CN117551814A - 一种检测禽流感病毒的生物传感器及检测方法和应用 - Google Patents

一种检测禽流感病毒的生物传感器及检测方法和应用 Download PDF

Info

Publication number
CN117551814A
CN117551814A CN202311535102.9A CN202311535102A CN117551814A CN 117551814 A CN117551814 A CN 117551814A CN 202311535102 A CN202311535102 A CN 202311535102A CN 117551814 A CN117551814 A CN 117551814A
Authority
CN
China
Prior art keywords
biosensor
dsdna1
avian influenza
strand
influenza virus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311535102.9A
Other languages
English (en)
Inventor
姜大峰
黄超
姜玮
邵立君
焦燕妮
李蔚
朱日然
丁胜勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Center for Disease Control and Prevention
Shandong University
Affiliated Hospital of Shandong University of Traditional Chinese Medicine
Original Assignee
Shandong Center for Disease Control and Prevention
Shandong University
Affiliated Hospital of Shandong University of Traditional Chinese Medicine
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Center for Disease Control and Prevention, Shandong University, Affiliated Hospital of Shandong University of Traditional Chinese Medicine filed Critical Shandong Center for Disease Control and Prevention
Priority to CN202311535102.9A priority Critical patent/CN117551814A/zh
Publication of CN117551814A publication Critical patent/CN117551814A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • G01N27/626Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode using heat to ionise a gas
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • C12Q1/682Signal amplification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/70Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving virus or bacteriophage
    • C12Q1/701Specific hybridization probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/136Screening for pharmacological compounds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/178Oligonucleotides characterized by their use miRNA, siRNA or ncRNA
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Genetics & Genomics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electrochemistry (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Virology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)

Abstract

本发明提供一种检测禽流感病毒的生物传感器及检测方法和应用,属于生物检测分析领域。本发明,基于ICP‑MS和DNA树枝状结构携带的银纳米颗粒标记的生物传感器系统,实现高效检测禽流感,尤其是禽流感H5N1。本发明中,DNA树枝状结构携带的银纳米颗粒标记将单一的目标信号转化为多个银纳米颗粒的信号,实现了显著的信号放大;同时,未与DNA树枝状结构结合的银纳米颗粒通过磁分离被去除,确保了低背景信号与传统的生物传感器相比,本发明提供的生物传感器在敏感性和选择性方面具有显著优势,为抗病毒治疗和疫情控制的潜在分析工具。

Description

一种检测禽流感病毒的生物传感器及检测方法和应用
技术领域
本发明属于生物检测分析领域,尤其涉及一种检测禽流感病毒的生物传感器及检测方法和应用。
背景技术
本部分的陈述仅仅是提供了与本发明相关的背景技术信息,不必然构成在先技术。
禽流感病毒(AIV)是orthomyxoviridae病毒家族的一员,最初在许多不同品种的鸟类中传播,几十年来一直困扰家禽产业,造成数百万美元的损失。现在已经证实AIV也可以感染和传播给人类,这可能是由于病毒表面感染相关糖蛋白的变异。世界各地已发现超过二十个亚型的AIV,其中一些亚型具有高致病性,可以导致肺炎、呼吸衰竭甚至死亡。AIV感染的早期症状是非特异性的,通常是发热,容易导致漏诊和广泛传播。及时诊断往往面临早期感染病毒载量低的挑战,需要高度敏感的检测方法。此外,不同亚型的AIV表现出不同程度的致病性,但基因相似度高,这使得对高致病性亚型的选择性检测成为必要但具有挑战性的任务(DOI:10.1016/j.talanta.2019.12013)。因此,迫切需要开发高度敏感和选择性的AIV检测方法,以进行早期诊断和抗病毒治疗。
目前公认的禽流感病毒(AIV)检测黄金标准是反转录聚合酶链反应(RT-PCR)、Northernblotting和酶联免疫吸附试验(ELISA)等。虽然这些方法在流感病毒检测中被广泛应用,但它们通常存在操作繁琐、重复性差和灵敏度低的问题。因此,为了实现早期诊断的实用性,更加方便和敏感的方法被开发,包括基于电化学、比色法、荧光和电化学发光等。特别是,感应耦合等离子体质谱(ICP-MS)由于其卓越的质量分辨率和强大的抗干扰能力,具有巨大的生物分析潜力。与上述方法相比,ICP-MS在目标生物分子检测过程中能够提供更准确可靠的信息。但是,为了在感染早期检测时检测极低水平的AIV,仍然需要进一步提高ICP-MS检测的灵敏度。
基于DNA树枝状结构的信号放大被认为是一种有前景的方法。DNA树枝状结构的组装是一个自我持续的过程,多个双链底物被组装成具有众多侧枝的树枝状纳米结构。凭借其指数增长模式、显著的双链底物稳定性和在无酶过程的低干扰,DNA树枝状结构的组装显示出巨大的潜力,成为一种非常有用的分子工具。虽然基于此原理可以对待测物进行信号放大,但是基于具体逻辑的不同,所表现出的探针特异性、灵敏度和选择性有较大差异。
发明内容
为克服上述现有技术的不足,本发明提供了一种检测禽流感病毒的生物传感器及检测方法和应用;基于ICP-MS和DNA树枝状结构携带的银纳米颗粒标记的生物传感器系统,实现高效检测禽流感病毒,尤其是禽流感H5N1。本发明中,DNA树枝状结构携带的银纳米颗粒标记将单一的目标信号转化为多个银纳米颗粒的信号,实现了显著的信号放大;同时,未与DNA树枝状结构结合的银纳米颗粒通过磁分离被去除,确保了低背景信号。与传统的生物传感器相比,本发明提供的生物传感器在敏感性和选择性方面具有显著优势,为抗病毒治疗和疫情控制的潜在分析工具。
为实现上述目的,本发明的一个或多个实施例提供了如下技术方案:
本发明的第一方面,提供一种生物传感器,至少包括两个dsDNA探针和两个ssDNA探针;
所述dsDNA探针包括目标捕获区和两个Trigger区;
所述目标捕获区可特异性结合待检测物的核酸;
所述目标捕获区分为捕获区1、捕获区2和捕获区3;所述Trigger区包括错配区和间隔区;
所述dsDNA1的a链包括目标捕获区和两个重复排列的Trigger区;
所述dsDNA1的b链包括与a链的捕获区3和间隔区互补的序列。
本发明的具体实施方式中,所述dsDNA2的a链包括一个Trigger区、捕获区2和捕获区3;
所述dsDNA2的b链包括与其a链的间隔区和捕获区3互补的序列。
本发明的具体实施方式中,所述ssDNA能够分别靶向dsDNA的b链。
本发明的具体实施方式中,所述生物传感器还包括链霉亲和素化的磁球、链霉亲和素化的AgNPs或链霉亲和素化的量子点SA-QD;
优选地,所述dsDNA的a链5’末端修饰了生物素。
本发明中探针可根据待检测物的核酸合理替换捕获区,实现对更多疾病、病毒的检测;
本发明的具体实施方式中,所述待检测物为禽流感病毒H5N1时,所述dsDNA1的a链、b链序列分别如SEQ ID NO.1-2所示;
优选地,所述dsDNA2的a链、b链序列分别如SEQ ID NO.4-5所示;
优选地,所述ssDNA1的序列如SEQ ID NO.3所示;所述ssDNA2的序列如SEQ IDNO.6所示。
本发明的第二方面,提供第一方面所述的生物传感器在检查禽流感病毒中的应用;
所述禽流感病毒包括H5N1。
本发明的第三方面,提供一种检测禽流感病毒的方法,所述方法包括采用第一方面所述的生物传感器进行检测;
1)将待测物的核酸与MB-dsDNA复合探针于室温下共孵育;
2)加入dsDNA1、dsDNA2、ssDNA1和ssDNA2进行信号扩大反应;
3)分离得到磁珠部分,然后与SA-AgNPs共孵育后用ICP-MS系统检测;
或,分离得到磁珠部分,然后与SA-QDs共孵育后用荧光分光光度仪检测;
或,将2)得到的产物行非变性聚丙烯酰胺凝胶电泳(PAGE),染色后,使用UV成像系统进行检测。
本发明的具体实施方式中,所述MB-dsDNA复合探针为:将SA-MB与dsDNA1室温下旋转摇匀1.5-3h,在磁场下分离得到磁珠部分,用缓冲液冲洗获得;
优选地,dsDNA1-a:dsDNA1-b的浓度比为2.0:2.5;
优选地,所述dsDNA1与SA-MB的体积比为40-60:1。
本发明的具体实施方式中,所述孵育时间为0.8-3h;
所述步骤2)中,dsDNA1、dsDNA2、ssDNA1、ssDNA2的浓度比为0.8-2:2.5-3.5:1-3:3-5;优选为1:3:2:4。
本发明的第四方面,提供第一方面所述生物传感器和/或第三方面所述的检测方法在禽流感病毒活性检测和/或筛选禽流感病毒相关药物中的应用;
所述禽流感病毒相关药物包括病毒抑制剂。
以上一个或多个技术方案存在以下有益效果:
1)本发明首次提出利用ICP-MS和DNA树枝状结构携带的银纳米颗粒标记对H5N1核酸片段进行超敏感检测;
2)本发明中通过银纳米颗粒结合DNA扩增实现了显著的信号放大;同时,未与DNA结合的银纳米颗粒通过磁分离被去除,确保了低背景信号。
3)本发明中利用ssDNA探针封闭dsDNA探针的一条链并暴露出具触发功能的Trigger区,更有利于信号放大及检测特异性提高。
4)本发明中生物传感器还表现出良好的选择性,对有效实现单碱基突变检测,为敏感、准确和稳定的禽流感病毒检测提供了一种有前景的方法,将成为抗病毒治疗和疫情控制的潜在分析工具。
本发明附加方面的优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1为本发明生物传感器用于放大ICP-MS检测核酸的原理
图2为本发明实施例一中不同条件下(A)PAGE凝胶成像图;(B)荧光光谱图;(C)107Ag的ICP-MS信号强度对比图;(D)TEM图
图3为本发明实施例一中不同实验条件的影响(A)dsDNA2浓度;(B)ssDNA1浓度;(C)ssDNA2浓度;(D)目标物孵育时间;(E)SA-AgNPs量;(F)SA-AgNPs孵育时间
图4为本发明实施例一中不同H5N1核酸片段浓度与信号强度的关系。
图5为本发明实施例一中方法的选择性考察,误差棒为三次平行实验结果的标准偏差。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的实验方法,通常按照常规条件或按照制造厂商所建议的条件。
需要注意的是,本发明未详尽记载的实验步骤为本领域公知。
名词解释:
Trigger区:能引发后续反应的序列,能够触发传感器连接dsDNA2,实现信号放大。在本发明中,Trigger区的具体序列为:TCTGCCTGTGTGCCTATTATGTC。
本发明中,生物传感器用于放大ICP-MS检测核酸的设计原理:
如图1所示,通过链霉亲和素磁珠与生物素化的dsDNA1结合,构建一种MB-dsDNA复合探针,其中dsDNA中含有目标核酸的互补序列和两个封闭的Trigger序列。当目标核酸存在时,与复合探针中dsDNA杂交并发生Toehold介导的链置换反应,在ssDNA1辅助下释放两个Trigger序列。在ssDNA1和ssDNA2的辅助下,Trigger序列与dsDNA1和dsDNA2通过Toehold介导的链置换反应发生级联组装,形成磁珠-树枝状DNA结构。磁珠-树枝状DNA通过端点的生物素与链霉亲和素修饰的银纳米颗粒(SA-AgNPs)结合形成磁珠-树枝状DNA-AgNPs。经磁分离,磁珠-树枝状DNA-AgNPs被收集并进行ICP-MS测试,107Ag作为输出信号用于目标核酸的检测。本检测方法中,由于磁珠-树枝状DNA能结合多个SA-AgNPs且每个AgNPs能释放多个Ag原子,使单个目标核酸识别事件转化为多个107Ag信号,实现显著的信号放大,保证检测的灵敏度。通过磁分离,没有与磁珠-树枝状DNA结合的SA-AgNPs被去除,这保证了检测的低背景。
下面结合具体的实施例,对本发明做进一步的详细说明,应该指出,所述具体实施例是对本发明的解释而不是限定。
实施例一生物传感器制备
一、实验部分
1、试剂和仪器
DNA序列由生工(中国上海)提供(表1)。链霉亲和素化的AgNPs(SA-AgNPs)购买自北京中科雷鸣科技有限公司。链霉亲和素化的磁球(SA-MB)购买自新英格兰生物公司。链霉亲和素化-525nm量子点(SA-QD)购买自中国武汉嘉源量子科技有限公司。分析用水去离子水(电阻率18.2MΩcm-1)由Milli-Q纯水机制备(Millipore公司,美国),其余试剂为分析纯。
表1本研究中使用的DNA(5′-3′)序列
注:灰色背景表示Trigger区,其中,绿色加框表示错配区,黑色加粗表示间隔区;下划线字母表示错配碱基。
金属元素的浓度通过Thermo-iCAPQ电感耦合等离子体质谱仪(德国不来梅赛默费希尔科学公司)进行检测,运行参数见表2。透射电子显微镜(TEM)测试使用JEM-2100透射电子显微镜(日本JEOL)。样品荧光光谱测试使用日立F-7000荧光光谱仪。凝胶成像使用紫外线成像系统(美国Bio-RAD Laboratories Inc.)。
表2ICP-MS运行参数
2、MB-dsDNA复合探针的构建
2.0μM dsDNA1-a和2.5μM dsDNA1-b在1×TNT缓冲液[150mM NaCl,10mM Tris-HCl(pH 8.0),0.05%Tween 20]中于95℃孵育5min,后缓慢冷却至室温,得到dsDNA1。
1.0μL SA-MB用TTL缓冲液[Tris 100mM,Tween-20 0.1%,LiCl 1.0M,pH=8.0]冲洗5次。然后加入50μL 2.0μM dsDNA1,于室温下旋转摇匀2.0h。在磁场下分离得到磁珠部分,用1×TNT缓冲液冲洗3次,得到MB-dsDNA复合探针。
3、目标核酸的检测
2.0μM dsDNA2-a和2.5μM dsDNA2-b在1×TNT缓冲液[150mM NaCl,10mM Tris-HCl(pH 8.0),0.05%Tween 20]中于95℃孵育5min,后缓慢冷却至室温,得到dsDNA2。ssDNA1和ssDNA2按上述方法处理。
在1×TNT缓冲液中,目标核酸与MB-dsDNA复合探针于室温下共孵育1.0h。然后加入100nM dsDNA1,300nM dsDNA2,200nM ssDNA1,400nM ssDNA2,于室温下反应1.0h。在磁场下分离得到磁珠部分,用1×TNT缓冲液冲洗3次。然后与2.4×10 -1μg SA-AgNPs在1×TNT缓冲液中孵育2.0h。用1×TNT缓冲液冲洗3次后加入50μL 65%HNO3,于37℃下消解2.0h。加水至1.0mL得到ICP-MS供试液。
4、聚丙烯凝胶电泳(PAGE)成像
在1×TNT缓冲液中,目标核酸与100nM dsDNA1于室温下共孵育1.0h。然后加入300nM dsDNA2,200nM ssDNA1,400nM ssDNA2,于室温下反应1.0h。
使用1×TBE缓冲液[2.0mM EDTA,89mM Tris,89mM H3BO3(pH 8.3)]作为工作缓冲液进行非变性聚丙烯酰胺凝胶电泳(PAGE)。SYBR Gold作为染色材料。染色40min后,使用UV成像系统(Bio-RAD Laboratories Inc.,USA)对结果进行成像。
5、荧光光谱测量
在1×TNT缓冲液中,目标核酸与MB-dsDNA复合探针于室温下共孵育1.0h。然后加入100nM dsDNA1,300nM dsDNA2,200nM ssDNA1,400nM ssDNA2,于室温下反应1.0h。在磁场下分离得到磁珠部分,用1×TNT缓冲液冲洗3次。然后与1.0×10-1μg SA-QDs在1×TNT缓冲液中孵育2.0h。用1×TNT缓冲液冲洗3次后重新悬浮于50μL 1×TNT缓冲液中,得到荧光光谱供试液。
荧光分光光度仪参数:光电倍增管电压为700V,激发和发射带宽为5nm。激发波长为350nm处,记录各样品混合物在500至550nm范围内的发射光谱。
二、结果与讨论
1、方法的可行性考察
为了验证方法的可行性,首先对DNA的组装进行PAGE考察,如图2A所示,泳道M表示DNA marker,泳道1至条带6分别表示dsDNA1,dsDNA2,dsDNA1+ssDNA1,dsDNA1+ssDNA1+dsDNA2,dsDNA1+ssDNA1+dsDNA2+ssDNA2,dsDNA1+ssDNA1+dsDNA2+ssDNA2+target。没有目标物时,如泳道5所示,观察到dsDNA1,dsDNA2条带的亮度和位置未发生变化,说明未发生树枝状DNA组装。当目标物存在时,如泳道6所示,dsDNA1条带消失,dsDNA2条带亮度明显减弱,同时在泳道6上方出现低迁移率的多个条带,说明发生DNA组装。
为进一步验证磁珠表面是否发生DNA组装,分别用SA-QD(图2B)和SA-AgNPs(图2C)做信号分子进行考察。阳性体系的荧光强度和107Ag丰度显著高于阴性体系,说明本法原理可行。对阴阳性体系中磁珠进行成像,如图2D所示,观察到阴性体系中磁珠为粒径约1μm的球形颗粒,而阳性体系中磁珠表面产生突起,说明发生DNA组装。
2、实验条件优化
为获得更好的检测性能,对本法中几个重要实验条件进行优化,包括dsDNA2浓度、ssDNA1浓度、ssDNA2浓度、目标物孵育时间、SA-AgNPs量、SA-AgNPs孵育时间。以F/F0为评估指标进行优化,其中F表示阳性体系的信号值,F0表示阴性体系的信号值。所有优化实验均在dsDNA1浓度为100nM条件下进行。
dsDNA2是树枝状DNA组装的关键元件,对dsDNA2浓度进行了优化。如图3A所示,随着dsDNA2浓度从100nM升高至500nM,F/F0先升高后进入平台期,在dsDNA2浓度为300nM时达到最高值,因此选择300nM为最优的dsDNA2浓度。ssDNA1是重要的辅助探针,如图3B所示,随着ssDNA1浓度从50nM升高至600nM,阴性信号逐渐升高,这可能与ssDNA1与dsDNA1间的非特异相互作用有关。F/F0先升高后降低,在200nM时达到最大值,因此选择200nM为最优的ssDNA1浓度。ssDNA2同样是重要的辅助探针,如图3C所示,随着ssDNA2浓度从50nM升高至800nM,阴性信号逐渐升高,这可能与ssDNA2导致的非特异相互作用有关。F/F0先升高后降低,在400nM时达到最大值,因此选择400nM为最优的ssDNA2浓度。
另外对目标物孵育时间,SA-AgNPs量和SA-AgNPs孵育时间进行了优化。如图3D所示,随着目标物孵育时间从10min延长至100min,F/F0先升高后进入平台期,在60min时达到最高值,因此选择60min为优化后条件进行后续实验。SA-AgNPs作为信号分子,对其加入量进行了优化,如图3E所示,当SA-AgNPs加入量从0.3×10-1μg增加到4.8×10-1μg,阳性和阴性信号都明显升高,F/F0先升高后降低,在2.4×10-1μg处达到最高值,因此选择2.4×10-1μg为最优的SA-AgNPs加入量。阴性信号随着SA-AgNPs加入量的增加而升高说明在SA-AgNPs和MB-dsDNA复合探针间存在一定的非特异相互作用。对SA-AgNPs孵育时间进行优化,如图3F所示,从10min延长至180min,F/F0逐渐升高后进入平台期,在120min时达到最高值,因此选择120min为最优的SA-AgNPs孵育时间。
3、灵敏度
通过测量不同H5N1核酸片段浓度时107Ag的ICP-MS信号,对方法的线性范围和灵敏度进行考察。如图4所示,当H5N1核酸片段浓度在0.05-2.0nM范围内,信号强度随浓度升高而增强,且表现出线性相关,相关系数(R2)为0.991。根据3σ法则计算出检出限为2pM。
与已报道的其他相关核酸检测方法进行比较,本方法表现出相当的灵敏度,见表3。本检测方法中,由于磁珠-树枝状DNA能结合多个SA-AgNPs且每个AgNPs能释放多个Ag原子,使单个目标核酸识别事件转化为多个107Ag信号,实现显著的信号放大,保证检测的灵敏度。通过磁分离,没有与磁珠-树枝状DNA结合的SA-AgNPs被去除,这保证了检测的低背景。良好的检测性能得益于上述信号放大和背景控制机制。
表3与已报道的相关核酸检测方法的比较
4、选择性
一些核酸生物标志物之间碱基序列相似,但在生理和病理过程中的作用有显著区别,因此要求检测方法具有良好的选择性。有报道(doi.org/10.1016/j.bios.2016.07.092)指出Toehold区域的碱基错配会显著降低链置换反应的速度,为了考察本方法的选择性,在优化实验条件下对不同错配碱基个数的序列进行了检测,包括错配1、3、5、7个碱基的序列,结果见图5。当存在错配碱基时,信号强度有显著下降,特别是错配碱基数超过3个时,信号强度与空白信号相近,说明本法对相似序列的核酸样品有良好的选择性。良好的选择性归因于Toehold介导链置换反应的高特异性。
实施例二血清样品中的应用
复杂生物样品的有效检测是该方法的一个重要参数。为了确定该方法在复杂基质中的准确性,通过将不同浓度的H5N1核酸片段加到10倍稀释的人血清样品中进行回收实验。H5N1核酸片段浓度为0.5nM、1.0nM和1.5nM时的回收率分别为89.5%、106.1%和98.3%,三次测量值的相对标准偏差分别为6.2%、5.9%和7.5%(见表4)。结果表明本法在检测复杂的生物样品中核酸时表现出可接受的稳定性和准确性。这得益于树枝状DNA组装介导的信号放大和磁分离辅助的背景控制。
表4不同浓度H5N1核酸片段分析结果(n=3)。
本研究提出了一种利用ICP-MS和DNA树枝状结构携带的银纳米颗粒标记对H5N1核酸片段进行超敏感检测的方法。该方法的敏感性令人满意,在复杂生物样品中展示出良好的检测准确性和稳定性。这得益于DNA树枝状结构介导的信号放大、磁分离辅助的背景控制和稳定的元素标记分析。简而言之,该方法为敏感、准确和稳定的禽流感病毒检测提供了一种有前景的方法,将成为抗病毒治疗和疫情控制的潜在分析工具。
参考文献:
[1]Z.Huang,C.Wang,R.Liu,Y.Su,Y.Lv,Self-Validated HomogeneousImmunoassay by Single Nanoparticle in-Depth Scrutinization,Anal.Chem.92(2020)2876-2881.https://doi.org/10.1021/acs.analchem.9b05596.
[2]S.Liu,J.Wu,M.He,B.Chen,Q.Kang,Y.Xu,X.Yin,B.Hu,DNA Tetrahedron-Based MNAzyme for Sensitive Detection of microRNA with Elemental Tagging,ACSAppl.Mater.Interfaces.13(2021)59076-59084.https://doi.org/10.1021/acsami.1c17234.
[3]H.Ravan,T.Fozooni,M.Amandadi,H.Sasan,A.Norouzi,DNAzyme-embeddedhyperbranched DNA dendrimers as signal amplifiers for colorimetricdetermination of nucleic acids,Microchim.Acta.185(2018)443.https://doi.org/10.1007/s00604-018-2975-3.
[4]Q.Kang,M.He,B.Chen,G.Xiao,B.Hu,MNAzyme-catalyzed amplificationassay with lanthanide tags for the simultaneous detection of multiplemicroRNAs by inductively coupled plasma-mass spectrometry,Anal.Chem.93(2021)737-744.https://doi.org/10.1021/acs.analchem.0c02455.
[5]H.Zhao,L.Wang,J.Zhu,H.Wei,W.Jiang,Label-free nucleic acidsdetection based on DNA templated silver nanoclusters fluorescent probe,Talanta.138(2015)163-168.https://doi.org/10.1016/j.talanta.2015.02.021.
[6]F.Shen,Y.Cheng,Y.Xie,H.Yu,W.Yao,H.W.Li,Y.Guo,H.Qian,DNA-silvernanocluster probe for norovirus RNA detection based on changes in secondarystructure of nucleic acids,Anal.Biochem.583(2019)113365.https://doi.org/10.1016/j.ab.2019.113365.[7]D.Jiang,Y.Tian,Y.Zhang,X.Lu,D.Xiao,C.Zhou,One-step fast and label-free imaging array for multiplexed detection of traceavian influenza viruses,Anal.Chim.Acta.1171(2021)338645.https://doi.org/10.1016/j.aca.2021.338645.
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种生物传感器,其特征在于,至少包括两个dsDNA探针和两个ssDNA探针;
所述dsDNA探针包括目标捕获区和两个Trigger区;
所述目标捕获区可特异性结合待检测物的核酸;
所述目标捕获区分为捕获区1、捕获区2和捕获区3;所述Trigger区包括错配区和间隔区;
所述dsDNA1的a链包括目标捕获区和两个重复排列的Trigger区;
所述dsDNA1的b链包括与a链的捕获区3和间隔区互补的序列。
2.如权利要求1所述的生物传感器,其特征在于,所述dsDNA2的a链包括一个Trigger区、捕获区2和捕获区3;
所述dsDNA2的b链包括与其a链的间隔区和捕获区3互补的序列。
3.如权利要求1所述的生物传感器,其特征在于,所述ssDNA能够分别靶向dsDNA的b链。
4.如权利要求1所述的生物传感器,其特征在于,所述生物传感器还包括链霉亲和素化的磁球、链霉亲和素化的AgNPs或链霉亲和素化的量子点SA-QD;
优选地,所述dsDNA的a链5’末端修饰了生物素。
5.如权利要求1所述的生物传感器,其特征在于,所述待检测物为禽流感病毒H5N1时,所述dsDNA1的a链、b链序列分别如SEQ ID NO.1-2所示;
优选地,所述dsDNA2的a链、b链序列分别如SEQ ID NO.4-5所示;
优选地,所述ssDNA1的序列如SEQ ID NO.3所示;所述ssDNA2的序列如SEQ ID NO.6所示。
6.权利要求1-5任一项所述的生物传感器在检查禽流感病毒中的应用;
所述禽流感病毒包括H5N1。
7.一种检测禽流感病毒的方法,其特征在于,所述方法包括采用权利要求1-5任一项所述的生物传感器进行检测;
1)将待测物的核酸与MB-dsDNA复合探针于室温下共孵育;
2)加入dsDNA1、dsDNA2、ssDNA1和ssDNA2进行信号扩大反应;
3)分离得到磁珠部分,然后与SA-AgNPs共孵育后用ICP-MS系统检测;
或,分离得到磁珠部分,然后与SA-QDs共孵育后用荧光分光光度仪检测;
或,将2)得到的产物行非变性聚丙烯酰胺凝胶电泳(PAGE),染色后,使用UV成像系统进行检测。
8.如权利要求7所述的检测方法,其特征在于,所述MB-dsDNA复合探针为:将SA-MB与dsDNA1室温下旋转摇匀1.5-3h,在磁场下分离得到磁珠部分,用缓冲液冲洗获得;
优选地,dsDNA1-a:dsDNA1-b的浓度比为2.0:2.5;
优选地,所述dsDNA1与SA-MB的体积比为40-60:1。
9.如权利要求7所述的检测方法,其特征在于,所述孵育时间为0.8-3h;
所述步骤2)中,dsDNA1、dsDNA2、ssDNA1、ssDNA2的浓度比为0.8-2:2.5-3.5:1-3:3-5;优选为1:3:2:4。
10.权利要求1-5所述生物传感器和/或权利要求7-9所述的检测方法在禽流感病毒活性检测和/或筛选禽流感病毒相关药物中的应用;
所述禽流感病毒相关药物包括病毒抑制剂。
CN202311535102.9A 2023-11-16 2023-11-16 一种检测禽流感病毒的生物传感器及检测方法和应用 Pending CN117551814A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311535102.9A CN117551814A (zh) 2023-11-16 2023-11-16 一种检测禽流感病毒的生物传感器及检测方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311535102.9A CN117551814A (zh) 2023-11-16 2023-11-16 一种检测禽流感病毒的生物传感器及检测方法和应用

Publications (1)

Publication Number Publication Date
CN117551814A true CN117551814A (zh) 2024-02-13

Family

ID=89814251

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311535102.9A Pending CN117551814A (zh) 2023-11-16 2023-11-16 一种检测禽流感病毒的生物传感器及检测方法和应用

Country Status (1)

Country Link
CN (1) CN117551814A (zh)

Similar Documents

Publication Publication Date Title
CN108872173B (zh) 一种荧光增强型适体传感器及其制备方法和应用
CN110455756B (zh) 一种同时检测二价铅离子和二价铜离子的方法
Ilkhani et al. Novel approaches for rapid detection of COVID-19 during the pandemic: A review
CN113249525A (zh) 一种鉴定新型冠状病毒印度变种的qRT-PCR方法
KR101394200B1 (ko) 실버나노클러스터 프로브 및 이를 이용한 표적 폴리뉴클레오티드 검출방법 그리고 실버나노클러스터 프로브의 설계방법
Yeh et al. Plasmonic nanostructure-enhanced Raman scattering for detection of SARS-CoV-2 nucleocapsid protein and spike protein variants
Wei et al. Magnified fluorescence detection of silver (I) ion in aqueous solutions by using nano-graphite-DNA hybrid and DNase I
Li et al. Three label-free thrombin aptasensors based on aptamers and [Ru (bpy) 2 (o-mopip)] 2+
Gao et al. A fluorescence assay for microRNA let-7a by a double-stranded DNA modified gold nanoparticle nanoprobe combined with graphene oxide
Li et al. Electrophoresis separation assisted G-quadruplex DNAzyme-based chemiluminescence signal amplification strategy on a microchip platform for highly sensitive detection of microRNA
Lin et al. An enzyme-free fluorescent biosensor for highly sensitive detection of carcinoembryonic antigen based on aptamer-induced entropy-driven circuit
Wang et al. T4 DNA polymerase-assisted upgrade of a nicking/polymerization amplification strategy for ultrasensitive electrochemical detection of Watermelon mosaic virus
CN117551814A (zh) 一种检测禽流感病毒的生物传感器及检测方法和应用
Hu et al. Amplification-free microRNA profiling with femtomolar sensitivity on a plasmonic enhanced fluorescence nano-chip
Guo et al. ssDNA-QDs/GO multicolor fluorescence system for synchronous screening of hepatitis virus DNA
CN106755589B (zh) 同时检测大鼠五种病原体的引物组、试剂盒及多重免疫荧光分析方法
CN102279172A (zh) 一种检测手足口病病原的纳米探针芯片及其应用方法
CN106755392B (zh) 藻类培养中腔轮虫的快速定量检测qPCR方法
CN109097491B (zh) 一种基于检测hiv基因的荧光探针
Huang et al. Ultrasensitive detection of the H5N1 nucleic acid fragment by ICP-MS using DNA dendrimer-carried silver nanoparticle labeling
Wang et al. Highly sensitive fluorescence detection of tobacco mosaic virus RNA based on disodium 4, 4′-diazidostilbene-2, 2′-disulfonate tetrahydrate in situ reaction
KR102701301B1 (ko) 아프리카돼지열병 바이러스 신속 검출을 위한 재조합효소 중합효소 증폭 반응용 조성물
CN110907651B (zh) 基于苝衍生物探针自组装的用于蛋白质区分检测的荧光传感器阵列
Zhang et al. ICP-MS and fluorescence dual-mode detection of ZIKV-RNA based on quantum dot labeling with hybridization chain reaction
Ren et al. A fluorescent method based on magnetic nanoparticles for detection of CGG trinucleotide repeat genes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination