CN117563553A - 一种血管紧张素转化酶ace功能化磁性纳米微球的制备及其应用 - Google Patents

一种血管紧张素转化酶ace功能化磁性纳米微球的制备及其应用 Download PDF

Info

Publication number
CN117563553A
CN117563553A CN202311425776.3A CN202311425776A CN117563553A CN 117563553 A CN117563553 A CN 117563553A CN 202311425776 A CN202311425776 A CN 202311425776A CN 117563553 A CN117563553 A CN 117563553A
Authority
CN
China
Prior art keywords
ace
magnetic
microsphere
converting enzyme
angiotensin converting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311425776.3A
Other languages
English (en)
Inventor
高珣
秦雪莹
秦昆明
曹蕾
张敏
池苗苗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Ocean University
Original Assignee
Jiangsu Ocean University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Ocean University filed Critical Jiangsu Ocean University
Publication of CN117563553A publication Critical patent/CN117563553A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • B01J20/28021Hollow particles, e.g. hollow spheres, microspheres or cenospheres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/34Control of physical parameters of the fluid carrier of fluid composition, e.g. gradient
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • G01N30/7233Mass spectrometers interfaced to liquid or supercritical fluid chromatograph
    • G01N30/724Nebulising, aerosol formation or ionisation
    • G01N30/7266Nebulising, aerosol formation or ionisation by electric field, e.g. electrospray

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了一种血管紧张素转化酶ACE功能化磁性纳米微球的制备及其应用,所述功能化磁性纳米微球由磁性氧化石墨烯、正硅酸乙酯、氨基丙基三乙氧基甲硅烷、血管紧张素转化酶ACE制备得到;本方法定位血管紧张素转化酶(ACE)靶点,借助ACE功能化修饰的纳米磁性微球捕获广枣提取液中ACE配体,并通过傅里叶变换红外光谱、振动样品磁强计、扫描电子显微镜和透射电子显微镜对合成的磁性微球进行表征,以及依靠UPLC‑Q‑Exactive orbitrap‑MS/MS鉴定从提取液中捕获的血管紧张素转化酶配体。该方法快速高效从广枣提取液中筛选出5种ACE抑制活性成分,合成的ACE功能化磁性纳米微球能特异性筛选,精密度良好且效率高。

Description

一种血管紧张素转化酶ACE功能化磁性纳米微球的制备及其 应用
技术领域
本发明属于功能材料和分析技术领域,具体涉及一种血管紧张素转化酶ACE功能化磁性纳米微球的制备及其应用。
背景技术
冠心病(CHD)是全世界范围内危害最大的心血管疾病之一,易引发心肌缺血、心律失常等,严重危害国民身心健康。广枣是蒙医和藏医习用药材,兼具镇赫依、宁心、理气血、行气血、镇痛等效用,在治疗心血管疾病方面有着重大价值。然而如何从广枣中筛选出具有高特异活性的目标活性成分并阐明广枣防治冠心病的药效物质基础,已成为对其进一步研究开发的技术瓶颈。
现代药理研究表明,广枣中大量的活性成分具有多种生理活性,通过多种作用机制用于心血管系统对抗心律失常、心机缺血等心血管疾病。血管紧张素转化酶(ACE)具有抗心肌缺血、抗心衰等作用,能够增加冠状动脉供血使心外膜冠状动脉扩张,并改善侧枝循环,防止冠状动脉痉挛,增加冠状动脉血流量,是治疗冠心病的重要作用机制之一,因此可开发研究广枣中能与ACE结合的活性成分,有望寻找到治疗冠心病的有效成分。
基于受体-配体相互作用的垂钓技术在辨识生物分子间相互作用中有着得天独厚的优势,可以从复杂混合物中寻找受体的相应配体;磁性纳米粒子(MNPs)具有超顺磁性,易于修饰且偶联容量高,借助这些特性在生物分析/分离可以发挥一定的作用。基于磁性配体垂钓结合质谱技术、液相技术或液质联用技术,对小分子活性成分进行定性分析,已经成为了生物大分子与活性小分子之间的相互作用的有力工具。该方法与离心、超滤、透析、沉淀、电泳等分离方法相比,功能化的磁性微球能快速特异性捕获相应的配体,特别适合从复杂的天然产物中筛选活性化合物。该方法可用于复杂混合物中某些酶抑制剂的快速筛选,并可能为中药等活性药物成分的提取和鉴定提供新的解决方案。
现有技术A novel strategy for screening angiotensin-converting enzymeinhibitors from natural products based on enzyme-immobilized ligand fishingcombined with active-site blocking and directional enrichment”,Luo, Hui等,Journal of ChromatographyB,第1195卷,第1-9页,公开日:2022年4月15日,其公开了固定化ACE的介孔磁珠MMSMs@PDA,其对酶的固载量不理想,对ACE酶抑制剂的富集能力差。
专利公开号CN110385116A公开一种磁性纳米复合材料及其制备和应用,其获得的新型MGO/SiO2@coPPy-An纳米复合材料是一种有效的重金属提取吸附材料,利用ICP-MS测定食品样品中痕量Cr(Ⅵ)和Pb(II)重金属离子,表明在食品中提取或去除痕量金属有重大应用。
发明内容
本发明的目的在于提供一种血管紧张素转化酶ACE功能化磁性纳米微球的制备及其应用,并基于磁性配体垂钓技术捕获广枣提取液中ACE配体成分。该方法具有良好的特异性,灵敏度高且合成的磁性纳米微球可重复利用,成本低。相比于其他方法,本发明可显著提高筛选中药及天然产物中活性成分的实验效率,结合液相、质谱及液质联用技术加以对活性成分定性分析,特异性高、精度好、成本低,筛选大量特异性生物活性化合物提供了方便的条件。
为了实现上述目的,本发明采用的技术方案如下:
一种血管紧张素转化酶ACE功能化磁性纳米微球,所述功能化磁性纳米微球由磁性氧化石墨烯、正硅酸乙酯、氨基丙基三乙氧基甲硅烷、血管紧张素转化酶ACE制备得到。
一种制备血管紧张素转化酶ACE功能化磁性纳米微球的方法,所述方法如下:
(1)合成磁性氧化石墨烯:通过Fe3+和Fe2+化学共沉淀法制备磁性氧化石墨烯MGO纳米颗粒;将氧化石墨烯GO、FeCl3·6H2O和FeCl2·4H2O分散在蒸馏水中,反应条件氮气保护隔绝空气并加热搅拌;将混合溶液的pH调整为碱性条件继续搅拌,反应完成后过滤悬浮液,借助外界磁场分离磁性材料,分别用蒸馏水和乙醇洗涤,干燥研磨,得到磁性氧化石墨烯MGO纳米颗粒;
(2)合成SiO2包裹的磁性氧化石墨烯:量取一定量的正硅酸乙酯,加入蒸馏水超声搅拌;将得到的乳白色溶液和磁性氧化石墨烯加到无水乙醇中机械搅拌,逐步滴加氨水溶液继续反应;最后,用磁铁分离,合成的GO@Fe3O4@SiO2(SMGO)纳米颗粒依次用2% 硝酸、蒸馏水和无水乙醇洗涤,干燥后得到产品。
(3)合成ACE功能化的磁性纳米微球:将SMGO纳米颗粒分散乙醇-水溶液中,0.1mol/L盐酸将pH调整为酸性;然后缓慢滴加氨丙基三乙氧基硅烷 APTES搅拌继续反应,合成的产物用磁铁分离后用乙醇洗涤并干燥;将干燥后的固体物分散在 5%戊二醛溶液中,用磁铁分离回收SMGO-NH2 纳米颗粒,用Tris-HCl缓冲液洗涤,去除多余的戊二醛;与含有ACE的缓冲液混合摇匀,合成ACE功能化磁性微球(SMGO-ACE)。
步骤(1)中氧化石墨烯GO、FeCl3·6H2O和FeCl2·4H2O的质量比为:0.5:2.16:0.8,反应温度升至70℃。
步骤(2)中所述的正硅酸乙酯、蒸馏水、无水乙醇的体积比为7:21:65。
氨丙基三乙氧基硅烷APTES、乙醇、戊二醛的体积比为1:50:5。
本发明制备的磁性纳米微球ACE修饰的二氧化硅包裹的磁性纳米微球的饱和磁化强度为13.20 emu∙g-1
一种血管紧张素转化酶ACE功能化磁性纳米微球的应用,应用于捕获广枣提取液中活性成分,快速筛选出潜在的ACE酶抑制剂。
所述应用方法如下:
(1)磁性纳米微球捕获活性成分
用乙醇对一定量广枣粉末进行提取且重复三次,合并提取液过滤后冷冻干燥,加入甲醇溶解;将ACE功能化的二氧化硅包裹的磁性纳米微球分散在广枣提取液中,捕获与血管紧张素转化酶结合的配体,用Tris-HCl缓冲液洗涤去除非特异性结合配体,与甲醇孵育洗脱提取的配体;
(2)UPLC-Q-Exactive orbitrap-MS/MS定性分析活性成分
洗脱液通过0.22μm膜过滤,注入UPLC-Q-Exactive orbitrap-MS/MS系统定性分析磁性纳米微球捕获的活性成分,进一步验证合成的磁性微球垂钓配体的特异性。
广枣提取液的制备:醇提广枣粉末是在85℃水浴条件下用75%(v/v)乙醇进行提取,加甲醇溶解后提取液浓度为2 mg/mL。
应用中使用的功能化磁性微球与提取液的质量体积比为5:4,在200 rpm下搅拌30min,使用的洗脱液为 Tris-HCl缓冲液pH 7.0,洗脱3次磁性微球,去除非特异性结合配体,与1mL甲醇孵育1h,解离提取的配体。
本发明与现有方法相比,上述技术方案可以得到以下有益效果:
合成ACE功能化磁性纳米微球,能建立一种快速、简便的方法从广枣中检测筛选出与ACE相互作用的活性组分。
应用ACE功能化的磁性纳米微球具有较好的特异性,精密度良好,成本少并且能够实现高通量筛选。
建立的方法可用于固定大分子靶点,为从复杂的天然产物中筛选大量特定的生物活性化合物提供了方便的条件。
附图说明
图1为SMGO-NH2和SMGO-ACE的红外光谱;
图2为SMGO、SMGO@ACE的磁化曲线;
图3为SMGO和SMGO@ACE的扫描电镜图像;
图4为SMGO和SMGO@ACE的TEM图像。
具体实施方式
下面结合附图对本发明做进一步的说明:
图1-4所示,一种血管紧张素转化酶ACE功能化磁性纳米微球,所述功能化磁性纳米微球由磁性氧化石墨烯、正硅酸乙酯、氨基丙基三乙氧基甲硅烷、血管紧张素转化酶ACE制备得到。
一种血管紧张素转化酶ACE功能化磁性纳米微球制备方法:
(1)合成磁性氧化石墨烯:通过Fe3+和Fe2+化学共沉淀法制备磁性氧化石墨烯(MGO)纳米颗粒。将氧化石墨烯(GO)、FeCl3·6H2O和FeCl2·4H2O分散在蒸馏水中,反应条件氮气保护隔绝空气并加热搅拌。将混合溶液的pH调整为碱性条件继续搅拌,反应完成后过滤悬浮液,借助外界磁场分离磁性材料,分别用蒸馏水和乙醇洗涤,干燥研磨,得到磁性氧化石墨烯(MGO)纳米颗粒。
(2)合成SiO2包裹的磁性氧化石墨烯:量取一定量的正硅酸乙酯,加入蒸馏水超声搅拌;将得到的乳白色溶液和磁性氧化石墨烯加到无水乙醇中机械搅拌,逐步滴加氨水溶液继续反应。最后,用磁铁分离,合成的GO@Fe3O4@SiO2(SMGO)纳米颗粒依次用2% 硝酸、蒸馏水和无水乙醇洗涤,干燥后得到产品。
(3)合成ACE功能化的磁性纳米微球:将SMGO纳米颗粒分散乙醇-水溶液中,0.1mol/L盐酸将pH调整为酸性。然后缓慢滴加 APTES搅拌继续反应,合成的产物用磁铁分离后用乙醇洗涤并干燥。将干燥后的固体物分散在 5%戊二醛溶液中,用磁铁分离回收SMGO-NH2 纳米颗粒,用Tris-HCl缓冲液洗涤,去除多余的戊二醛。与含有ACE的缓冲液混合摇匀,合成ACE功能化磁性微球(SMGO-ACE)。
其中步骤(1)中氧化石墨烯(GO)、六水合氯化铁及四水合氯化亚铁的质量比为:0.5:2.16:0.8,反应温度升至70℃
步骤(2)中所述的正硅酸乙酯、蒸馏水、无水乙醇的体积比为7:21:65。
步骤(3)中所述的氨丙基三乙氧基硅烷(APTES)、乙醇-水、戊二醛的体积比为1:50:5。
本发明制备的磁性纳米微球ACE修饰的二氧化硅包裹的磁性纳米微球的饱和磁化强度为13.20 emu∙g-1
本发明首次合成血管紧张素转化酶 ACE 功能化磁性纳米微球,该血管紧张素转化酶ACE功能化磁性纳米微球的合成过程主要是氨基化修饰二氧化硅包裹的磁性氧化石墨烯以及蛋白进一步功能化修饰两个主要过程,在材料的合成过程中采用化学共沉淀法,化学共沉淀法具有合成的纳米粉体材料粒度小且分布均匀的特点,合成过程首先将四氧化三铁修饰在GO表面,避免了GO难以从水溶液中分离的缺点,同时再使用正硅酸乙酯在具有磁性的氧化石墨烯表面更进一步包裹使得氧化石墨烯表面的含氧官能团丰富,有利于后续与多种天然成分进行吸附。并且本发明在材料的氨基改性过程中,选择的试剂氨丙基三乙氧基硅烷APTES可实现对酶的超过50%的固载量,与现有技术相比,酶固定量显著提高的特点,酶固定量显著提高的前提下可以进一步增加对ACE酶抑制剂的富集能力,进一步有助于实现对天然成分的高效吸附。
实施例
ACE功能化磁性纳米微球的制备:
(1)合成磁性氧化石墨烯:首先,将0.50 g氧化石墨烯分散在100 mL蒸馏水中,然后用热搅拌至70℃。将2.16 g FeCl3•6H2O和0.80 gFeCl2•4H2O溶解在40.0 mL蒸馏水中,将溶液以70℃、300 rpm加入上述分散悬浮液中。用氨水(25%,w/v)调整pH至10后,分散溶液继续在70℃下保持6 h。整个反应过程都是在纯氮流下进行的。反应结束后,过滤悬浮液,分别用蒸馏水和乙醇洗涤3次,然后在真空烤箱中60℃干燥6 h。产物被研磨,用磁铁分离MGO纳米颗粒。
(2)合成二氧化硅修饰的磁性氧化石墨烯:将6.3 mL蒸馏水和2.1 mL TEOS搅拌3min,超声1 min以获得乳白色溶液。将乳白色溶液加入49.5 mL无水乙醇中,包括0.50 g磁性氧化石墨烯GO@Fe3O4纳米颗粒。在0℃下以300 rpm搅拌10 min后,滴向分散溶液中加入2.0 mL的氨水。然后在0℃下持续10 h。最后,用磁铁分离,GO@Fe3O4@SiO2(SMGO)纳米颗粒依次用2%硝酸、蒸馏水和无水乙醇洗涤,并在60℃真空中干燥6 h。
(3)制备ACE功能化的磁性微球:将0.10 g SMGO纳米颗粒悬浮于50 mL乙醇-水溶液(1:1,v/v)中,用0.1mol/L盐酸将pH调整至3-4。然后滴滴1.0 mL APTES,在50℃下继续搅拌5 h。产物在永磁铁作用下分离,用乙醇洗涤4次,40℃下干燥3 h。在5.0 mL 5%戊二醛溶液中悬浮1 h后,通过磁分离提取5.0 mg SMGO-NH2纳米颗粒,用Tris-HCl缓冲液(100mM,pH7.0)洗涤3次,去除多余的戊二醛。与含有10 μLACE的2.0 mL缓冲液混合,4℃ 200 rpm摇匀16 h,合成ACE功能化的磁性微球(SMGO-ACE)。
蛋白ACE固定磁性纳米微球的过程中,限定戊二醛的浓度为5%,在此戊二醛5%浓度下ACE蛋白与磁性材料的固定达到最佳的效果,并具有进一步减少非特异性吸附干扰的效果。
通过傅立叶变换红外光谱(FT-IR),扫描电子显微镜(SEM),振动样品磁力计(VSM)和透射电子显微镜(TEM)对ACE功能化的磁性纳米微球进行了表征。
SMGO-NH2和SMGO-ACE的红外光谱如图1所示。SMGO-NH2中存在 2个 N-H 键,而1600cm-1处的吸收归因于 N-H 的对称振动,因此呈现出双峰;而在 SMGO-ACE 中,1600cm-1处的吸收呈现明显的单尖峰,表明其中一个 N-H 键被取代,而新生成的 C-N 键在1100cm-1处有中度吸收。因此,FT-IR 分析的结果为 SMGO-ACE 纳米材料的形成提供了依据。
用VSM研究了材料的磁性性能。根据图2的曲线,SMGO和SMGO-ACE的饱和磁化强度分别为98.42 emu∙g-1和13.20 emu∙g-1,足以在外部磁场下从样品溶液中分离纳米材料。与SMGO相比,SMGO-ACE的磁化强度降低了85.22 emu∙g-1,这是由于嫁接在二氧化硅表面上的酶,在此限定条件下可使合成的材料磁性达到13.20emu/g可实现材料与水的分离和蛋白固定的最优的效果,并且此比例是优化后的结果,如果改变相关数值会对合成的磁性纳米材料的吸附性能造成一定的影响。
SMGO@ACE纳米复合材料的形态学研究如图3所示。在以往的研究中表明,氧化石墨烯是一个单一薄片层。将Fe3O4粒子结合后,表面与球形或椭圆形物质变得粗糙。涂覆二氧化硅后,团聚现象减少。改性与ACE连接后,氧化石墨烯的薄片层几乎不可见,防止二氧化硅聚集所产生的缝隙也被填充,整个表面变得更加粗糙、更饱满。SMGO@ACE纳米复合材料的结构形态如图4所示。横截面上的黑点(SMGO@ACE)均匀锚定在纳米材料表面,材料内部可见壳状层状结构。上述证明了ACE功能化磁性纳米微球成功合成。
实施例2是应用磁性微球筛选广枣提取液中活性成分,对广枣提取液的制备过程进行了进一步的优化,优化后的广枣浓缩液进一步提高了血管紧张素ACE固定化磁性纳米材料富集广枣中相关潜在抑制剂的种类;
提取液制备:用 75%(v/v)乙醇平行三次提取广枣粉,85℃水浴孵育。用三层孔直径为4.5mm的纱布过滤后,将3次提取溶液合并起来,冷冻干燥,用甲醇溶液溶解至2 mg/mL。
(2)磁性配体垂钓过程:将ACE功能磁性微球悬浮在提取液中,37℃孵育,200 rpm搅拌后磁性分离ACE的配体。然后,用Tris-HCl缓冲液(pH 7.0)洗涤3次,去除非特异性结合配体,与一定量甲醇孵育1小时,解离提取的配体。
(3)UPLC-Q-Exactive orbitrap-MS/MS分析活性成分,UPLC-QExactiveorbitrap-MS/MS仪器具有准确率高和检测灵敏度高的优点,更进一步提高了对天然成分分析和鉴定的准确性:
色谱条件如下:
色谱柱:Shim-pack XR-ODS Ⅱ色谱柱(75 mm × 3.0 mm,1.7 μm);流动相:A:0.4%乙酸-水,B:乙腈;梯度洗脱程序为:0-2 mim:5-15%B;2-3 min:15-25%B;3-7 min:25-45%B;7-9 min:45-60%B;9-10 min:60-75%B;10-10.01 min:75-5%B;10.01-12 min:5%B;流速:0.3 mL/min;柱温:30℃;进样量:10 μL。
质谱条件如下:
离子源:电喷雾电离源(ESI源);电喷雾电压:正极:3.0 kV,负极:−3.0 kV;扫描模式:正、负离子监测模式;鞘气流速:35 Arb;辅助气流:10 Arb;毛细管温度350℃; 离子透镜电压频率:55;辅气热源温度:350℃;自动增益控制(AGC):1×106个离子;
最大离子注入时间(IT): 50 ms;隔离窗口:2.0 m/z;碰撞能量:20-40 eV;扫描范围:m/z 50-1500
通过UPLC-Q-Exactive orbitrap-MS/MS分析初步成功检测出5个ACE配体,分别为黄酮类和有机酸类化合物,其中石墨烯主要是和后续修饰的一系列过程进行不断的优化,在液质联用过程中主要分析与鉴别出黄酮类天然化学成分。
使用SMGO、SMGO-NH2、SMGO-ACE分别垂钓赖诺普利对照品与提取液进行抑制性实验考察,色谱结果分析显示SMGO-活性ACE微球捕获后,洗脱液中的赖诺普利峰面积显著上升;而MGO、SMGO、SMGO-非活性ACE-垂钓提取液难以检测或忽略不计赖诺普利峰面积,证实了合成ACE功能化的磁性微球筛选ACE配体的特异性。在相同条件下连续5次将磁性微球与提取液垂钓-洗脱循环,SMGO、ACE和ACE配体之间亲和力稳定,比较赖诺普利出峰面积,结果显示结合效率仍高达第一个周期的90%;且在4℃下保存5天,赖诺普利的结合率没有明显的损耗(RSD<8%, n=5),3批SMGO@ACE显示出相似的结合效率(RSD<10%)。
本方法定位血管紧张素转化酶(ACE)靶点,借助ACE功能化修饰的纳米磁性微球捕获广枣提取液中ACE配体,并通过傅里叶变换红外光谱、振动样品磁强计、扫描电子显微镜和透射电子显微镜对合成的磁性微球进行表征,以及依靠UPLC-Q-Exactive orbitrap-MS/MS鉴定从提取液中捕获的血管紧张素转化酶配体。石墨烯具有蛋白酶连接的作用,其丰富的多空结构为对天然成分的筛选奠定了一定的基础。四氧化三铁修饰在GO表面,避免了GO难以从水溶液中分离的缺点,同时再使用正硅酸乙酯在具有磁性的氧化石墨烯表面更进一步包裹使得氧化石墨烯表面的含氧官能团丰富,有利于后续与多种天然成分进行吸附。该方法快速高效从广枣提取液中筛选出5种ACE抑制活性成分,合成的ACE功能化磁性纳米微球能特异性筛选,精密度良好且效率高。本实验对比ACE抑制剂赖诺普利,磁性微球与广枣中活性成分的结合活性强,可为其他天然药物、中药等提取分离活性成分提供思路,快速筛选出复杂组分中发挥药理作用的靶点配体。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (7)

1.一种血管紧张素转化酶ACE功能化磁性纳米微球的制备方法,其特征在于:所述功能化磁性纳米微球由磁性氧化石墨烯、正硅酸乙酯、氨基丙基三乙氧基甲硅烷、血管紧张素转化酶ACE制备得到;
所述方法如下:
(1)合成磁性氧化石墨烯:通过Fe3+和Fe2+化学共沉淀法制备磁性氧化石墨烯MGO纳米颗粒;将氧化石墨烯GO、FeCl3·6H2O和FeCl2·4H2O分散在蒸馏水中,反应条件氮气保护隔绝空气并加热搅拌;将混合溶液的pH调整为碱性条件继续搅拌,反应完成后过滤悬浮液,借助外界磁场分离磁性材料,分别用蒸馏水和乙醇洗涤,干燥研磨,得到磁性氧化石墨烯MGO纳米颗粒;
(2)合成SiO2包裹的磁性氧化石墨烯:量取一定量的正硅酸乙酯,加入蒸馏水超声搅拌;将得到的乳白色溶液和磁性氧化石墨烯加到无水乙醇中机械搅拌,逐步滴加氨水溶液继续反应;最后,用磁铁分离,合成的GO@Fe3O4@SiO2(SMGO)纳米颗粒依次用2% 硝酸、蒸馏水和无水乙醇洗涤,干燥后得到产品;
(3)合成ACE功能化的磁性纳米微球:将SMGO纳米颗粒分散乙醇-水溶液中,0.1mol/L盐酸将pH调整为酸性;然后缓慢滴加氨丙基三乙氧基硅烷 APTES搅拌继续反应,合成的产物用磁铁分离后用乙醇洗涤并干燥;将干燥后的固体物分散在 5%戊二醛溶液中,用磁铁分离回收SMGO-NH2 纳米颗粒,用Tris-HCl缓冲液洗涤,去除多余的戊二醛;与含有ACE的缓冲液混合摇匀,合成ACE功能化磁性微球SMGO-ACE。
2.根据权利要求1所述的一种血管紧张素转化酶ACE功能化磁性纳米微球的制备方法,其特征在于:步骤(1)中氧化石墨烯GO、FeCl3·6H2O和FeCl2·4H2O的质量比为:0.5:2.16:0.8,反应温度升至70℃。
3.根据权利要求1所述的一种血管紧张素转化酶ACE功能化磁性纳米微球的制备方法,其特征在于:步骤(2)中所述的正硅酸乙酯、蒸馏水、无水乙醇的体积比为7:21:65。
4.根据权利要求1所述的一种血管紧张素转化酶ACE功能化磁性纳米微球的制备方法,其特征在于:氨丙基三乙氧基硅烷APTES、乙醇、戊二醛的体积比为1:50:5。
5.一种血管紧张素转化酶ACE功能化磁性纳米微球的应用,其特征在于:应用于捕获广枣提取液中活性成分,快速筛选出潜在的ACE酶抑制剂。
6.根据权利要求5所述的一种血管紧张素转化酶ACE功能化磁性纳米微球的应用,其特征在于:所述应用方法如下:
(1)磁性纳米微球捕获活性成分
用乙醇对一定量广枣粉末进行提取且重复三次,合并提取液过滤后冷冻干燥,加入甲醇溶解;将ACE功能化的二氧化硅包裹的磁性纳米微球分散在广枣提取液中,捕获与血管紧张素转化酶结合的配体,用Tris-HCl缓冲液洗涤去除非特异性结合配体,与甲醇孵育洗脱提取的配体;
(2)UPLC-Q-Exactive orbitrap-MS/MS定性分析活性成分
洗脱液通过0.22μm膜过滤,注入UPLC-Q-Exactive orbitrap-MS/MS系统定性分析磁性纳米微球捕获的活性成分,进一步验证合成的磁性微球垂钓配体的特异性。
7.根据权利要求6所述的一种血管紧张素转化酶ACE功能化磁性纳米微球的应用,其特征在于:应用中使用的功能化磁性微球与提取液的质量体积比为5:4,在200 rpm下搅拌30min,使用的洗脱液为 Tris-HCl缓冲液pH 7.0,洗脱3次磁性微球,去除非特异性结合配体,与1mL甲醇孵育1h,解离提取的配体。
CN202311425776.3A 2022-12-28 2023-10-31 一种血管紧张素转化酶ace功能化磁性纳米微球的制备及其应用 Pending CN117563553A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2022116890084 2022-12-28
CN202211689008.4A CN115920793A (zh) 2022-12-28 2022-12-28 一种血管紧张素转化酶ace功能化磁性纳米微球的制备及其应用

Publications (1)

Publication Number Publication Date
CN117563553A true CN117563553A (zh) 2024-02-20

Family

ID=86552212

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202211689008.4A Pending CN115920793A (zh) 2022-12-28 2022-12-28 一种血管紧张素转化酶ace功能化磁性纳米微球的制备及其应用
CN202311425776.3A Pending CN117563553A (zh) 2022-12-28 2023-10-31 一种血管紧张素转化酶ace功能化磁性纳米微球的制备及其应用

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202211689008.4A Pending CN115920793A (zh) 2022-12-28 2022-12-28 一种血管紧张素转化酶ace功能化磁性纳米微球的制备及其应用

Country Status (1)

Country Link
CN (2) CN115920793A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118272365A (zh) * 2024-05-06 2024-07-02 江苏海洋大学 一种环氧化酶2和脂氧合酶5蛋白功能化的磁性纳米微球及其制备方法和应用
CN118437289A (zh) * 2024-04-29 2024-08-06 江苏海洋大学 一种5脂氧合酶功能化磁性纳米微球及其制备方法和应用
CN118501313A (zh) * 2024-07-11 2024-08-16 杭州佰辰医学检验所有限公司 一种血管紧张素检测试剂盒及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115920793A (zh) * 2022-12-28 2023-04-07 江苏海洋大学 一种血管紧张素转化酶ace功能化磁性纳米微球的制备及其应用
CN117929561B (zh) * 2023-12-21 2024-08-02 江苏海洋大学 一种细胞膜包裹磁性材料及其制备方法、材料的应用
CN117723748B (zh) * 2024-02-07 2024-08-06 首都医科大学附属北京天坛医院 一种增强靶向检测目标蛋白信号的免疫磁珠及其制备方法和用途

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1650318A1 (ru) * 1989-01-23 1991-05-23 Харьковский Филиал Всесоюзного Научно-Исследовательского Института Литейного Машиностроения, Литейной Технологии, Автоматизации Литейного Производства Смесь дл изготовлени литейных форм и стержней
KR20130125668A (ko) * 2012-05-09 2013-11-19 재단법인 포항산업과학연구원 금속의 산화 방지용 환원 그래핀 박막 제조방법
CN111437797A (zh) * 2020-04-07 2020-07-24 江苏海洋大学 一种离子液体包覆的氨基硅烷化磁性氧化石墨烯复合材料制备及其在重金属中应用
CN115368441A (zh) * 2022-09-21 2022-11-22 湖北省农业科学院农产品加工与核农技术研究所 一种高效降血压水产品活性肽的制备方法
CN115920793A (zh) * 2022-12-28 2023-04-07 江苏海洋大学 一种血管紧张素转化酶ace功能化磁性纳米微球的制备及其应用

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU731099B2 (en) * 1993-07-30 2001-03-22 Imcor Pharmaceutical Company Stablized microbubble compositions for ultrasound
US20050233945A1 (en) * 2003-07-18 2005-10-20 Larry Brown Methods for fabrication, uses and compositions of small spherical particles of insulin prepared by controlled phase separation
CN101347721B (zh) * 2008-09-17 2010-12-08 南开大学 蛋白质磁性印迹纳米球的制备方法
CN101836999B (zh) * 2010-06-11 2012-10-10 杜超峰 一种具有治疗心血管疾病的药物组合物
CN107163130B (zh) * 2017-06-08 2021-02-02 广西大学 一种血管紧张素转化酶抑制肽及其制备提取方法
CN110385116A (zh) * 2019-06-28 2019-10-29 沈阳信达泰康医药科技有限公司 一种磁性纳米复合材料及其制备和应用
CN112795561B (zh) * 2021-01-25 2023-03-24 韩山师范学院 一种利用磁性纳米粒子固定化细胞酶解鱿鱼内脏制备ace抑制肽的方法
CN113634226B (zh) * 2021-08-10 2023-08-18 致慧医疗科技(上海)有限公司 Fe3O4/GO复合纳米材料及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1650318A1 (ru) * 1989-01-23 1991-05-23 Харьковский Филиал Всесоюзного Научно-Исследовательского Института Литейного Машиностроения, Литейной Технологии, Автоматизации Литейного Производства Смесь дл изготовлени литейных форм и стержней
KR20130125668A (ko) * 2012-05-09 2013-11-19 재단법인 포항산업과학연구원 금속의 산화 방지용 환원 그래핀 박막 제조방법
CN111437797A (zh) * 2020-04-07 2020-07-24 江苏海洋大学 一种离子液体包覆的氨基硅烷化磁性氧化石墨烯复合材料制备及其在重金属中应用
CN115368441A (zh) * 2022-09-21 2022-11-22 湖北省农业科学院农产品加工与核农技术研究所 一种高效降血压水产品活性肽的制备方法
CN115920793A (zh) * 2022-12-28 2023-04-07 江苏海洋大学 一种血管紧张素转化酶ace功能化磁性纳米微球的制备及其应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LUO, HUI ET AL.: "A novel strategy for screening angiotensin-converting enzyme inhibitors from natural products based on enzyme-immobilized ligand fishing combined with active-site blocking and directional enrichment", 《JOURNAL OF CHROMATOGRAPHY B》, vol. 1195, 15 April 2022 (2022-04-15), pages 1 - 9 *
中国药师协会主编: "冠心病合理用药指南(第2版)", vol. 10, no. 6, 20 June 2018 (2018-06-20), pages 34 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118437289A (zh) * 2024-04-29 2024-08-06 江苏海洋大学 一种5脂氧合酶功能化磁性纳米微球及其制备方法和应用
CN118272365A (zh) * 2024-05-06 2024-07-02 江苏海洋大学 一种环氧化酶2和脂氧合酶5蛋白功能化的磁性纳米微球及其制备方法和应用
CN118501313A (zh) * 2024-07-11 2024-08-16 杭州佰辰医学检验所有限公司 一种血管紧张素检测试剂盒及其制备方法

Also Published As

Publication number Publication date
CN115920793A (zh) 2023-04-07

Similar Documents

Publication Publication Date Title
CN117563553A (zh) 一种血管紧张素转化酶ace功能化磁性纳米微球的制备及其应用
Ma et al. Magnetic molecularly imprinted polymers doped with graphene oxide for the selective recognition and extraction of four flavonoids from Rhododendron species
Huan et al. A magnetic nanofiber-based zwitterionic hydrophilic material for the selective capture and identification of glycopeptides
CN108176384B (zh) 接枝精氨酸聚合物刷的磁性纳米球及其制备方法与应用
CN110665465B (zh) 用于糖肽富集的磁性共价有机框架材料及其制备方法与应用
CN111426767B (zh) 一种磁性纳米复合材料及其制备和在食品检测中的应用
CN101054406A (zh) 采用金属氧化物磁性微球分离富集磷酸化肽段的方法
Dramou et al. Current review about design's impact on analytical achievements of magnetic graphene oxide nanocomposites
Liu et al. Poly (N-acryloyl-glucosamine-co-methylenebisacrylamide)-based hydrophilic magnetic nanoparticles for the extraction of aminoglycosides in meat samples
Yin et al. Preparation of Fe3O4@ SW-MIL-101-NH2 for selective pre-concentration of chlorogenic acid metabolites in rat plasma, urine, and feces samples
CN114755337B (zh) 二硫键介导的光交联磁性二氧化硅亲和探针及其制备方法和应用
Wan et al. Magnetic metal–organic frameworks for selective enrichment and exclusion of proteins for MALDI-TOF MS analysis
Fu et al. Molecular imprinted electrochemical sensor for ovalbumin detection based on boronate affinity and signal amplification approach
CN111495332A (zh) 一种磁性吸附材料及其在苯甲酰脲类杀虫剂检测中的应用
CN111100840A (zh) 特异性捕获和有效释放循环肿瘤细胞的磁性纳米复合物及其制备方法
CN112675821B (zh) 基于双亲和位点用于糖肽富集的磁性共价有机框架材料及其制备方法与应用
Li et al. Organic molecule-assisted synthesis of Fe3O4/graphene oxide nanocomposites for selective capture of low-abundance peptides and phosphopeptides
Xie et al. Magnetic molecularly imprinted polymer combined with high-performance liquid chromatography for the selective separation and determination of glutathione in various wild edible boletes
CN111874897A (zh) 一种高靶向性细胞膜磁性石墨烯药物筛选材料及制备方法和应用
Liu et al. Magnetic hydrothermal carbonaceous nanospheres bonded cell membranes as a stable and reusable platform for discovering natural bioactive components
CN110527660A (zh) 一种细胞膜磁性碳纳米管药物筛选材料及制备方法和应用
CN115990466B (zh) 一种氨基化尖晶石型铁氧体/MXene复合材料及其制备和应用
Xing-Yu et al. Graphene oxide-based magnetic boronate-affinity adsorbent for extraction of Horseradish Peroxidase
CN115389659B (zh) 一种细胞膜键合磁性碳球复合材料及其制备方法和应用
CN114029041B (zh) 一种新型冠状病毒核酸纯化试剂及纯化方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination