CN117594847A - 一种氧化铈基电解质及其制备方法和应用 - Google Patents

一种氧化铈基电解质及其制备方法和应用 Download PDF

Info

Publication number
CN117594847A
CN117594847A CN202311393676.7A CN202311393676A CN117594847A CN 117594847 A CN117594847 A CN 117594847A CN 202311393676 A CN202311393676 A CN 202311393676A CN 117594847 A CN117594847 A CN 117594847A
Authority
CN
China
Prior art keywords
based electrolyte
cerium oxide
hours
ceria
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311393676.7A
Other languages
English (en)
Inventor
王春海
严维新
姬智林
冯欣媛
罗发
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN202311393676.7A priority Critical patent/CN117594847A/zh
Publication of CN117594847A publication Critical patent/CN117594847A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/1253Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing zirconium oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/126Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing cerium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/449Organic acids, e.g. EDTA, citrate, acetate, oxalate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Conductive Materials (AREA)

Abstract

本发明公开了一种氧化铈基电解质及其制备方法和应用,涉及电解质材料技术领域。氧化铈基电解质的化学组成为GdxCe1‑x‑yMeyO2‑3x/2,Me分别为Zr、Hf、Ta、Nb、W、Mo、Si、Ge、P等元素中的一种或几种,其中x的数值在0.01‑0.4之间,y的数值在0.01‑0.3之间。本发明制备的GdxCe1‑x‑ yMeyO2‑3x/2电解质,其离子电导率与迁移数高,原料来源广,制备工艺简单。其中Gd0.1Ce0.89Zr0.01O1.95在400℃时电导率达到1.57×10‑3S/cm,在700℃时还原气氛下(3%H2‑Ar)氧离子迁移数>0.9,是一种在中低温下具有良好电导率且抗还原能力强的氧化铈基电解质,可应用于中低温固态氧化物燃料电池。

Description

一种氧化铈基电解质及其制备方法和应用
技术领域
本发明涉及电解质材料技术领域,具体涉及一种氧化铈基电解质及其制备方法和应用。
背景技术
当今社会对可再生能源需求日益增长,燃料电池是一种高效、清洁、可持续的能源转换来源。其中,固体氧化物燃料电池(SOFC)因其高效、低成本和可使用碳氢化合物、煤气等多种燃料而备受关注。SOFC的基本组成部分由两组多孔电极和夹在其中的氧离子电解质组成,其中氧离子电解质承担载流子输运和隔绝两极反应气体的作用,是SOFC的关键材料。氧化钇稳定氧化锆(YSZ)是目前商用广泛的氧离子固态电解质,但其工作温度(800-1000℃)过高,在长时间运行时会出现电导率下降、电极烧结和电解质-电极材料界面不稳定等问题,导致其SOFC循环和耐久性差。同时,过高的工作温度也会导致其能效下降。设计和开发中低温(300-750℃)氧离子固态电解质、开发中低温SOFC燃料电池是SOFC技术开发的关键。
CeO2是一种具有良好电极兼容性的萤石结构化合物。Ce4+和O2-离子分别位于4a(0,0,0)和8c(1/4,1/4,1/4)的Wyckoff格位上,其中4个未被占用的八面体位点提供了氧离子的扩散通道。通过掺杂低价元素可以在CeO2晶格中产生氧空位,使其在中低温下呈现出良好的电导率,以Gd掺杂CeO2(GDC)为代表,Ce0.9Gd0.1O1.95在500℃时电导率可达0.01S/cm,是一种极具有潜力的中低温固态电解质。然而在还原环境下,GDC电解质中的Ce4+易被还原为Ce3+,产生明显的电子电导,使氧离子迁移数下降,形成电池内电流,使得电池性能下降。同时,伴随着Ce4+的还原,Ce的离子半径会增大,引发晶格膨胀,导致电解质材料的机械性能降低,从而破坏其内部结构。因此,提高掺杂CeO2电解质的氧离子迁移数,抑制其电子电导是GDC用于中低温固态氧化物燃料电池需要克服的关键难题。
发明内容
针对上述背景技术中存在的不足。本发明提供一种氧化铈基电解质及其制备方法和应用。该方法制备的GdxCe1-x-yMeyO2-3x/2电解质,其离子电导率与迁移数高,原料来源广,制备工艺简单。其中Gd0.1Ce0.89Zr0.01O1.95在400℃时电导率达到1.57×10-3S/cm,在700℃时还原气氛下(3%H2-Ar)氧离子迁移数>0.9,是一种在中低温下具有良好电导率且抗还原能力强的氧化铈基电解质,可应用于中低温固态氧化物燃料电池。
本发明第一个目的是提供一种氧化铈基电解质,所述氧化铈基电解质的化学组成表示式为:GdxCe1-x-yMeyO2-3x/2,其中,x的数值为0.01-0.4;y的数值为0.01-0.3;
Me为Zr、Hf、Ta、Nb、W、Mo、Si、Ge、P元素中的一种或多种。
优选的,所述氧化铈基电解质的化学组成表示式为:Gd0.1Ce0.89Zr0.01O1.95,Gd0.1Ce0.87Zr0.03O1.95,Gd0.1Ce0.89Ta0.01O1.95,Gd0.1Ce0.84Mo0.06O2.01,Gd0.2Ce0.74Nb0.06O1.93
优选的,所述氧化铈基电解质在700℃时于还原气氛下的氧离子迁移数>0.85。
本发明第二个目的是提供一种氧化铈基电解质的制备方法,包括以下步骤:
按照元素占比进行配料,得到混合物浆料;
将混合物浆料干燥后进行煅烧,得到煅烧后的粉末;
将煅烧后的粉末,采用粘结剂,经压制成型后烧结,获得所述氧化铈基电解质。
优选的,所述按照元素占比进行配料时,采用的原料为氧化物、碳酸盐、草酸盐或铵盐,并在使用之前于100-1000℃下干燥3-10小时。
优选的,所述得到混合物浆料过程中,将所配的料于行星球磨机中进行,以无水乙醇为介质,转速为300~500r/min,球磨时间1-10小时。
优选的,所述煅烧温度为900-1300℃,煅烧时长为4-96小时。
优选的,所述烧结温度为1100-1600℃,烧结时长为2-48小时。
优选的,所述粘结剂为聚乙醇溶液。
本发明第三个目的是提供一种氧化铈基电解质在固态氧化物燃料电池中的应用。
与现有技术相比,本发明的有益效果是:
本发明提供的一种氧化铈基电解质及其制备方法和应用,该氧化铈基电解质在400-700℃时为单相且结构稳定,在400-700℃时具有优良的离子电导率。在400℃时,Gd0.1Ce0.89Zr0.01O1.95在氧化(O2)和还原(3%H2-Ar)条件下电导率分别为1.576×10-3S/cm和1.578×10-3S/cm。在GDC中引入原子半径小且稳定的Zr4+,晶胞体积和Ce-O键长逐渐减小,Ce在Gd0.1Ce0.89Zr0.01O1.95具有更高的键价,使得Ce4+的还原被抑制。因此Gd0.1Ce0.89Zr0.01O1.95在空气、氩氢混合气中表现出良好的气氛稳定性。
本发明公开的氧化铈基电解质原料来源广,制备工艺简单,是一种能够满足中低温固态氧化物燃料电池应用的电解质材料。
附图说明
图1为本发明实施例1的X射线衍射图。
图2为本发明实施例1的扫描电镜图。
图3为本发明实施例1的晶粒电导率。
具体实施方式
为了使本领域技术人员更好地理解本发明的技术方案能予以实施,下面结合具体实施例和附图对本发明作进一步说明,但所举实施例不作为对本发明的限定。
本发明提供的氧化铈基电解质的化学组成为GdxCe1-x-yMeyO2-3x/2,Me分别为Zr、Hf、Ta、Nb、W、Mo、Si、Ge、P等元素中的一种或几种,其中x的数值在0.01-0.4之间,y的数值在0.01-0.3之间。
所述的氧化铈基电解质的制备方法,包括如下步骤:
(1)将含铈化合物、含钆化合物、含锆化合物、含铪化合物、含钽化合物、含钨化合物、含铌化合物、含钼化合物、含硅化合物、含锗化合物和含磷化合物为原料在100-1000℃下干燥3-10小时。
(2)将步骤(1)中的原料粉按GdxCe1-x-yMeyO2-3x/2化学式进行称重配料。
(3)将步骤(2)中的粉料在球磨机中混合均匀,无水乙醇为球磨介质,转速为300~500r/min,球磨1-10小时。
(4)将步骤(3)获得的浆料在混箱中烘干。
(5)将步骤(4)中得到的混料在空气氛围中900-1300℃煅烧4-96小时。
(6)将步骤(5)中得到的粉末,添加聚乙烯醇(PVA)溶液为粘结剂,压制成型后,在空气条件下1100-1600℃烧结2-48小时。即得到本发明的氧化铈基电解质材料。
本发明还提供一种氧化铈基电解质在固态氧化物燃料电池中的应用。
需要说明的是,本发明中采用的实验方法如无特殊说明,均为常规方法;采用的试剂和材料,如无特殊说明,均可在市场上购买得到。
实施例1
制备Gd0.1Ce0.89Zr0.01O1.95氧化铈基电解质,步骤如下:
(1)以CeO2、Gd2O3和ZrO2为原料,在800℃干燥10小时,按照化学式Gd0.1Ce0.89Zr0.01O1.95进行各组分称量;将称量好的粉料用球磨机混合均匀,球磨介质为无水乙醇,转速为300r/min,球磨时间为12小时;将混合均匀的浆料在烘箱中烘干。
(2)烘干的混合料在1100℃煅烧48小时,将处理好的粉末进行研磨,接着在1100℃继续煅烧48小时。
(3)煅烧之后的粉末添加聚乙烯醇(PVA)溶液为粘结剂,压制成型,在空气条件下1550°烧结5小时。即得到本发明的氧化铈基电解质材料。
本实施制备的Gd0.1Ce0.89Zr0.01O1.95氧离子导体陶瓷XRD图谱如图1所示。物相鉴定与晶体结构精修表明,制备的陶瓷为萤石结构。图2是实施例Gd0.1Ce0.89Zr0.01O1.95的SEM图,表明制备的陶瓷具有高的致密度。利用交流阻抗技术对制备陶瓷进行电导率分析,如图3所示,在400℃时制备的氧化铈基电解质在氧化和还原条件下电导率分别为1.576×10-3S/cm和1.578×10-3S/cm。将陶瓷样品制备浓差电池,进行浓差电势测试,测试结果如表1所示,为本发明实施例1与实施例2样品的浓差电势值,在700℃时还原气氛下(3%H2-Ar)的氧离子迁移数为0.91,远优于GDC在相同条件下的氧离子迁移数(0.08)。
其中,所述还原气氛为Ar和占Ar体积的3%H2的混合气体。
表1为本发明实施例1与实施例2样品的浓差电势值
表1中YSZ为Zr0.92Y0.08O1.96,GDC为Ce0.9Gd0.1O1.95
实施例2
制备Gd0.1Ce0.87Zr0.03O1.95氧化铈基电解质,步骤如下:
(1)以CeO2、Gd2O3和ZrO2为原料,在900℃干燥10小时,按照化学式Gd0.1Ce0.87Zr0.03O1.95进行各组分称量;将称量好的粉料用球磨机混合均匀,球磨介质为无水乙醇,转速为300r/min,球磨时间为10小时;将混合均匀的浆料在烘箱中烘干。
(2)烘干的混合料在1100℃煅烧48小时,将处理好的粉末进行研磨,接着在1100℃继续煅烧48小时。
(3)煅烧之后的粉末添加聚乙烯醇(PVA)溶液为粘结剂,压制成型,在空气条件下1600°烧结10小时。即得到本发明的氧化铈基电解质材料。在400℃时空气条件下晶粒电导率达到5.4×10-4S/cm,在700℃时还原条件下(3%H2-Ar)的氧离子迁移数为0.92。
实施例3
制备Gd0.1Ce0.89Ta0.01O1.95氧化铈基电解质,步骤如下:
(1)以CeO2、Gd2O3和Ta2O5为原料,在800℃干燥10小时,按照化学式Gd0.1Ce0.89Ta0.01O1.95进行各组分称量;将称量好的粉料用球磨机混合均匀,球磨介质为无水乙醇,转速为300r/min,球磨时间为12小时;将混合均匀的浆料在烘箱中烘干。
(2)烘干的混合料在1000℃煅烧96小时,将处理好的粉末进行研磨,接着在1000℃煅烧96小时。
(3)煅烧之后的粉末添加聚乙烯醇(PVA)溶液为粘结剂,在磨具中压制成型,在空气条件下1550℃烧结3小时。即得到本发明的氧化铈基电解质材料。在400℃时,制备的电解质材料在空气中离子电导率为1.12×10-3S/cm,700℃时在还原气氛中(3%H2-Ar)的氧离子迁移数>0.89。
实施例4
制备Gd0.1Ce0.84Mo0.06O2.01氧化铈基电解质,步骤如下:
(1)以CeO2、Gd2O3和(NH4)2MoO4为原料,在300℃干燥5小时,按照化学式Gd0.1Ce0.84Mo0.06O1.98进行各组分称量;将称量好的粉料用球磨机混合均匀,球磨介质为无水乙醇,转速为300r/min,球磨时间为5小时;将混合均匀的浆料在烘箱中烘干。
(2)烘干的混合料在1000℃煅烧48小时,将处理好的粉末进行研磨,接着在1000℃继续煅烧48小时。
(3)煅烧之后的粉末添加聚乙烯醇(PVA)溶液为粘结剂,在磨具中压制成型,在空气条件下1600℃烧结4小时。即得到本发明的氧化铈基电解质材料。在500℃时电导率为5.3×10-4S/cm,700℃时在还原气氛中(3%H2-Ar)的氧离子迁移数>0.85。
实施例5
制备Gd0.2Ce0.74Nb0.06O1.93氧化铈基电解质,步骤如下:
(1)以CeO2、Gd2O3和Nb2O5为原料,在800℃干燥10小时,按照化学式Gd0.2Ce0.74Nb0.06O1.93进行各组分称量;将称量好的粉料用球磨机混合均匀,球磨介质为无水乙醇,转速为300r/min,球磨时间为8小时;将混合均匀的浆料在烘箱中烘干。
(2)烘干的混合料在1100℃煅烧48小时,将处理好的粉末进行研磨,接着在1100℃继续煅烧48小时。
(3)煅烧之后的粉末添加聚乙烯醇(PVA)溶液为粘结剂,在磨具中压制成型,在空气条件下1600℃烧结36小时。即得到本发明的氧化铈基电解质材料。在500℃时电导率为1.02×10-3S/cm,700℃时在还原气氛中(3%H2-Ar)的氧离子迁移数>0.88。
本发明描述了优选实施例及其效果。但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (10)

1.一种氧化铈基电解质,其特征在于,所述氧化铈基电解质的化学组成表示式为:GdxCe1-x-yMeyO2-3x/2,其中,x的数值为0.01-0.4;y的数值为0.01-0.3;
Me为Zr、Hf、Ta、Nb、W、Mo、Si、Ge、P元素中的一种或多种。
2.根据权利要求1所述的氧化铈基电解质,其特征在于,所述氧化铈基电解质的化学组成表示式为:Gd0.1Ce0.89Zr0.01O1.95,Gd0.1Ce0.87Zr0.03O1.95,Gd0.1Ce0.89Ta0.01O1.95,Gd0.1Ce0.84Mo0.06O2.01,Gd0.2Ce0.74Nb0.06O1.93
3.根据权利要求1所述的氧化铈基电解质,其特征在于,所述氧化铈基电解质在700℃时于还原气氛下的氧离子迁移数>0.85。
4.一种权利要求1~3任一项所述的氧化铈基电解质的制备方法,其特征在于,包括以下步骤:
按照元素占比进行配料,得到混合物浆料;
将混合物浆料干燥后进行煅烧,得到煅烧后的粉末;
将煅烧后的粉末,采用粘结剂,经压制成型后烧结,获得所述氧化铈基电解质。
5.根据权利要求4所述的氧化铈基电解质的制备方法,其特征在于,所述按照元素占比进行配料时,采用的原料为氧化物、碳酸盐、草酸盐或铵盐,并在使用之前于100-1000℃下干燥3-10小时。
6.根据权利要求4所述的氧化铈基电解质的制备方法,其特征在于,所述得到混合物浆料过程中,将所配的料于行星球磨机中进行,以无水乙醇为介质,转速为300~500r/min,球磨时间1-10小时。
7.根据权利要求4所述的氧化铈基电解质的制备方法,其特征在于,所述煅烧温度为900-1300℃,煅烧时长为4-96小时。
8.根据权利要求4所述的氧化铈基电解质的制备方法,其特征在于,所述烧结温度为1100-1600℃,烧结时长为2-48小时。
9.根据权利要求4所述的氧化铈基电解质的制备方法,其特征在于,所述粘结剂为聚乙醇溶液。
10.一种权利要求1~3任一项所述的氧化铈基电解质在固态氧化物燃料电池中的应用。
CN202311393676.7A 2023-10-25 2023-10-25 一种氧化铈基电解质及其制备方法和应用 Pending CN117594847A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311393676.7A CN117594847A (zh) 2023-10-25 2023-10-25 一种氧化铈基电解质及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311393676.7A CN117594847A (zh) 2023-10-25 2023-10-25 一种氧化铈基电解质及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN117594847A true CN117594847A (zh) 2024-02-23

Family

ID=89922452

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311393676.7A Pending CN117594847A (zh) 2023-10-25 2023-10-25 一种氧化铈基电解质及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN117594847A (zh)

Similar Documents

Publication Publication Date Title
Dutta et al. Combustion synthesis and characterization of LSCF-based materials as cathode of intermediate temperature solid oxide fuel cells
Liu et al. X-ray photoelectron spectroscopic studies of Ba0. 5Sr0. 5Co0. 8Fe0. 2O3− δ cathode for solid oxide fuel cells
Duran et al. Formation, sintering and thermal expansion behaviour of Sr-and Mg-doped LaCrO3 as SOFC interconnector prepared by the ethylene glycol polymerized complex solution synthesis method
Zhang et al. Sinterability and ionic conductivity of coprecipitated Ce0. 8Gd0. 2O2− δ powders treated via a high-energy ball-milling process
JP2001307546A (ja) イオン伝導体
Gu et al. Sintering and electrical properties of coprecipitation prepared Ce0. 8Y0. 2O1. 9 ceramics
Li et al. A review on the electrical properties of doped SrTiO3 as anode materials for solid oxide fuel cells
JP2000340240A (ja) 高イオン導電性固体電解質材料及びそれを用いた固体電解質型燃料電池
Cheng et al. Effects of Fe 2 O 3 addition on the electrical properties of SDC solid electrolyte ceramics
WO2017061248A1 (ja) 固体電解質
Padmasree et al. Synthesis and characterization of Ca3-xLaxCo4-yCuyO9+ δ cathodes for intermediate temperature solid oxide fuel cells
JPH08208333A (ja) 酸素イオン導電体及びその製造方法
Jung et al. Terbium and tungsten co-doped bismuth oxide electrolytes for low temperature solid oxide fuel cells
Zhou et al. A-site double-lanthanide-doped La1− x Pr x BaCo2O5+ δ cathode materials for intermediate-temperature solid oxide fuel cells
JP3661676B2 (ja) 固体電解質型燃料電池
CN100517840C (zh) 中高温固体氧化物燃料电池阴极材料
Singh et al. Low temperature processing of dense samarium-doped CeO 2 ceramics: sintering and intermediate temperature ionic conductivity
Liu et al. Electrolyte materials for solid oxide fuel cells (SOFCs)
CN117594847A (zh) 一种氧化铈基电解质及其制备方法和应用
JP4889166B2 (ja) 低温焼結性固体電解質材料、電解質電極接合体及びこれを用いた固体酸化物形燃料電池
Cheng et al. Effects of Mg2+ addition on structure and electrical properties of gadolinium doped ceria electrolyte ceramics
JP2000044340A (ja) ランタンガレート系焼結体およびその製造方法、ならびにそれを固体電解質として用いた燃料電池
JP6717331B2 (ja) 固体酸化物形燃料電池
Cheng et al. Preparation and electrical properties of gadolinium-doped strontium tungstate electrolyte for SOFC
JP2002053374A (ja) 固体電解質型燃料電池の空気極用及び集電体原料用複合酸化物、その製造方法、並びに固体電解質型燃料電池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination