documents

Publication Publication Date Title
GB2534649B (en) Heat assisted magnetic recording (HAMR) media having a highly ordered crystalline structure
US8787130B1 (en) Systems and methods for providing heat assisted magnetic recording media configured to couple energy from a near field transducer
US10276202B1 (en) Heat-assisted magnetic recording (HAMR) medium with rhodium or rhodium-based alloy heat-sink layer
US9406329B1 (en) HAMR media structure with intermediate layer underlying a magnetic recording layer having multiple sublayers
US9530445B1 (en) Perpendicular heat-assisted magnetic recording (HAMR) medium with a perovskite oxide intermediate layer
US8509039B1 (en) Thermally-assisted recording (TAR) disk with low thermal-conductivity underlayer
JP6145332B2 (ja) 磁気記録媒体、磁気記憶装置
JP6014385B2 (ja) 磁気記録媒体及び磁気記録再生装置
US8867322B1 (en) Systems and methods for providing thermal barrier bilayers for heat assisted magnetic recording media
US10109309B1 (en) Heat-assisted magnetic recording (HAMR) medium with heat-sink layer having anisotropic thermal conductivity
US9824710B1 (en) Heat-assisted magnetic recording (HAMR) medium with thermal barrier layer in multilayered heat-sink structure
US9697859B1 (en) Heat-assisted magnetic recording (HAMR) medium including a bi-layer that enables use of lower laser current in write operations
JP6145350B2 (ja) 磁気記録媒体、磁気記憶装置
US20120147718A1 (en) PATTERNED PERPENDICULAR MAGNETIC RECORDING MEDIUM WITH EXCHANGE-COUPLED COMPOSITE RECORDING STRUCTURE OF A FePt LAYER AND A Co/X MULTILAYER
US11869556B2 (en) Heat-assisted magnetic recording (HAMR) medium with optical-coupling multilayer between the recording layer and heat-sink layer
US9595282B2 (en) Magnetic recording medium having a L10-type ordered alloy
US8721903B2 (en) Method for planarizing a perpendicular magnetic recording disk for thermally-assisted recording (TAR)
US20120236694A1 (en) Patterned perpendicular magnetic recording medium with ultrathin oxide film and reduced switching field distribution
JP6832189B2 (ja) 磁気記録媒体及び磁気記録再生装置
US9754618B1 (en) Heat-assisted magnetic recording (HAMR) medium including a split heat-sink structure (SHSS)
US9601145B1 (en) Heat-assisted magnetic recording (HAMR) disk with multiple continuous magnetic recording layers
US20160099017A1 (en) Layered segregant heat assisted magnetic recording (hamr) media
CN108573715B (zh) 辅助磁记录介质和磁存储装置
JP2018120649A (ja) 磁気記録媒体および磁気記憶装置
US11521648B2 (en) Heat-assisted magnetic recording (HAMR) medium with multilayered underlayer for the recording layer

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination