CN117562896B - Lpar拮抗剂在制备多发性骨髓瘤car t细胞联合治疗药物中的应用 - Google Patents

Lpar拮抗剂在制备多发性骨髓瘤car t细胞联合治疗药物中的应用 Download PDF

Info

Publication number
CN117562896B
CN117562896B CN202311569925.3A CN202311569925A CN117562896B CN 117562896 B CN117562896 B CN 117562896B CN 202311569925 A CN202311569925 A CN 202311569925A CN 117562896 B CN117562896 B CN 117562896B
Authority
CN
China
Prior art keywords
gprc5d
cells
car
cell
multiple myeloma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202311569925.3A
Other languages
English (en)
Other versions
CN117562896A (zh
Inventor
杜鹃
周芯夷
杨莹
胡晓丽
罗添丞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Second Affiliated Hospital Army Medical University
Original Assignee
Second Affiliated Hospital Army Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Second Affiliated Hospital Army Medical University filed Critical Second Affiliated Hospital Army Medical University
Priority to CN202410330713.8A priority Critical patent/CN118236373A/zh
Priority to CN202311569925.3A priority patent/CN117562896B/zh
Publication of CN117562896A publication Critical patent/CN117562896A/zh
Application granted granted Critical
Publication of CN117562896B publication Critical patent/CN117562896B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/42Oxazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/4151,2-Diazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • A61K39/001102Receptors, cell surface antigens or cell surface determinants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/515Animal cells
    • A61K2039/5156Animal cells expressing foreign proteins

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Cell Biology (AREA)
  • Oncology (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本发明公开了一种LPAR拮抗剂在制备多发性骨髓瘤CAR T细胞联合治疗药物中的应用,所述LPAR拮抗剂包括LPAR1、LPAR5拮抗剂中任意一种或组合;其中LPAR1、LPAR5拮抗剂能够稳定促进多发性骨髓瘤细胞膜表面GPRC5D表达且可使TNF‑α、IL‑2阳性表达的T细胞比例明显增加,进而提升GPRC5D CAR‑T细胞对多发性骨髓瘤细胞的杀伤力,其与CAR T细胞联合使用能够显著提升多发性骨髓瘤细胞的死亡率,可显著提升现有GPRC5D CAR‑T细胞对多发性骨髓瘤的治疗效果,应用前景佳。

Description

LPAR拮抗剂在制备多发性骨髓瘤CAR T细胞联合治疗药物中 的应用
技术领域
本发明属于生物医药技术领域,更具体地,涉及LPAR拮抗剂在制备多发性骨髓瘤CAR T细胞联合治疗药物中的应用。
背景技术
多发性骨髓瘤(MM)是一种骨髓浆细胞异常增生的恶性肿瘤,目前尚无法治愈。尽管新药不断问世,但几乎所有患者都面临复发难治阶段。对于多线治疗后复发/难治型(RR)MM患者,预后非常差,平均生存期不足半年。嵌合抗原受体(CAR T)治疗的出现给RRMM的治疗带来希望,很有可能成为未来治愈MM的重要手段。嵌合抗原受体T细胞(CAR T细胞)是指通过将识别肿瘤相关抗原的单链抗体和胞内信号域“免疫受体酪氨酸活化基序”在体外进行基因重组,生成重组质粒,再在体外通过转染技术转染到患者的T细胞,使患者T细胞表达肿瘤抗原受体,转染后经过纯化和大规模扩增后的T细胞。CAR T细胞在体内、外都具有对特定肿瘤抗原高度亲和性及对抗原负载细胞高效杀伤特性,是近几年被改良应用到临床上的一种细胞免疫疗法。
目前,对MM的CAR T细胞免疫治疗,主要集中在靶点BCMA,虽其疗效良好,但由于靶点抗原的表达丢失或降低,仍有50%以上患者在应用CAR T细胞治疗后3年出现复发难治;尤其是对于BCMA阴性或BCMA低表达的MM病患来说,在接受靶向BCMA CAR T细胞治疗后不仅会复发,还存在靶向逃逸的问题。最近研究表明,GPRC5D在多发性骨髓瘤细胞中特异性高表达,而在其他肿瘤细胞系中无实质性的表达,且与BCMA表达无关,是现有多发性骨髓瘤CART细胞治疗的热门靶点。
但GPRC5D作为GPCR家族的一员,同样也存在细胞表面GPRC5D抗原低表达,而且还可能会受到细胞内吞作用的调控,导致GPRC5D在多发性骨髓瘤细胞表面的表达量降低甚至丢失,进而影响CAR T细胞治疗疗效。如何提高靶向GPRC5D CAR T细胞治疗的疗效还需要进一步深入研究,而寻找能够促进靶点GPRC5D表达的途径,利于提升靶向GPRC5D CAR T细胞治疗疗效,因此研究一种多发性骨髓瘤CAR T细胞联合治疗药物,具有重大的临床应用前景和实践意义。
发明内容
针对现有技术的以上缺陷或改进需求,本发明提供了一种LPAR拮抗剂在制备多发性骨髓瘤CAR T细胞联合治疗药物中的应用,其目的在于发现通过LPAR拮抗剂来拮抗LPAR1或LPAR5蛋白功能,能够稳定促进多发性骨髓瘤细胞膜表面GPRC5D靶点的表达,而且还意外发现同时能提升GPRC5D CAR T细胞的杀伤力,利于提升GPRC5D CAR T细胞对多发性骨髓瘤的治疗效果,由此解决现有GPRC5D CAR T细胞在GPRC5D抗原低表达的多发性骨髓瘤患者中治疗效果较差,易出现复发、耐药的技术问题。
为实现上述目的,按照本发明的一个方面,提供了一种LPAR拮抗剂在制备多发性骨髓瘤CAR T细胞联合治疗药物中的应用,其所述LPAR拮抗剂包括LPAR1、LPAR5拮抗剂中任意一种或组合。
优选地,所述LPAR拮抗剂在制备多发性骨髓瘤CAR T细胞联合治疗药物中的应用,其所述LPAR拮抗剂为LPAR1拮抗剂和LPAR5拮抗剂。
优选地,所述LPAR拮抗剂在制备多发性骨髓瘤CAR T细胞联合治疗药物中的应用,其所述LPAR1拮抗剂包括特异性拮抗剂AM966;所述LPAR5拮抗剂包括特异性拮抗剂TC LPA54。
优选地,所述LPAR拮抗剂在制备多发性骨髓瘤CAR T细胞联合治疗药物中的应用,其应用于制备复发型多发性骨髓瘤CAR T细胞联合治疗药物。
按照本发明的另一方面,还提供了一种多发性骨髓瘤CAR T细胞联合治疗药物,其所述联合治疗药物,包括LPAR1拮抗剂和/或LPAR5拮抗剂,以及靶向GPRC5D CAR T细胞。
优选地,所述多发性骨髓瘤CAR T细胞联合治疗药物,其以GPRC5D CAR T细胞与多发性骨髓瘤细胞效靶比为1:1计,所述拮抗剂添加浓度为0.5 μM以上。
优选地,所述多发性骨髓瘤CAR T细胞联合治疗药物,其以GPRC5D CAR T细胞与多发性骨髓瘤细胞效靶比为1:1计,所述LPAR1拮抗剂添加浓度为1 μM以上;所述LPAR5拮抗剂添加浓度为5 μM以上。
优选地,所述多发性骨髓瘤CAR T细胞联合治疗药物,其所述LPAR1拮抗剂包括特异性拮抗剂AM966;所述LPAR5拮抗剂包括特异性拮抗剂TC LPA5 4。
优选地,所述多发性骨髓瘤CAR T细胞联合治疗药物,其所述LPAR1拮抗剂为AM966,其添加浓度为1 μM,所述LPAR5拮抗剂为TC LPA5 4,其添加浓度为5μM。
优选地,所述多发性骨髓瘤CAR T细胞联合治疗药物,其所述联合治疗药物,包括LPAR1拮抗剂和LPAR5拮抗剂,以及靶向GPRC5D CAR T细胞。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,能够取得下列有益效果:
本发明发现LPAR1、LPAR5能够与GPRC5D形成异二聚体,当LPAR1、LPAR5功能激活后细胞膜表面GPRC5D表达量降低,而当LPAR1、LPAR5存在但其功能不被激活,细胞膜表面GPRC5D表达量增加,通过LPAR拮抗剂拮抗LPAR1、LPAR5功能,能够稳定促进多发性骨髓瘤细胞膜表面GPRC5D表达,且可使得TNF-α、IL-2阳性表达的T细胞比例的升高,进而提升GPRC5DCAR T细胞对多发性骨髓瘤细胞的杀伤力,实现提升GPRC5D CAR T细胞的治疗效果。
在本发明中将LPAR1、LPAR5拮抗剂联合GPRC5D CAR T细胞制备药物,可用于治疗多发性骨髓瘤,尤其是用于治疗GPRC5D抗原低表达的多发性骨髓瘤患者。
附图说明
图1是GPRC5D在多发性骨髓瘤中的表达模式;
图2是BCMA(即TNFRSF17)在多发性骨髓瘤中的表达模式;
图3是LPAR1和LPAR5与GPRC5D的相互作用,其中图3中A为Co-IP实验结果,B为BiFC实验原理图,C为LPAR1和LPAR5与GPRC5D在细胞膜上共定位;
图4是LPAR1、LPAR5对GPRC5D在工具细胞HEK293T细胞膜表面表达的调控结果;
其中图4中A为LPAR1被激活剂LPA激活处理15min GPRC5D膜表面表达,B为LPAR1被激活剂LPA激活处理4h GPRC5D膜表面表达,C为LPAR5被激活剂LPA激活处理15min GPRC5D膜表面表达,B为LPAR5被激活剂LPA激活处理4h GPRC5D膜表面表达;
图5是LPAR1、LPAR5对GPRC5D在骨髓瘤细胞膜表面表达的调控;其中图5中A-I为流式峰图,表示在AM966、TC LPA5 4干预24-72h骨髓瘤细胞系后GPRC5D在膜表面表达的变化;图5中J-L分别是干预24h、48h、72h后GPRC5D膜表面表达的相对MFI强度;
图6 LPA受体激活剂对GPRC5D膜表面表达的调控;
其中图6中A是激活剂处理24h GPRC5D膜表面相对表达量,B是激活剂处理48hGPRC5D膜表面相对表达量,C是激活剂处理72h GPRC5D膜表面相对表达量;
图7是体外实验中LPAR1、LPAR5拮抗剂对GPRC5D CAR-T细胞抗MM效应的影响;
其中图7中A是不同处理后GPRC5D CAR-T细胞对骨髓瘤细胞系杀伤效果的比较;B表示LPAR1、LPAR5拮抗剂处理骨髓瘤细胞系后与GPRC5D CAR-T细胞共培养24h,IL-2阳性表达的T细胞所占比例;C是LPAR1、LPAR5拮抗剂处理骨髓瘤细胞系后与GPRC5D CAR-T细胞共培养24h,TNF-α阳性表达的T细胞所占比例;D是LPAR1、LPAR5拮抗剂处理骨髓瘤细胞系后与GPRC5D CAR-T细胞共培养24h,IFN-γ阳性表达的T细胞所占比例;E是流式散点图,表示不同处理组GPRC5D CAR-T细胞对患者2原代骨髓瘤细胞杀伤效果;F是不同处理后GPRC5DCAR-T细胞对4名患者原代骨髓瘤细胞杀伤效果的比较;G是流式等高线图,表示GPRC5DCAR-T细胞与患者2原代骨髓瘤细胞共培养后不同处理组IL-2 阳性表达的T细胞数量比较;H是GPRC5D CAR-T细胞与患者1-3原代骨髓瘤细胞共培养后不同处理组IL-2阳性表达的T细胞所占比例;I是流式等高线图,表示GPRC5D CAR-T细胞与患者1原代骨髓瘤细胞共培养后不同处理组TNF-α阳性表达的T细胞数量比较;J是GPRC5D CAR-T细胞与患者1-3原代骨髓瘤细胞共培养后不同处理组TNF-α阳性表达的T细胞所占比例;
图8是体外实验中LPA受体激活剂对GPRC5D CAR-T细胞抗MM效应的影响。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
溶血磷脂酸(LPA)是一种具有生物活性的多效性脂质介质,对癌症的发生、发展具有重要作用;其受体包括六种(LPAR1-6),和GPRC5D一样同属于GPCR家族成员,但在LPA受体功能激活后会出现细胞内吞,可能会导致多发性骨髓瘤细胞表面GPRC5D表达降低。
本发明发现LPAR1-6受体中LPAR1或LPAR5能够与GPRC5D相互作用形成异二聚体,推测在LPAR1、LPAR5功能激活后会将异二聚化后的GPRC5D一同拉进细胞内,导致细胞膜表面的GPRC5D减少;进一步地实验,发现存在LPAR1、LPAR5且不被激活时细胞膜表面的GPRC5D表达增加,而LPAR1、LPAR5功能激活后细胞膜表面的GPRC5D表达明显降低。
基于此发现,本发明利用LPAR1、LPAR5拮抗剂(AM966、TC LPA5 4)拮抗LPAR1、LPAR5蛋白的功能,研究其对GPRC5D CAR T细胞治疗效果的影响,惊奇地发现,LPAR1、LPAR5拮抗剂处理多发性骨髓瘤细胞后,再同GPRC5D CAR T细胞共培养,TNF-α、IL-2阳性表达的T细胞比例明显升高,GPRC5D CAR T细胞对多发性骨髓瘤细胞的杀伤力得到显著提升,说明LPAR1、LPAR5拮抗剂能够显著提升靶向GPRC5D CAR T细胞治疗多发性骨髓瘤的效果,将LPAR1、LPAR5拮抗剂与GPRC5D CAR T细胞联合可用于治疗多发性骨髓瘤,尤其是用于治疗GPRC5D抗原低表达的MM患者如复发型多发性骨髓瘤。
基于此,本发明提供了一种LPAR拮抗剂在制备多发性骨髓瘤CAR T细胞联合治疗药物中的应用,所述LPAR拮抗剂包括LPAR1、LPAR5拮抗剂中任意一种或组合;
优选LPAR1拮抗剂和LPAR5拮抗剂;
在本发明中经实验证实,通过LPAR1、LPAR5拮抗剂拮抗LPAR1、LPAR5蛋白功能,避免其被激活,能够稳定促进GPRC5D在细胞膜表面的表达量,而且同时还能够提升CAR T细胞的杀伤,进而提升靶向GPRC5D CAR T细胞治疗疗效,能够应用于制备多发性骨髓瘤CAR T细胞联合治疗药物,尤其是可使GPRC5D抗原低表达或是丢失的患者产生敏感性,利于提升GPRC5D抗原低表达患者的治疗效果,可应用于制备复发型多发性骨髓瘤CAR T细胞联合治疗药物。
所述LPAR1拮抗剂,包括特异性拮抗剂AM966;
所述LPAR5拮抗剂,包括特异性拮抗剂TC LPA5 4。
所述应用,尤其是应用于制备复发型多发性骨髓瘤CAR T细胞联合治疗药物,所述复发型多发性骨髓瘤为GPRC5D抗原低表达。
另外,本发明还提供了一种多发性骨髓瘤CAR T细胞联合治疗药物,所述联合治疗药物以GPRC5D为靶点,其包括LPAR1拮抗剂和/或LPAR5拮抗剂,以及靶向GPRC5D CAR T细胞。
所述CAR T细胞联合治疗药物,以GPRC5D CAR T细胞与多发性骨髓瘤细胞效靶比为1:1计,所述拮抗剂添加浓度为0.5 μM以上;优选以GPRC5D CAR T细胞与多发性骨髓瘤细胞效靶比为1:1计,所述LPAR1拮抗剂添加浓度为1 μM以上;所述LPAR5拮抗剂添加浓度为5μM以上。
所述LPAR1拮抗剂包括特异性拮抗剂AM966;所述LPAR5拮抗剂包括特异性拮抗剂TC LPA5 4。
在一些实施例中,所述LPAR1拮抗剂为AM966,以GPRC5D CAR T细胞与多发性骨髓瘤细胞效靶比为1:1计,其添加浓度为1μM;所述LPAR5拮抗剂为TC LPA5 4,以GPRC5D CAR T细胞与多发性骨髓瘤细胞效靶比为1:1计,其添加浓度为5μM。
在一些实施例中所述拮抗剂为LPAR1拮抗剂和LPAR5拮抗剂。
在本发明提供的CAR T细胞联合治疗药物中LPAR1拮抗剂、LPAR5拮抗剂的作用是稳定促进多发性骨髓瘤细胞膜表面GPRC5D的表达和提升GPRC5D CAR T细胞杀伤力,靶向GPRC5D CAR T细胞的作用是特异性识别多发性骨髓瘤细胞的靶点GPRC5D,进而杀灭多发性骨髓瘤细胞,而且两者协同作用能够显著增强现有GPRC5D CAR T细胞的杀伤能力,进而提升靶向GPRC5D CAR T细胞免疫治疗多发性骨髓瘤的效果。
以下为实施例:
实施例1 单细胞测序
根据本中心的单细胞测序结果,鉴定出LPA家族蛋白LPAR1与LPAR5与GPRC5D存在相互作用,具体实验过程如下:
选取18例多发性骨髓瘤患者,简称MM患者,均来源于上海长征医院,经书面知情同意后,所有患者行骨髓穿刺活检,CD138磁珠对样本进行分选,留存CD138+浆细胞进行10×单细胞RNA测序及VDJ测序,测序系统为Illumina NovoSeq 6000,测序深度250万reads/cell。之后将测序数据加入公共数据库中健康人数据后进行质控、细胞聚类、通路富集以及共表达分析。
实验结果:本实施例共获得202247个细胞,检测到181-5503(min-max)个基因表达,通过UMAP可视化,对所有细胞种类分群,共区分出33种不同细胞簇,之后采用恶性浆细胞表面标记物MZB、XBP1、TNFRSF17、SDC1对样本单个细胞进行注释,从获得的202247个细胞中鉴定出198924个恶性骨髓瘤细胞,包括26种细胞类型。
为了探究GPRC5D在不同细胞类型的骨髓瘤细胞中的表达水平,我们生成了每个细胞簇的表达UMAP图以及小提琴图,并与BCMA的表达谱相对比,发现不同细胞类型的骨髓瘤恶性细胞中GPRC5D表达量普遍增加,GPRC5D在多发性骨髓瘤中的表达模式如图1所示,且与图2所示的BCMA (TNFRSF17)的表达模式相类似,说明GPRC5D靶点可以成为BCMA靶点耐药患者的新选择。
接下来,本实施例对GPRC5D和GPCR进行共表达分析,发现了一系列与GPRC5D存在强相关的GPCR,相关系数前50的GPCR见表1所示。
表1:与GPRC5D相关系数前50位的GPCR
1 ADGRG6 11 PTH2R 21 F2R 31 PTGFR 41 GPR176
2 GPR132 12 CELSR1 22 GPRC5C 32 ADGRG1 42 ADGRL2
3 ADORA2B 13 ADGRE2 23 GPR161 33 OPN5 43 GPR135
4 NPFFR2 14 OXTR 24 ACKR2 34 TAS2R30 44 MC1R
5 GABBR1 15 SMO 25 PTGER4 35 CCR5 45 AVPR1A
6 LPAR1 16 CCR3 26 GPER1 36 GPR52 46 GPR158
7 CHRM5 17 GRM5 27 PTGER1 37 LPAR5 47 TAS2R4
8 SSTR3 18 ADGRB3 28 P2RY1 38 UTS2R 48 PTGER2
9 GPR173 19 PTGER3 29 LGR4 39 PTGDR 49 F2RL2
10 GPR83 20 FPR1 30 GPR22 40 GPR82 50 P2RY2
为进一步研究不同基因与GPRC5D之间的相互作用,本实施例还进行了如下实验。
(1)免疫共沉淀
实验过程:HEK293T细胞(2×105)置于60mm培养皿中,第二天转染Flag-GPRC5D、HA-LPAR1/LPAR5质粒2μg。转染48小时后,PBS洗涤,用含有1%蛋白酶拮抗剂的IP专用裂解液裂解细胞,之后离心留上清液,与兔单克隆anti-HA或小鼠单克隆anti-Flag抗体在4℃下以1:5000比例稀释孵育过夜。第二天,样品与蛋白A/G琼脂糖珠在4℃下孵育4小时,洗3次,缓冲液中重悬,煮沸15 min。随后进行免疫印迹分析。每个IP组至少重复3次(n=3),实验结果如图3所示,其中BiFC实验原理如图3中B所示。
由图3中A可知,LPAR1和LPAR5可以与GPRC5D共沉淀,这与我们生物信息学分析相一致。
(2)双分子荧光互补
实验过程:将HEK293T细胞接种于D-赖氨酸预处理过的12孔板中,并转染Flag-GPRC5D-Venus-F1和HA-LPAR1/LPAR5/-Venus-F2质粒,如图3中B所示。转染24h后,用4%多聚甲醛固定细胞。用anti-HA和anti-Flag抗体(1:2000)在室温孵育2小时或在4℃孵育过夜,用D-PBS洗涤三次。接下来,样品与Alexa Fluor 647二抗或Alexa Fluor 568二抗以1:1000的比例孵育。细胞核用DAPI染色。使用卡尔蔡司共聚焦激光扫描显微镜(LSM900)在40×镜头下拍摄图像。
实验结果如图3中C所示,发现LPAR1和LPAR5与GPRC5D在细胞膜上存在共定位,将共聚焦显微镜分别在488、561、640的激发波长下观察,各激发波长下皆可观察到细胞膜上出现相应荧光;根据实验原理,561通道蓝绿色荧光代表细胞膜上存在GPRC5D表达,如图3中左图所示,640通道红色荧光代表细胞膜上存在LPAR1、LPAR5表达,如图3中的中间图所示,488通道绿色荧光则说明GPRC5D与LPAR1/LPAR5共定位,如图3中右图所示,两者位置上靠近,再次确认了GPRC5D与LPAR1和LPAR5在细胞膜上的相互作用,这与生物信息学分析及Co-IP结果相一致。
综上免疫共沉淀和双分子荧光互补实验结果显示GPRC5D与LPAR1、LPAR5出现异二聚化,存在明显的相互作用。
(3)ELISA
实验过程:将HEK293T细胞接种于D-赖氨酸预处理过的24孔板中过夜,3×HA-LPAR1/LPAR5和2×Flag-GPRC5D质粒以不同比例转染细胞,每组共加入500ng DNA;转染24h后,去除培养基,加入4%多聚甲醛固定细胞。用5%牛奶在D-PBS封闭后,应用anti-Flag抗体(1:2000)在室温下孵育细胞2小时或4℃过夜。每孔中加入二抗在室温下孵育2h后,用D-PBS洗涤3次后,用5%的盐酸终止反应,然后用TMB在室温下黑暗孵育40 min。用Spectramax M5酶标仪在450nm处记录吸光度,Janus green被用来标准化细胞数量。
ELISA结果显示GPRC5D和LPAR1、LPAR5异二聚体不同程度地影响GPRC5D在细胞膜的表达,LPAR1、LAPR5蛋白功能激活后对细胞表面GPRC5D的表达有明显的影响,具体的实验结果如图4所示。
由图4中A-D可知,当LPAR1、LPAR5存在时,GPRC5D膜表面表达呈剂量依赖性升高,且无论LPAR1、LPAR5的转染比例如何,当LPARs被1-Oleoyl-LPA(10μM)激活后,GPRC5D膜表面表达均表现出明显降低。
通过上述免疫共沉淀、双分子荧光互补以及ELISA实验证实LPAR1、LPAR5与GPRC5D形成异二聚体,存在相互作用,当LPAR1、LPAR5存在且不被激活时,GPRC5D膜表面表达增加,当LPAR1、LPAR5功能被激活后GPRC5D膜表面表达明显降低。
实施例2 LPAR1、LPAR5拮抗剂促进MM细胞膜表面GPRC5D的表达
在MM细胞系RPMI 8226、L363、KMS11中分别加入LPAR1拮抗剂AM966、LPAR5拮抗剂TC LPA5 4干预后,测定MM细胞膜表面的GPRC5D表达。
实验过程:为了拮抗LPAR1和LPAR5功能,以溶剂二甲基亚砜(DMSO)为空白对照组,LPAR1拮抗剂AM966、LPAR5拮抗剂TC LPA5 4分别溶于DMSO后加入培养基,具体的将DMSO、药物干预组1(AM966,1μM)、药物干预组2(TC LPA5 4,5μM)分别加入培养基中,在培养24、48、72小时后收集细胞,利用流式细胞术对细胞表面的GPRC5D进行检测,GPRC5D的表达量用平均荧光强度(MFI)表示,GPRC5D相对表达量=药物干预组MFI/空白对照组MFI。
实验结果:在LPAR1拮抗剂、LPAR5拮抗剂不同干预时间下,细胞系RPMI 8226、L363、KMS11的GPRC5D的表面表达量,如图5所示;
由图5中A-L可知,加入拮抗剂AM966、TC LPA5 4,在其不同干预时间下,细胞系RPMI 8226、L363、KMS11的GPRC5D的表面表达量均有明显提高,且随着干预时间的延长GPRC5D在细胞表面的表达量整体呈现明显增加,具体的:
空白对照组(DMSO)中GPRC5D在细胞表面的相对表达量为1,药物干预组1(AM966)干预24h-72h,GPRC5D在多发性骨髓瘤细胞RPMI 8226、L363、KMS11表面的相对表达量均明显上升,其中干预24h后GPRC5D在多发性骨髓瘤细胞KMS11表面的表达量是空白对照组的表达量的2倍,干预48h后GPRC5D的表达量是对照组的8倍,干预72h后GPRC5D的表达量是对照组的20倍。
药物干预组2(TC LPA5 4)干预24h-72h,GPRC5D在多发性骨髓瘤细胞RPMI 8226、L363、KMS11表面的相对表达量均明显上升,其中干预24h后GPRC5D在多发性骨髓瘤细胞KMS11表面的表达量是空白对照组的表达量的5倍,干预48h后GPRC5D的表达量是对照组的25倍,干预72h后GPRC5D的表达量是对照组的55倍。
以上实验结果表明LPAR1、LPAR5功能拮抗后,GPRC5D在MM细胞膜表面的表达量显著增加,说明对LPAR1/LPAR5功能进行拮抗可以促进GPRC5D在细胞表面表达,推测其潜在机制可能是影响膜蛋白的转运。
对比例1 LPA受体激活剂对MM细胞膜表面GPRC5D表达的影响
在MM细胞系RPMI 8226、L363、KMS11中加入LPA受体激活剂(1-Oleoyl-LPA)干预后,测定MM细胞膜表面的GPRC5D表达。
实验过程:以溶剂二甲基亚砜(DMSO)为空白对照组,LPA受体激活剂(1-Oleoyl-LPA)溶于DMSO后加入培养基,将DMSO、1-Oleoyl-LPA (10μM)分别加入培养基中,在培养24、48、72小时后收集细胞,利用流式细胞术对细胞表面的GPRC5D表达量进行检测,GPRC5D的表达量用平均荧光强度(MFI)表示,GPRC5D相对表达量=药物干预组MFI/空白对照组MFI,实验结果如图6所示。
由图6中A可知骨髓瘤细胞系RPMI 8226、L363、KMS11采用1-Oleoyl-LPA(10μM)处理24h,GPRC5D在细胞表面的表达量均降低,尤其是L363和KMS11细胞表面GPRC5D表达量明显降低。
由图6中B可知,骨髓瘤细胞系RPMI 8226、L363、KMS11采用1-Oleoyl-LPA(10μM)处理48h,在每个骨髓瘤细胞系表面GPRC5D表达与对照组相比虽无明显差异,但其表达量均较对照组降低。
由图6中C可知,骨髓瘤细胞系RPMI 8226、L363、KMS11采用1-Oleoyl-LPA(10μM)处理72h,相比对照组GPRC5D在KMS11细胞膜表面的表达量仍呈现降低,而GPRC5D在骨髓瘤细胞系RPMI 8226、L363细胞膜表面的相对表达量小于1.2。
以上结果表明,加入1-Oleoyl-LPA刺激激活LPAR1、LPAR5功能后,GPRC5D在多发性骨髓瘤细胞膜表面的表达整体上表现出降低趋势。
实施例3 LPAR1、LPAR5拮抗剂增强靶向GPRC5D的CAR T细胞杀伤力
以DMSO为对照,分别使用DMSO、LPAR1拮抗剂AM966、LPAR5拮抗剂TC LPA5 4处理MM细胞系(RPMI 8226、L363、KMS11)及MM患者原代细胞,并与靶向GPRC5D的CAR T细胞共培养,利用荧光素酶及流式细胞术进行杀伤实验,相关细胞因子变化情况通过流式细胞术测定。
实验过程:在AM966、TC LPA5 4处理48h后,去除药物,并骨髓瘤细胞与GPRC5DCAR-T细胞共培养(效靶比=1:1)后,评估CAR-T细胞对骨髓瘤细胞系和原发性骨髓瘤细胞的细胞杀伤力。利用萤火虫荧光素酶(ffluc)转导的靶细胞,通过基于生物发光实验分析了细胞系的杀伤情况,Lysis(%)=(单独靶细胞吸光值-处理组吸光值)/(单独靶细胞吸光值-空白培养基吸光值)×100%。原代细胞由于不自发荧光,所以利用流式细胞术,Annexin V/7-AAD染色法分析原代细胞的杀伤情况,实验结果如图7所示。
其中图7中A为不同处理组对多发性骨髓瘤细胞杀伤率的比较,B为不同处理后IL-2阳性表达的T细胞比例,C为不同处理后TNF-α阳性表达的T细胞比例,D为不同处理后IFN-γ阳性表达的T细胞比例。
由图7中A,我们发现与对照组(DCMO)处理的骨髓瘤细胞系相比,AM966、TC LPA5 4处理MM细胞系(RPMI 8226、L363、KMS11)及MM患者原代细胞后与CAR-T细胞共培养,多发性骨髓瘤细胞的死亡率均显著增加,说明AM966、TC LPA5 4处理后CAR-T细胞的杀伤力明显提升。
由图7中B-D可知,相比对照组,AM966、TC LPA5 4处理后IL-2、TNF-α、IFN-γ阳性表达的T细胞比例均有增加,其中IL-2、TNF-α阳性表达的T细胞比例显著增加,而IL-2、TNF-α、IFN-γ阳性表达的T细胞能够杀死多发性骨髓瘤细胞,其比例增加利于提升CAR-T细胞对多发性骨髓瘤细胞的杀伤力。
以上结果在患者原代细胞中同样进行验证,得到了相同的结果,如图7中G-J所示。
对比例2 LPA受体激活剂抑制CAR T细胞对MM细胞杀伤能力
以DMSO为对照,分别使用DMSO、LPA受体激活剂1-Oleoyl-LPA处理MM细胞系,并与靶向GPRC5D CAR T细胞进行共培养,利用荧光素酶进行杀伤实验,相关细胞因子变化情况通过流式细胞术测定,结果如图8所示。
图8表示体外实验LPA受体激活剂处理后对GPRC5D CAR-T细胞抗MM效应的影响,相比DMSO对照组的杀伤率,使用LPA受体激活剂1-Oleoyl-LPA处理后,GPRC5D CAR-T细胞对多发性骨髓瘤细胞的杀伤率显著降低,说明LPA受体激活剂能够显著抑制CAR T细胞对MM细胞杀伤能力,主要是与LPA受体激活剂处理后,IL-2、TNF-α阳性表达的T细胞数量显著降低有关。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.一种LPAR拮抗剂在制备多发性骨髓瘤CAR T细胞联合治疗药物中的应用,其特征在于,所述LPAR拮抗剂为LPAR5拮抗剂;所述LPAR5拮抗剂为特异性拮抗剂TC LPA5 4;所述CART细胞为靶向GPRC5D CAR T细胞。
2.如权利要求1所述的LPAR拮抗剂在制备多发性骨髓瘤CAR T细胞联合治疗药物中的应用,其特征在于,应用于制备复发型多发性骨髓瘤CAR T细胞联合治疗药物。
3.一种多发性骨髓瘤CAR T细胞联合治疗药物,其特征在于,所述联合治疗药物以GPRC5D为靶点,其包括LPAR5拮抗剂,以及靶向GPRC5D CAR T细胞;所述LPAR5拮抗剂为特异性拮抗剂TC LPA5 4。
4.如权利要求3所述的多发性骨髓瘤CAR T细胞联合治疗药物,其特征在于,以GPRC5DCAR T细胞与多发性骨髓瘤细胞效靶比为1:1计,所述拮抗剂添加浓度为0.5 μM以上。
5.如权利要求4所述的多发性骨髓瘤CAR T细胞联合治疗药物,其特征在于,以GPRC5DCAR T细胞与多发性骨髓瘤细胞效靶比为1:1计,所述LPAR5拮抗剂添加浓度为5 μM以上。
CN202311569925.3A 2023-11-23 2023-11-23 Lpar拮抗剂在制备多发性骨髓瘤car t细胞联合治疗药物中的应用 Active CN117562896B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202410330713.8A CN118236373A (zh) 2023-11-23 2023-11-23 一种lpar拮抗剂在制备多发性骨髓瘤car t细胞联合治疗药物中的应用
CN202311569925.3A CN117562896B (zh) 2023-11-23 2023-11-23 Lpar拮抗剂在制备多发性骨髓瘤car t细胞联合治疗药物中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311569925.3A CN117562896B (zh) 2023-11-23 2023-11-23 Lpar拮抗剂在制备多发性骨髓瘤car t细胞联合治疗药物中的应用

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202410330713.8A Division CN118236373A (zh) 2023-11-23 2023-11-23 一种lpar拮抗剂在制备多发性骨髓瘤car t细胞联合治疗药物中的应用

Publications (2)

Publication Number Publication Date
CN117562896A CN117562896A (zh) 2024-02-20
CN117562896B true CN117562896B (zh) 2024-04-26

Family

ID=89863872

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202311569925.3A Active CN117562896B (zh) 2023-11-23 2023-11-23 Lpar拮抗剂在制备多发性骨髓瘤car t细胞联合治疗药物中的应用
CN202410330713.8A Pending CN118236373A (zh) 2023-11-23 2023-11-23 一种lpar拮抗剂在制备多发性骨髓瘤car t细胞联合治疗药物中的应用

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN202410330713.8A Pending CN118236373A (zh) 2023-11-23 2023-11-23 一种lpar拮抗剂在制备多发性骨髓瘤car t细胞联合治疗药物中的应用

Country Status (1)

Country Link
CN (2) CN117562896B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102245584A (zh) * 2008-12-15 2011-11-16 艾米拉制药公司 溶血磷脂酶受体的拮抗剂
WO2023116782A1 (zh) * 2021-12-21 2023-06-29 上海驯鹿生物技术有限公司 靶向gprc5d的全人源抗体和嵌合抗原受体(car)及其应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110217259A1 (en) * 2010-03-03 2011-09-08 Djordje Atanackovic IL-16 as a target for diagnosis and therapy of hematological malignancies and solid tumors

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102245584A (zh) * 2008-12-15 2011-11-16 艾米拉制药公司 溶血磷脂酶受体的拮抗剂
WO2023116782A1 (zh) * 2021-12-21 2023-06-29 上海驯鹿生物技术有限公司 靶向gprc5d的全人源抗体和嵌合抗原受体(car)及其应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
嵌合抗原受体T细胞治疗多发性骨髓瘤的研究进展;张欢;李玉明;邓琦;;山东医药;20200915(26);98-101 *
张欢 ; 李玉明 ; 邓琦 ; .嵌合抗原受体T细胞治疗多发性骨髓瘤的研究进展.山东医药.2020,(26),98-101. *

Also Published As

Publication number Publication date
CN118236373A (zh) 2024-06-25
CN117562896A (zh) 2024-02-20

Similar Documents

Publication Publication Date Title
Figueiredo et al. Blockade of MIF–CD74 signalling on macrophages and dendritic cells restores the antitumour immune response against metastatic melanoma
Poropatich et al. OX40+ plasmacytoid dendritic cells in the tumor microenvironment promote antitumor immunity
Choi et al. Signaling by the Epstein–Barr virus LMP1 protein induces potent cytotoxic CD4+ and CD8+ T cell responses
Zhang et al. A novel role of hematopoietic CCL5 in promoting triple-negative mammary tumor progression by regulating generation of myeloid-derived suppressor cells
Chen et al. Mesenchymal stem cells tune the development of monocyte-derived dendritic cells toward a myeloid-derived suppressive phenotype through growth-regulated oncogene chemokines
Li et al. Expression of the chemokine receptor CXCR4 in human hepatocellular carcinoma and its role in portal vein tumor thrombus
JP5936129B2 (ja) REIC/Dkk−3タンパク質の部分領域ポリペプチド
CN111148518A (zh) 使用cdk4/6抑制剂调控调节性t细胞和免疫应答的方法
Qiu et al. Myeloid-derived suppressor cells alleviate renal fibrosis progression via regulation of CCL5-CCR5 axis
Gao et al. Disrupted fibroblastic reticular cells and interleukin‑7 expression in tumor draining lymph nodes
Xie et al. Oncolytic adenoviruses expressing checkpoint inhibitors for cancer therapy
Qiu et al. Identification and characterization of FGFR2+ hematopoietic stem cell-derived fibrocytes as precursors of cancer-associated fibroblasts induced by esophageal squamous cell carcinoma
Hu et al. Glioma cells promote the expression of vascular cell adhesion molecule-1 on bone marrow-derived mesenchymal stem cells: a possible mechanism for their tropism toward gliomas
CN117562896B (zh) Lpar拮抗剂在制备多发性骨髓瘤car t细胞联合治疗药物中的应用
Pan et al. Enhancing the HSV-1-mediated antitumor immune response by suppressing Bach1
Zheng et al. Glioma-derived ANXA1 suppresses the immune response to TLR3 ligands by promoting an anti-inflammatory tumor microenvironment
Barros et al. HTLV-1-infected thymic epithelial cells convey the virus to CD4+ T lymphocytes
TW202245798A (zh) 癌症治療方法
Khakpoor-Koosheh et al. MicroRNA-124 enhances T cells functions by manipulating the lactic acid metabolism of tumor cells
Lin et al. Aged Callus Skeletal Stem/Progenitor Cells Contain an Inflammatory Osteogenic Population With Increased IRF and NF-κB Pathways and Reduced Osteogenic Potential
Samer et al. Lymph-Node-Based CD3+ CD20+ Cells Emerge from Membrane Exchange between T Follicular Helper Cells and B Cells and Increase Their Frequency following Simian Immunodeficiency Virus Infection
US20210396737A1 (en) Nanoplexed poly(i:c) formulations and uses thereof
Xu et al. Nuclear HMGB1 is critical for CD8 T cell IFN-γ production and anti-tumor immunity
JP2019131505A (ja) 抗がん剤
EP4108247A1 (en) Urine progenitor cells for use in cancer therapy

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant