CN117653755A - 一种基于氨基酸代谢通路的肿瘤诊断分子影像探针及其制备方法和用途 - Google Patents

一种基于氨基酸代谢通路的肿瘤诊断分子影像探针及其制备方法和用途 Download PDF

Info

Publication number
CN117653755A
CN117653755A CN202311447456.8A CN202311447456A CN117653755A CN 117653755 A CN117653755 A CN 117653755A CN 202311447456 A CN202311447456 A CN 202311447456A CN 117653755 A CN117653755 A CN 117653755A
Authority
CN
China
Prior art keywords
tumor
solution
molecular imaging
imaging probe
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311447456.8A
Other languages
English (en)
Inventor
左长京
张璐
李玉超
罗秀
竺丽志
李俊豪
聂倩倩
张威
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
First Affiliated Hospital of Naval Military Medical University of PLA
Original Assignee
First Affiliated Hospital of Naval Military Medical University of PLA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by First Affiliated Hospital of Naval Military Medical University of PLA filed Critical First Affiliated Hospital of Naval Military Medical University of PLA
Priority to CN202311447456.8A priority Critical patent/CN117653755A/zh
Publication of CN117653755A publication Critical patent/CN117653755A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/0404Lipids, e.g. triglycerides; Polycationic carriers
    • A61K51/0406Amines, polyamines, e.g. spermine, spermidine, amino acids, (bis)guanidines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/0474Organic compounds complexes or complex-forming compounds, i.e. wherein a radioactive metal (e.g. 111In3+) is complexed or chelated by, e.g. a N2S2, N3S, NS3, N4 chelating group
    • A61K51/0482Organic compounds complexes or complex-forming compounds, i.e. wherein a radioactive metal (e.g. 111In3+) is complexed or chelated by, e.g. a N2S2, N3S, NS3, N4 chelating group chelates from cyclic ligands, e.g. DOTA
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D255/00Heterocyclic compounds containing rings having three nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D249/00 - C07D253/00
    • C07D255/02Heterocyclic compounds containing rings having three nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D249/00 - C07D253/00 not condensed with other rings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

本发明公开了一种基于氨基酸代谢通路的肿瘤诊断分子影像探针及其制备方法和用途,由靶向谷氨酰胺转运体ASCT2的小分子抑制剂、螯合剂以及放射性核素组成。该探针可在多种谷氨酰胺高代谢的恶性肿瘤内特异性聚集,如结直肠癌,肺癌,乳腺癌等,可作为上述恶性肿瘤的诊断、不良预后鉴别、治疗和疗效增强的探针。本发明实现了对谷氨酰胺高代谢肿瘤区域的特异性靶向,进一步实现了对谷氨酰胺高代谢肿瘤的无创诊断,所述及探针制备工艺简单、特异性高、体内稳定性高,可用于谷氨酰胺高代谢肿瘤的核医学快速显像,具有极高的临床转化潜力。

Description

一种基于氨基酸代谢通路的肿瘤诊断分子影像探针及其制备 方法和用途
技术领域
本发明属于分子影像探针技术领域,涉及核医学分子影像探针,具体涉及一种基于肿瘤代谢特异性靶向的,可用于在体诊断的新型分子影像探针及其制备方法和用途。
背景技术
肿瘤是威胁人类健康的最重要疾病之一,能够早期诊断肿瘤,并对肿瘤病理区域进行准确勾画并加以分级,是提高肿瘤病人无进展生存期和治疗预后的关键。
以正电子放射断层扫描(PET)为代表的核医学成像,以及将核医学成像与常规成像技术结合的PET/CT,PET/MRI,因其所具备的超高灵敏性和超高软组织分辨率等优势,在肿瘤的在体无创诊断、影像学病理分级、预后评估和图像指导的临床治疗方案选择方面越来越发挥着举足轻重的作用。
目前临床上使用最为广泛的正电子药物[18F]-2-脱氧葡萄糖(18F-FDG),是一种放射性同位素18F标记的葡萄糖类似物,可在细胞膜葡萄糖转运蛋白的作用下摄入到细胞内,进入细胞后的FDG不能像葡萄糖一样经磷酸化分解代谢,因而能够特异性的滞留在葡萄糖高代谢的组织细胞区域。绝大多数的肿瘤区域的葡萄糖代谢显著高于肿瘤组织,因此18F-FDG在肿瘤的早期诊断、转移、治疗前后的疗效评估方面发挥着不可替代的作用。然而,葡萄糖高代谢的特征并非肿瘤区域独有,正常组织例如脑组织和肠道等、活化的免疫细胞及各类炎症病灶均在18F-FDG PET影像学上表现为活跃性的放射性浓聚区域。最新的研究表明,肿瘤组织中吸收和消耗最多葡萄糖的细胞为免疫细胞,而非肿瘤细胞(Reinfeld etal.Nature.2021;593:282–288)。这就解释了为什么某些肿瘤如印戒细胞癌、胃肠道的神经内分泌肿瘤等,或微小的肿瘤原发灶和转移灶,其18F-FDG PET图像上放射性浓聚水平与正常组织差异不大,大部分时候组织影像学上与炎症组织差异并不明显,从而影响肿瘤的影像学鉴别。因此,急需寻找更为准确可靠的肿瘤分子标志物,开发出一系列能够特异性靶向肿瘤细胞并勾画肿瘤病例区域的正电子药物,仍然是目前最迫切的临床需求。
中性氨基酸谷氨酰胺是人体中最为丰富的氨基酸之一,在血液中占氨基酸总量的20%,肌肉中占40%,为人体代谢提供碳源并为合成核酸和其他氨基酸提供氮源(Altmanet al.Nat Rev Cancer.2016;16:619–634)。谷氨酰胺在肿瘤细胞的多种代谢过程中起主导作用,例如生物合成、细胞信号传导,防止氧化损伤并参与细胞的稳态调节。最新的研究表明,在肿瘤微环境中,癌细胞吸收了最多的谷氨酰胺(Reinfeld et al.Nature.2021;593:282–288)。在肿瘤的发生发展过程中,缺乏谷氨酰胺的环境会造成肿瘤细胞的迅速凋亡(Yuneva et al.J.Cell Biol.2007;178:93–105)。
为了维持输入大量的谷氨酰胺,癌细胞通过表面表达一种钠依赖的溶质载体蛋白——丙氨酸-丝氨酸-半胱氨酸转运蛋白2(ASCT2),主要将谷氨酰胺转运到癌细胞内(Jinet al.Oncogene.2016;35:3619–3625)。ASCT2主要在多种肿瘤的细胞膜上表达,如结直肠癌,肺癌,乳腺癌等,在肠粘膜上少量表达,具有较高的肿瘤特异性(Schulte etal.Mol.Imaging Biol.2017;19:421–428;Hassanein et al.Clin.Cancer Res.2013;19:560–570;van Geldermalsen et al.Oncogene.2016;35:3201–3208)。ASCT2的高水平表达已经被视为上述肿瘤不良预后的标志。
目前,针对ASCT2靶点开发出了一些抑制剂和小分子药物,取得了一定的肿瘤治疗效果。而针对ASCT2进行体内可视化,有助于实现诸如结直肠癌,肺癌,乳腺癌等恶性肿瘤的早期诊断,预后评估,并指导临床有针对性的选择更有效的治疗方案。目前并无针对ASCT2的正电子药物。通过开发能够高特异性靶向ASCT2的正电子药物,用于上述肿瘤的核医学成像,有望实现早期诊断及预后评估,帮助临床选择并制定出更有针对性的治疗方案,进一步提高病人的预后,延长病人的生存质量。
发明内容
本发明基于上述研究进行,针对在体正电子肿瘤诊断药物仍不能满足临床需求的现状,提供了一种基于肿瘤代谢相关的ASCT2特异性靶向的,可用于在体诊断的新型分子影像探针,以解决肿瘤无创特异性诊断的临床问题,克服现有正电子诊断探针的不足。
本发明第一目的在于提供一种基于氨基酸(谷氨酰胺)代谢通路的肿瘤诊断分子影像探针;第二目的在于提供该分子影像探针的制备方法;第三目的在于提供该探针在核医学成像中的应用。
本发明所采用的技术方案如下:先基于靶向谷氨酰胺转运体ASCT2的小分子抑制剂、大环配体螯合剂以及放射性核元素实现分子影像探针的合成,而后对其放射峰分布图、稳定性进行验证,符合要求后选择特异性高代谢谷氨酰胺的肿瘤进行检测验证,结果显示能够实现相应肿瘤的快速正电子成像,展现了号的肿瘤诊断效能。
为实现上述目的,本发明采用如下技术方案:
本发明的第一方面,提供了一种分子影像探针,由靶向谷氨酰胺转运体ASCT2的小分子抑制剂、螯合剂以及放射性核素组成,结构示意图参见图1。
优选的,该三种组分的优选技术方案如下:
(1)靶向谷氨酰胺转运体ASCT2的小分子抑制剂为2-氨基-4-二(芳氧基苄基)氨基丁酸V9302,结构式如下所示:
(2)螯合剂为大环配体螯合剂,具体选自1,4,7,10-四氮杂环十二烷-1,4,7三乙酸(叔丁)酯-10乙酸琥珀酰亚胺酯(NHS-DOTA-tris(tBu)ester)、1,4,7,10-四氮杂环十二烷-1,4,7,10四乙酸-琥珀酰亚胺酯(NHS-DOTA)、1,4,7-三氮杂环壬烷-1,4,7-三乙酸-琥珀酰亚胺酯(NHS-NOTA)、1,4,8,11-四氮杂环十四烷-1,4,8,11-四乙酸(TETA)和1,4,7-三氮杂环壬烷-1,4,7-三(亚甲基膦酸)(NOTP)中的任一种,结构式如下:
(3)放射性核素选自诊断用放射性核素和治疗用放射性核素,如镓-68、铜-64、锆-89中的一种或多种。
本发明的第二方面,提供了上述分子影像探针的制备方法,包括如下步骤:
A、诊断药物前体制备
将V9302与大环配体螯合剂以浓度比1:2混合,室温反应并经脱盐柱纯化后获得螯合剂修饰的V9302化合物,冻干后作为诊断药物前体;
B、分子影像探针制备
在步骤A制备得到的诊断药物前体溶液中添加放射性元素,调节反应溶液pH为酸性后,在60~100℃条件下反应10~30min(优选100℃,10min),经脱盐柱纯化后得到分子影像探针。
优选的,步骤A中,V9302与大环配体螯合剂反应液的制备方法如下:将V9302溶解于DSMO中,加入pH=8.5的HEPES溶液,制备V9302的浓度为10mg/mL的V9302溶液;加入大环配体螯合剂,以反应体系的总体积为基准,得到V9302最终浓度和大环配体螯合剂最终浓度为1:2,DSMO最终浓度约为1%的混合反应溶液;
纯化方法如下:25℃反应2小时后,使用0.9%的生理盐水作为展开剂,通过预平衡的PD-10脱盐柱纯化经螯合剂修饰的V9302,通过冻干,得到纯化过的诊断药物前体,并于-20℃冰箱保存。
优选的,步骤B中,放射性元素的放射剂量为73~75MBq,放射性元素溶液与诊断药物前体溶液间的体积比为10:1;采用0.25M醋酸钠溶液调节反应溶液pH为4.0-4.5后进行反应;
放射性元素溶液的制备方法如下:采用0.1M HCl溶液淋洗放射性元素发生器,取中段体积、放射性剂量为73~75MBq的淋洗液加入到前体溶液中;
脱盐柱纯化方法如下:以PBS作为展开剂,再次用预平衡的PD-10脱盐柱分离未标记的放射性核素。
本发明的第三方面,提供了上述所述的分子影像探针在制备核医学成像产品中的应用。
优选的,所述的核医学成像产品为高特异性靶向ASCT2的正电子药物,用于肿瘤的核医学成像。
进一步优选,所述肿瘤为特异性高代谢谷氨酰胺的肿瘤,包括结直肠癌、前列腺癌、胰腺癌、宫颈癌、胆管癌、脑胶质瘤、肺鳞癌或胃癌。
本发明的第四方面,提供了一种核医学成像产品,包括活性组分以及药学上可接受的辅料,所述活性组分包括上述所述的分子影像探针。具体产品形式可以为PET/CT显像产品、PET/MR显像产品。
与现有技术相比,本发明的有益效果是:
本发明中分子影像探针基于特异性靶向肿瘤细胞膜上谷氨酰胺转运体ASCT2合成,可用于在体诊断的新型分子影像探针,该探针可在多种谷氨酰胺高代谢的恶性肿瘤内特异性聚集,如结直肠癌,肺癌,乳腺癌等,可作为上述恶性肿瘤的诊断、不良预后鉴别、治疗和疗效增强的探针。
本发明实现了对谷氨酰胺高代谢肿瘤区域的特异性靶向,进一步实现了对谷氨酰胺高代谢肿瘤的无创诊断,所述及探针制备工艺简单、特异性高、体内稳定性高,可用于谷氨酰胺高代谢肿瘤的核医学快速显像,具有极高的临床转化潜力。
附图说明
图1为本发明所述新型分子影像探针的一般通用结构式;
图2为本发明DOTA-V9302的核磁共振氢谱检测结果示意图;
图3为本发明DOTA-V9302在放射性核素68Ga标记后不同时间点的放射稳定性示意图;
图4为本发明DOTA-V9302在放射性核素68Ga标记后在生理条件下的放射化学纯度检测结果示意图;
图5为本发明人源结直肠癌及癌旁正常肠粘膜病理切片的ASCT2表达免疫荧光照片;
图6为本发明人源结直肠癌及癌旁正常肠粘膜病理样本ASCT2表达的免疫印迹实验结果;
图7为本发明68Ga-DOTA-V9302诊断结直肠癌荷瘤鼠结果;
图8为本发明68Ga-DOTA-V9302诊断结直肠癌荷瘤鼠模型的生物分布实验结果;
图9为本发明68Ga-DOTA-V9302与小鼠小肠上皮细胞共培养的CCK-8结果;
图10为本发明68Ga-DOTA-V9302注射后小鼠与未注射探针健康小鼠的肝肾功能及血常规检测对比结果;
图11为本发明68Ga-DOTA-V9302注射后,结直肠癌荷瘤鼠模型主要脏器的苏木素-伊红染色实验结果;
图12为本发明68Ga-DOTA-V9302诊断前列腺癌荷瘤鼠结果。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其它实施例,都属于本发明保护的范围。
实施例1 68Ga-DOTA-V9302分子影像探针制备
S1,诊断药物前体合成
将V9302(0.0186mmol)溶解于10uL DSMO中,加入0.99mL pH=8.5的HEPES溶液,制备成含10uL DSMO和0.0186mmol V9302的混合溶液(最终V9302的浓度为10mg/mL);按照1:2的浓度比加入大环配体螯合剂NHS-DOTA(0.0372mmol),以反应体系的总体积为基准,得到V9302最终浓度约为0.0186mmol/mL,NHS-DOTA最终浓度为0.0372mmol/mL,DSMO最终浓度约为1%的混合溶液。
25℃反应2小时,得到NHS-DOTA与V9302相结合的诊断药物前体DOTA-V9302。使用0.9%的生理盐水作为展开剂,通过预平衡的PD-10脱盐柱纯化经螯合剂修饰的V9302,通过冻干,得到纯化过的诊断药物前体DOTA-V9302。并于-20℃冰箱保存,获得的诊断药物前体约为20mg。图2显示了DOTA-V9302的核磁共振氢谱质谱检测结果示意图。
S2,分子影像探针68Ga-DOTA-V9302合成
将第一步得到的诊断药物前体50μg溶解于100μL纯水中,用5mL 0.1M HCl溶液淋洗68Ge/68Ga发生器,取中段体积约1mL放射性剂量约为74MBq的淋洗液加入到前体溶液中,加入0.25M醋酸钠溶液调节反应体系的pH为4.0-4.5;本次实施方案反应pH为4.5。反应药物浓度为38μg/mL,总反应体积约为1.3mL。100℃反应10分钟后,以PBS作为展开剂,再次用预平衡的PD-10脱盐柱分离未标记的放射性核素,最终得到所述新型分子影像探针68Ga-DOTA-V9302。按照上述步骤所得未衰减校正放射化学产率(Radiochemical yield,RCY)>80%。
实施例268Ga-NOTA-V9302分子影像探针
S1,诊断药物前体合成
将V9302(0.0186mmol)溶解于10uL DSMO中,加入0.99mL pH=8.5的HEPES溶液,制备成含10uL DSMO和0.0186mmol V9302的混合溶液(最终V9302的浓度为10mg/mL);按照1:2的浓度比加入大环配体螯合剂NHS-NOTA(0.0372mmol),以反应体系的总体积为基准,得到V9302最终浓度约为0.0186mmol/mL,NHS-NOTA最终浓度为0.0372mmol/mL,DSMO最终浓度约为1%的混合溶液。25℃反应2小时,得到NHS-NOTA与V9302相结合的诊断药物前体NOTA-V9302。使用0.9%的生理盐水作为展开剂,通过预平衡的PD-10脱盐柱纯化经螯合剂修饰的V9302,通过冻干,得到纯化过的诊断药物前体DOTA-V9302。并于-20℃冰箱保存,获得的诊断药物前体约为20mg。
S2,分子影像探针合成
将第一步得到的诊断药物前体50μg溶解于100μL纯水中,用5mL 0.1M HCl溶液淋洗68Ge/68Ga发生器,取中段体积约1mL放射性剂量约为74MBq的淋洗液加入到前体溶液中,加入0.25M醋酸钠溶液调节反应体系的pH为4.0-4.5;本次实施方案反应pH为4.5。反应药物浓度为38μg/mL,总反应体积约为1.3mL。100℃反应10分钟后,以PBS作为展开剂,再次用预平衡的PD-10脱盐柱分离未标记的放射性核素,最终得到所述新型分子影像探针68Ga-NOTA-V9302。按照上述步骤所得未衰减校正放射化学产率(Radiochemical yield,RCY)>80%。
实施例3探针质量控制检测
以实施例1制备得到的探针为例,对其放射峰及稳定性进行检测,具体如下:
实施例1所获得的新型分子影像探针68Ga-DOTA-V9302进行质量控制。取5uL放射性药物,使用移液枪快速在硅胶-玻璃快速薄层层析纸(itlc-SG glass microfiberchromatography paper,agilent)上点样,样品点的吸收扩散直径约为5mm左右,用0.1M柠檬酸钠溶液(pH=4.5)作为流动相,使用即时薄层色谱分析仪(itlc,Eckert&ZieglerRadiopharma Inc)测定探针的放射性化学纯度。静置10、30、60、120分钟后,重复上述操作,测定探针的放射性峰分布图,如图3所示。
鉴于成功标记68Ga的放射性药物68Ga-DOTA-V9302,随流动相移动而主要分布在快速薄层层析色谱纸的前沿,因而在itlc检测时最晚出峰。未标记或游离的68Ga3+离子几乎不随流动相移动,因而在主要分布在点样的原点,在检测时最早出峰。如图3所示的探针的放射性峰分布图,探针在标记后10、30、60、120分钟后,均保持着单一的68Ga-DOTA-V9302放射性峰,未出现未标记或游离的68Ga3+离子放射性峰,证实具有较高的探针的放射性标记率(大于95%),且在约2个半衰期内(68Ga3+半衰期约为68分钟),放射性药物68Ga-DOTA-V9302非常稳定。
取100μL实施例1所获得的新型分子影像探针68Ga-DOTA-V9302(放射性剂量约为28.5MBq)分别溶解于1mL 50%乙腈、0.9%生理盐水和含有10%胎牛血清的DMEM中,静置10、30、60、120分钟后,重复上述操作,测定探针的放射性标记率,并绘制标记率-时间曲线。如图4所示,探针68Ga-DOTA-V9302在上述溶液中维持着较高的放射性化学纯(大于90%),并随时检点其放射性纯度未发生显著降低现象,证实探针在不同极性溶液和生理条件下,具有较高的放射稳定性。
实施例4肿瘤检测
1、结直肠癌检测
1.1结直肠癌切片的免疫荧光及免疫印迹检测
人源结直肠癌及癌旁正常肠粘膜病理切片的ASCT2表达免疫荧光照片如图5所示:本实验所涉及病理切片来源于长海医院病理科结直肠癌组织切片及癌旁正常组织切片,具体实验步骤如下:将石蜡切片60℃烘片2h,经二甲苯Ⅰ20min,二甲苯Ⅱ10min,二甲苯Ⅲ10min脱钠;100%、100%、95%、75%、50%梯度酒精、蒸馏水水化,此后进行抗原修复,封闭血清置于37℃孵育1h,封闭结束后滴加适宜浓度一抗置于湿盒中4℃孵育过夜,次日滴加相对应荧光二抗室温避光孵育1h后用DAPI进行细胞核染色,抗荧光淬灭封片剂封片后置于荧光显微镜下观察并采集图像,如图5所示:ASCT2主要表达在细胞膜上,在结直肠癌组织中表达显著高于癌旁的正常组织。
鼠源结直肠癌组织样本及正常小鼠结直肠组织样本中ASCT2表达的免疫印迹实验结果参见图6:本实验所涉及的结肠癌组织选用MC38细胞系种植裸鼠皮下后得到,正常小鼠结直肠组织样本为正常未接种MC38细胞系对照组裸鼠的正常结直肠组织;具体实施步骤如下:将MC38细胞系种植于裸鼠皮下(1×106个细胞/只),培养3-4周后处死小鼠得到结肠癌组织,将对照组正常小鼠处死后解剖得到正常结直肠组织;将得到的组织清洗后称重剪碎,放入事先预冷的研磨匀浆器中,加入1000ulWestern及IP细胞裂解液和10ulPMSF(裂解液:PMSF=100:1)。上下抽拉并旋转匀浆器,直至组织被研磨成蛋白匀浆,无肉眼可见的絮状物或者沉淀。将蛋白匀浆小心的转移至1.5mlEP管中,并于冰上静置30min。预冷离心机,4℃离心12000rpm,20min。轻轻吸取上清至标记好的EP管中,即为制备好的蛋白样本,BCA蛋白定量后,按1:5比例加入loading buffer,100℃煮样10min,上样SDS-PAGE凝胶电泳跑胶,上层胶80V 30min,下层胶120V 90min;350mA转模1h;5%脱脂奶粉室温封闭1h,封闭完成用PBST洗膜后滴加适宜浓度一抗4℃孵育过夜,次日PBST洗膜后,加入相对应的二抗,室温孵育一小时后洗膜曝光,如图6所示:ASCT2蛋白表达水平在结直肠癌组织中明显高于正常结直肠组织。
1.268Ga-DOTA-V9302诊断结直肠癌荷瘤鼠
本研究所涉及PET/CT显像采集均采用西门子(Biograph 64;Siemens)PET/CT扫描仪完成,每只结直肠癌荷瘤鼠经尾静脉注射3.7MBq 68Ga-DOTA-V9302(V9302给药量为38μg,给药体积为100μL),使用浓度为1%的戊巴比妥钠(0.1mL,20g小鼠体重)腹腔给药麻醉荷瘤鼠,将麻醉后进入深度睡眠状态的荷瘤鼠以俯卧姿势置于PET/CT扫描床上,于给68Ga-DOTA-V9302注射后10分钟,30分钟和60分钟分别采集PET和CT图像,使用后处理工作站(SiemensMedical Solutions)对图像进行重建和融合,如图7所示,在68Ga-DOTA-V9302探针给药后10分钟,即在结直肠癌肿瘤区域浓聚,其SUVmax值达到了0.208,以至于其肿瘤区域放射性浓聚信号显著高于周围肌肉本底,肿瘤区域与肌肉的靶本比T/N为2.593,证实探针可以实现结直肠癌的快速正电子成像。随着注射时间延长,68Ga-DOTA-V9302除了在肿瘤区域进一步特异性驻留之外,一方面从双肾——膀胱途径随尿液排泄出体外,另一方面68Ga半衰期较短,衰变较快导致的全身放射性剂量的降低,肿瘤区域与肌肉本底的放射性浓聚差异进一步增加,靶本比T/N达到了5.625,所以68Ga-DOTA-V9302在注射后30分钟时展现出了最高的结直肠癌肿瘤诊断效能。随着注射时间进一步延长,68Ga-DOTA-V9302探针进一步衰变,肿瘤区域的放射性浓聚信号进一步降低,肉眼可见与周围健康组织的信号差异减低,但靶本比T/N进一步升高到10.999。因此68Ga-DOTA-V9302探针注射后的最佳成像时间为30分钟左右,可用于结直肠癌的正电子诊断。
使用后处理工作站对重建和融合后的68Ga-DOTA-V9302 PET/CT图像对主要靶器官肿瘤、脑、心、肺、肝、脾、胃、肠、肾、骨、肌肉等主要脏器等感兴趣区域,以SUVmax为单位计算上述组织及器官的放射性浓聚值,如图8所示,ASCT2特异性靶向的68Ga-DOTA-V9302探针主要在肿瘤组织有较高摄取,注射后10分钟在富血供的脑和具有血池效应的心脏区域有一定浓聚,结合PET/CT图像,探针还在小鼠的富血供的嗅球区域有一定浓聚,随后迅速经肾脏——膀胱途径经尿液排出体外,上述结果符合小分子药物的体内代谢特征。
1.368Ga-DOTA-V9302探针体外毒性检测
68Ga-DOTA-V9302探针与小鼠小肠上皮细胞共培养的CCK-8结果实验:将小鼠小肠上皮细胞MODE-K以5000个每孔转移至96孔板中(3个复孔),分别加入含有一定浓度梯度的(0、20、50、100、200μg/mL)68Ga-DOTA-V9302探针的含10%胎牛血清(FBS)的DMEM培养基,于37℃摄氏度下含5%二氧化碳的细胞培养箱中分别共培养24、48、72小时,培养结束后统一加入100μL(含10μL CCK-8)的DMEM工作液,于细胞培养箱中孵育2小时。随后取出9孔板,在酶标仪上(450nm波长处)读取每孔的吸光度OD值。随后以0μg/mL68Ga-DOTA-V9302探针共培养的细胞OD值作为空白组,以其他浓度探针共培养的OD值作为对照组,对照组/空白组并×100%计算细胞活度值,绘制细胞活度柱状图(图9)。从图中可以看出,该探针以200μg/mL浓度与细胞共培养72小时后都未出现可观察的细胞毒性,证实68Ga-DOTA-V9302探针在体外水平未观察到细胞毒性。
1.468Ga-DOTA-V9302探针体内毒性检测
68Ga-DOTA--V9302注射后小鼠与未注射探针健康小鼠的肝肾功能及血常规检测对比结果。健康小鼠(每组3只)经尾经脉注射3.7MBq 68Ga-DOTA-V9302(V9302给药量为38μg,给药体积为100μL)1天后,通过处死小鼠,迅速心尖取血,300μL血液转入到1mL含EDTA-2k(1mg)的抗凝采血管中送检测全血,500μL转入到2mL含促凝剂(20μL)和分离胶(500μL)的采血管中,1000rpm离心分离血清及血细胞,取血清送检测肝肾功能,与未注射探针的健康小鼠(每组3只)血液作对比,绘制柱状曲线(图10),并通过软件SPSS17.0做one-wayANOVA差异性分析,68Ga-DOTA--V9302注射后小鼠的肝肾功能和血常规均与未经探针注射的健康小鼠相比p值均大于0.1,证实两组之间的肝肾功能和血常规无显著性差异,证明探针在生理条件下无可检测出的肝肾功能及血液毒性。
1.568Ga-DOTA-V9302探针对脏器的影响检测
68Ga-DOTA-V9302注射后,结直肠癌荷瘤鼠模型主要脏器(肠、胃、肝、脾、肾、心、肺)的苏木素-伊红染色实验结果。将上述健康小鼠经尾经脉注射3.7MBq 68Ga-DOTA-V9302(V9302给药量为38μg,给药体积为100μL)1天后,处死,分别取主要脏器(肠、胃、肝、脾、肾、心、肺)多聚甲醛浸泡固定,分别以75%、90%、100%梯度浓度乙醇脱水后,石蜡包埋并以8μm厚度与切片机上切片,随后与二甲苯和95%、90%、80%、75%梯度浓度的乙醇和PBS中分别充分水化,做苏木素-伊红染色,于显微镜下拍摄组织苏木素-伊红染色照片(图11)。从上述照片中观察到,各个主要脏器组织结构正常,区域明显,未发现病理性组织学形态改变,证实68Ga-DOTA-V9302探针在体内为观察到可见的组织学毒性。结合图8和9证明68Ga-DOTA-V9302探针在体外细胞水平和体内组织水平均无显著的生物安全性毒性,安全可靠。
2、前列腺癌检测
68Ga-DOTA-V9302诊断前列腺癌荷瘤鼠。具体实施方式与68Ga-DOTA-V9302诊断结直肠癌荷瘤鼠实施方案一致。于给68Ga-DOTA-V9302注射后10分钟,30分钟和60分钟分别采集PET和CT图像(图12),使用后处理工作站对图像进行重建和融合,如图12所示,在68Ga-DOTA-V9302探针给药后10分钟,即在前列腺癌肿瘤区域浓聚,以至于其放射性浓聚信号显著高于周围肌肉本底,证实探针可以实现结直肠癌的快速正电子成像,展现出了高的前列腺癌诊断效能,可用于前列腺癌的快速诊断。
以上已对本发明创造的较佳实施例进行了具体说明,但本发明创造并不限于所述实施例,熟悉本领域的技术人员在不违背本发明创造精神的前提下还可做出种种的等同的变型或替换,这些等同的变型或替换均包含在本申请权利要求所限定的范围内。

Claims (10)

1.一种分子影像探针,其特征在于,由靶向谷氨酰胺转运体ASCT2的小分子抑制剂、螯合剂以及放射性核素组成。
2.根据权利要求1所述的分子影像探针,其特征在于:
其中,所述靶向谷氨酰胺转运体ASCT2的小分子抑制剂为2-氨基-4-二(芳氧基苄基)氨基丁酸V9302,结构式如下所示:
所述放射性核素选自诊断用放射性核素和治疗用放射性核素,
所述螯合剂为大环配体螯合剂。
3.根据权利要求2所述的分子影像探针,其特征在于:
其中,所述大环配体螯合剂选自1,4,7,10-四氮杂环十二烷-1,4,7三乙酸(叔丁)酯-10乙酸琥珀酰亚胺酯(NHS-DOTA-tris(tBu)ester)、1,4,7,10-四氮杂环十二烷-1,4,7,10四乙酸-琥珀酰亚胺酯(NHS-DOTA)、1,4,7-三氮杂环壬烷-1,4,7-三乙酸-琥珀酰亚胺酯(NHS-NOTA)、1,4,8,11-四氮杂环十四烷-1,4,8,11-四乙酸(TETA)和1,4,7-三氮杂环壬烷-1,4,7-三(亚甲基膦酸)(NOTP)中的任一种,结构式如下:
所述放射性核素选自镓-68、铜-64、锆-89中的一种或多种。
4.权利要求1~3任一项所述的分子影像探针的制备方法,其特征在于,包括如下步骤:
A、诊断药物前体制备
将V9302与大环配体螯合剂以浓度比1:2混合,室温反应并经脱盐柱纯化后获得螯合剂修饰的V9302化合物,冻干后作为诊断药物前体;
B、分子影像探针制备
在步骤A制备得到的诊断药物前体溶液中添加放射性元素,调节反应溶液pH为酸性后,在60~100℃条件下反应10~30min,经脱盐柱纯化后得到所述分子影像探针。
5.根据权利要求4所述的分子影像探针的制备方法,其特征在于:
其中,步骤A中,V9302与大环配体螯合剂反应液的制备方法如下:
将V9302溶解于DSMO中,加入pH=8.5的HEPES溶液,制备V9302的浓度为10mg/mL的V9302溶液;加入大环配体螯合剂,以反应体系的总体积为基准,得到V9302最终浓度和大环配体螯合剂最终浓度为1:2,DSMO最终浓度约为1%的混合反应溶液;
纯化方法如下:25℃反应2小时后,使用0.9%的生理盐水作为展开剂,通过预平衡的PD-10脱盐柱纯化经螯合剂修饰的V9302,通过冻干,得到纯化过的诊断药物前体,并于-20℃冰箱保存。
6.根据权利要求4所述的分子影像探针的制备方法,其特征在于:
其中,步骤B中,放射性元素的放射剂量为73~75MBq,放射性元素溶液与诊断药物前体溶液间的体积比为10:1;采用0.25M醋酸钠溶液调节反应溶液pH为4.0-4.5后进行反应;
所述放射性元素溶液的制备方法如下:采用0.1M HCl溶液淋洗放射性元素发生器,取中段体积、放射性剂量为73~75MBq的淋洗液加入到前体溶液中;
脱盐柱纯化方法如下:以PBS作为展开剂,再次用预平衡的PD-10脱盐柱分离未标记的放射性核素。
7.权利要求1~3任一项所述的分子影像探针在制备核医学成像产品中的应用。
8.根据权利要求7所述的应用,其特征在于,所述的核医学成像产品为高特异性靶向ASCT2的正电子药物,用于肿瘤的核医学成像。
9.根据权利要求8所述的应用,其特征在于,所述肿瘤为特异性高代谢谷氨酰胺的肿瘤,包括结直肠癌、前列腺癌、胰腺癌、宫颈癌、胆管癌、脑胶质瘤、肺鳞癌或胃癌。
10.一种核医学成像产品,包括活性组分以及药学上可接受的辅料,所述活性组分包括权利要求1~3任一项所述的分子影像探针。
CN202311447456.8A 2023-11-02 2023-11-02 一种基于氨基酸代谢通路的肿瘤诊断分子影像探针及其制备方法和用途 Pending CN117653755A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311447456.8A CN117653755A (zh) 2023-11-02 2023-11-02 一种基于氨基酸代谢通路的肿瘤诊断分子影像探针及其制备方法和用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311447456.8A CN117653755A (zh) 2023-11-02 2023-11-02 一种基于氨基酸代谢通路的肿瘤诊断分子影像探针及其制备方法和用途

Publications (1)

Publication Number Publication Date
CN117653755A true CN117653755A (zh) 2024-03-08

Family

ID=90074245

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311447456.8A Pending CN117653755A (zh) 2023-11-02 2023-11-02 一种基于氨基酸代谢通路的肿瘤诊断分子影像探针及其制备方法和用途

Country Status (1)

Country Link
CN (1) CN117653755A (zh)

Similar Documents

Publication Publication Date Title
CN111991570B (zh) 一种FAP-α特异性肿瘤诊断SPECT显像剂
CN107353323B (zh) Al18F标记的PSMA靶向抑制剂及其制备方法与应用
CN111358965A (zh) 68Ga标记NOTA修饰的EGFR分子成像探针及制备与应用
CN112043839A (zh) 靶向转铁蛋白受体的放射性同位素标记多肽显像剂及其应用
CN113444146B (zh) 靶向成纤维细胞活化蛋白探针、制备方法及其在制备pet显像剂中的应用
US20220211884A1 (en) Rk polypeptide radiopharmaceutical targeting her2 and preparation method thereof
Brandau et al. Structure distribution relationship of iodine-123-iodobenzamides as tracers for the detection of melanotic melanoma
CN117624278B (zh) 一种靶向热休克蛋白90的特异性肿瘤诊断探针和显像剂
US20150231285A1 (en) Radiolabeled active targeting pharmaceutical composition and the use thereof
CN110305186B (zh) 前列腺癌PET诊断试剂68Ga-DOTA-ANCP-PSMA及其制备方法和应用
CN117209476A (zh) 一种99mTc标记的靶向成纤维细胞激活蛋白的放射性探针及制备方法和应用
Zhao et al. Radiosynthesis and Preliminary Biological Evaluation of 18F‐Fluoropropionyl‐Chlorotoxin as a Potential PET Tracer for Glioma Imaging
CN117653755A (zh) 一种基于氨基酸代谢通路的肿瘤诊断分子影像探针及其制备方法和用途
KR20240105380A (ko) Psma 항원을 표적으로 하는 리간드 화합물, 이의 킬레이트 및 전립선암의 진단 및 치료를 위한 이의 응용
US20230277699A1 (en) Tumor stroma imaging agent and preparation method thereof
CN107586321B (zh) F-18标记修饰Dimer-San A探针的制备方法
Chen et al. Synthesis and evaluation of technetium-99m-labeled pH (low) insertion peptide variant 7 for early diagnosis of MDA-MB-231 triple-negative breast cancer by targeting the tumor microenvironment
CN107674117B (zh) Cu-64 标记的Dimer-San A环肽衍生物胰腺癌分子探针的制备方法
KR20210012263A (ko) 신규 암 치료 및 진단용 방사성 화합물이 결합된 인간 EphA2 특이적 모노바디 제조법 및 그의 용도
TWI580434B (zh) 追蹤組織蛋白去乙醯酶抑制劑之造影化合物及其合成方法
US20240158420A1 (en) [18f]a1f labeled psma targeting molecular probe and preparation method therefor
CN117777234B (zh) 丹磺酰胺修饰的psma靶向化合物及其制备方法和应用
US12023390B2 (en) Isomerically pure 18F-labelled tetrahydrofolates
Samnick et al. Validation of 8-[123I] iodo-l-1, 2, 3, 4-tetrahydro-7-hydroxyisoquinoline-3-carboxylic acid as an imaging agent for prostate cancer in experimental models of human prostate cancer
Shin et al. Comparison and evaluation of 89Zr-labeled trastuzumab and Thio-trastuzumab: a potential immuno-PET probe for HER2-positive carcinomas

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination