CN117550992A - 一种酱香型白酒生产中窖底液的资源化利用方法 - Google Patents

一种酱香型白酒生产中窖底液的资源化利用方法 Download PDF

Info

Publication number
CN117550992A
CN117550992A CN202311305595.7A CN202311305595A CN117550992A CN 117550992 A CN117550992 A CN 117550992A CN 202311305595 A CN202311305595 A CN 202311305595A CN 117550992 A CN117550992 A CN 117550992A
Authority
CN
China
Prior art keywords
pit bottom
maotai
production
bottom water
amino acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311305595.7A
Other languages
English (en)
Inventor
谢珺
周小农
张迪
张琴
代吉华
王文涛
唐启
梁家伟
武彦巍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guizhou Junhe Huanyu Environmental Protection Technology Co ltd
Henan Junhe Environmental Protection Technology Co ltd
Guizhou Maotai Distillery Group Circular Economy Industry Investment And Development Co ltd
Original Assignee
Guizhou Junhe Huanyu Environmental Protection Technology Co ltd
Henan Junhe Environmental Protection Technology Co ltd
Guizhou Maotai Distillery Group Circular Economy Industry Investment And Development Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guizhou Junhe Huanyu Environmental Protection Technology Co ltd, Henan Junhe Environmental Protection Technology Co ltd, Guizhou Maotai Distillery Group Circular Economy Industry Investment And Development Co ltd filed Critical Guizhou Junhe Huanyu Environmental Protection Technology Co ltd
Publication of CN117550992A publication Critical patent/CN117550992A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C227/00Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C227/38Separation; Purification; Stabilisation; Use of additives
    • C07C227/40Separation; Purification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/02Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C229/04Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C229/06Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one amino and one carboxyl group bound to the carbon skeleton
    • C07C229/08Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one amino and one carboxyl group bound to the carbon skeleton the nitrogen atom of the amino group being further bound to hydrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/02Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C229/04Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C229/22Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated the carbon skeleton being further substituted by oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/02Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C229/04Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C229/24Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having more than one carboxyl group bound to the carbon skeleton, e.g. aspartic acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/02Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C229/04Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C229/26Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having more than one amino group bound to the carbon skeleton, e.g. lysine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/02Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C229/34Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton containing six-membered aromatic rings
    • C07C229/36Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton containing six-membered aromatic rings with at least one amino group and one carboxyl group bound to the same carbon atom of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C277/00Preparation of guanidine or its derivatives, i.e. compounds containing the group, the singly-bound nitrogen atoms not being part of nitro or nitroso groups
    • C07C277/08Preparation of guanidine or its derivatives, i.e. compounds containing the group, the singly-bound nitrogen atoms not being part of nitro or nitroso groups of substituted guanidines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C279/00Derivatives of guanidine, i.e. compounds containing the group, the singly-bound nitrogen atoms not being part of nitro or nitroso groups
    • C07C279/04Derivatives of guanidine, i.e. compounds containing the group, the singly-bound nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of guanidine groups bound to acyclic carbon atoms of a carbon skeleton
    • C07C279/14Derivatives of guanidine, i.e. compounds containing the group, the singly-bound nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of guanidine groups bound to acyclic carbon atoms of a carbon skeleton being further substituted by carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C319/00Preparation of thiols, sulfides, hydropolysulfides or polysulfides
    • C07C319/26Separation; Purification; Stabilisation; Use of additives
    • C07C319/28Separation; Purification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C323/00Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
    • C07C323/50Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton
    • C07C323/51Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton
    • C07C323/57Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being further substituted by nitrogen atoms, not being part of nitro or nitroso groups
    • C07C323/58Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being further substituted by nitrogen atoms, not being part of nitro or nitroso groups with amino groups bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/04Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D207/10Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D207/16Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/10Indoles; Hydrogenated indoles with substituted hydrocarbon radicals attached to carbon atoms of the hetero ring
    • C07D209/18Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D209/20Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals substituted additionally by nitrogen atoms, e.g. tryptophane
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/64Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms, e.g. histidine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Abstract

“窖底液”,也叫“窖底水”,是酱香型白酒生产中窖池底部产生的富含糖类、蛋白、氨基酸等有机物的生产残液。本发明属于酱香型白酒生产中窖底液的处理与资源化利用领域,具体涉及一种酱香型白酒生产中窖底液的资源化利用方法。该资源化利用方法包括利用碳酸氢铵和窖底液中的有机酸进行反应、精馏分离、蒸发分离得到含氨基酸的浓缩液等步骤。本发明可在分离和浓缩过程中降低蛋白质热敏性固化、变性程度,减少总氨基酸量损失;同时中和酸度,降低酸度对精馏与蒸发设备的腐蚀;最终实现乙醇回收,并产出含氨基酸和有机铵盐的水溶肥浓缩液,进而实现窖底液的资源化综合利用,减轻污水处理系统负荷,适于白酒生产企业推广应用。

Description

一种酱香型白酒生产中窖底液的资源化利用方法
技术领域
本发明属于酱香型白酒生产中窖底液的处理和资源化利用领域,具体涉及一种酱香型白酒生产中窖底液的资源化利用方法。
背景技术
酱香型白酒是以粮谷为主要原料,采用固态或半固态糖化、发酵、蒸馏产生基酒,经陈酿、勾兑等工艺,即为成品酒。酱香型白酒生产过程中酒醅发酵周期长,窖池内酒醅发酵产生的窖底液中有机质、氮、磷等物质浓度显著高于浓香型、清香型等其他类型酿酒窖底液。酱香型白酒生产企业窖底液水质指标如下:pH为3-5,总有机质为80-180g/L,总氮为3.5-6.0g/L,氨氮为1.5-3.0g/L,总氨基酸量15-30g/L,其中含氮化合物为铵盐、游离氨基酸和蛋白质,氨基酸种类丰富(包含天门冬氨酸、谷氨酸、脯氨酸、丙氨酸、赖氨酸、亮氨酸、丝氨酸、精氨酸、甘氨酸、苏氨酸、缬氨酸、异亮氨酸、苯丙氨酸、组氨酸等17种氨基酸),总磷0.8-3.0g/L,总养分(N+P2O5+K2O)大于10g/L(部分甚至大于15g/L),乙醇含量2-5%。
酱香型白酒“12987”酿造工艺即1年生产周期、2次投料、9次蒸煮、8次发酵、7次取酒的基本特点造成其不同生产阶段窖底液指标有显著差异。窖底液传统的处理方式是与锅底水、车间及设备冲洗水、洗瓶水、冷却塔排污水等混合作为综合废水进行处理。由于窖底液有机质、氮、磷含量高且随生产周期波动大,作为废水进行处理会给污水处理系统造成极大的运行压力,导致废水处理设施建设投资费用升高、运行成本增加,废水难以达标处理。
此外,窖底液中除含有醇、酯、酸、醛等低沸点有机物外,还含有丰富的糖类、蛋白、腐殖酸、氨基酸、大分子有机质等,营养物种类丰富,具有极高的资源化利用价值,将其作为废水处理亦是对资源的浪费。
发明内容
本发明的目的是提供一种酱香型白酒生产中窖底液的资源化利用方法,解决现况将窖底液作为废水进行处理,增加污水处理系统负担、造成资源浪费等问题。
为了实现以上目的,本发明所采用的技术方案是:
一种酱香型白酒生产中窖底水的资源化利用方法,包括以下步骤:
(1)利用碳酸氢铵和窖底水中的有机酸进行反应,生成含有机铵盐的窖底水;
(2)将步骤(1)所得窖底水进行精馏分离,得到乙醇馏分和精馏残液;
(3)将精馏残液进行蒸发分离,得到含氨基酸的浓缩液。
本发明的酱香型白酒生产中窖底水的资源化利用方法,向窖底水投加碳酸氢铵生成以乙酸胺为主的有机铵盐类氨基酸保护剂,保护蛋白质和氨基酸,降低在后续蒸发浓缩工艺段蛋白质热敏性固化、变性程度,减少总氨基酸量损失,同时中和酸度,降低精馏与蒸发设备的耐腐蚀性能要求;分别回收乙醇馏分和含氨基酸的浓缩液,实现窖底液资源的综合利用,降低污水处理系统负担,适于白酒生产企业推广应用。
步骤(1)中,通过有机铵盐的生成反应,保护窖底液(同窖底水)中的蛋白质和氨基酸,降低精馏与蒸发工段蛋白质热敏性变性固化程度,减少总氨基酸量损失,优选地,步骤(1)中,碳酸氢铵的投加量为5~30kg/m3,搅拌反应40~60min。
优选地,步骤(1)中,所述窖底水的储存时间不超过3天。窖底液中有厌氧微生物,控制储存时间可显著减少水中乙醇在微生物作用下水解为乙酸的量,提高精馏工段乙醇回收量。
精馏分离的目的是为了分离出乙醇馏分,该乙醇馏分可回收利用,如用于生产燃料乙醇、污水处理用脱氮碳源等。优选地,步骤(2)中,精馏分离时,真空度为-0.07~-0.08MPa,精馏温度65℃~75℃;塔顶馏出液酒精度55°~65°时接收,得到所述乙醇馏分。
蒸发分离的目的是为了实现氨基酸等有机质的有效浓缩富集,优选地,步骤(3)中,蒸发分离时,真空度为-0.07~-0.09MPa,蒸发温度50℃~90℃,浓缩倍数3.0~5.0倍。
优选地,所述窖底水的pH为3~5,总有机质为80~180g/L,总氮为3.5~6.0g/L,氨氮为1.5~3.0g/L,总氨基酸量为15~30g/L,总磷为0.8~3.0g/L,总养分大于10g/L,乙醇含量为2~5%。上述窖底水为酱香型白酒生产的常见指标,利用本发明的方法处理的效果良好。
在此基础上,通过蒸发分离可得到富含氨基酸和总养分的浓缩液和适于厌氧发酵生产沼气的冷凝液,优选地,步骤(3)中,所述蒸发分离得到所述浓缩液和冷凝液;所述浓缩液中,有机质含量大于300g/L、总养分大于60g/L、氨基酸总量大于70g/L;所述冷凝液中,COD为10000~40000mg/L、氨氮小于20mg/L、总氮小于50mg/L、总磷小于10mg/L。
为进一步实现含氨基酸的浓缩液的高值化利用,优选地,利用所述含氨基酸的浓缩液制作有机水溶肥,所述有机水溶肥由以下重量份数的组分组成:所述浓缩液994~1000份,黄腐酸钾1~2份,聚乙二醇0.1~0.3份,EDTA2~4份。
为进一步实现冷凝液的资源化利用,优选地,步骤(3)中,所述蒸发分离得到所述浓缩液和冷凝液,所述冷凝液进行厌氧发酵产沼气。
进一步优选地,所产沼气用于燃气锅炉生产蒸汽,所产蒸汽作为热能用于步骤(2)精馏与步骤(3)蒸发工段。利用该方式可实现沼气能源回收,降低精馏与蒸发工段一次能源消耗量,进而降低运行成本,减少碳排放。
综合来看,与现有酱香型白酒生产企业窖底液作为生产废水的处置方法相比,本发明具有以下有益效果:
(1)窖底液单独收集后,投加碳酸氢铵,中和酸度,生成以乙酸铵为主的有机铵盐类保护剂,可减少窖底液中营养物质损失,可降低酸度对精馏与蒸发设备的腐蚀,节约设备投资。
(2)精馏回收的乙醇用于资源化利用,浓缩液作为原料生产有机水溶肥料,回收乙醇和浓缩液作为副产品可为企业创造附加经济价值;
(3)蒸发冷凝液厌氧发酵生产沼气,用于燃气锅炉产生蒸汽,作为热能用于精馏和蒸发工段,实现能源回收和碳减排;
(4)本发明提供酱香型白酒生产企业窖底液资源化利用工艺,实现资源和能源回收,降低污染负荷,减少碳排放,具有路线合理、投资费用低、运行稳定可靠等优点。
附图说明
图1为本发明酱香型白酒企业窖底液资源化利用工艺流程图。
具体实施方式
“窖底液”,也叫“窖底水”,是酱香型白酒生产中窖池底部产生的富含糖类、蛋白、氨基酸等有机物的生产残液。酱香型白酒生产过程中窖池产生的窖底液含有糖类、丰富的氨基酸、氮、磷、钾、及以乙酸为主的多种有机酸、以乙醇为主的醇类、各种酯类等可资源化利用的物质。将其作为废水处理不仅增加污水处理系统的负担,且难以处理达标,亦造成资源的浪费。如果采用传统蒸发浓缩资源方式,存在着浓缩过程中窖底液蛋白、氨基酸等营养物固化变性、回收价值降低等问题。
例如,某酱香型白酒生产企业窖底液采用蒸发浓缩富集营养物,浓缩倍数3.5倍,浓缩前后原液与蒸发浓缩液中各种氨基酸含量如表1所示,蒸发浓缩过程氨基酸损失32.78%。
表1某酱香型白酒生产企业窖底液蒸发浓缩前后氨基酸含量
本发明根据窖底液的成分特点,提供了酱香型白酒生产企业窖底液高值资源化利用技术。本发明采用窖底液单独收集→投加碳酸氢铵→精馏回收乙醇→蒸发分离工艺;精馏回收的乙醇,用于生产燃料乙醇和污水处理用脱氮碳源;蒸发浓缩液作为有机水溶肥原料,添加一定比例的黄腐酸钾、聚乙二醇、EDTA等生产特种有机水溶肥;蒸发冷凝液厌氧发酵生产清洁能源沼气,沼气用于燃气锅炉生产蒸汽,作为热能回用于精馏与蒸发工段;最终,厌氧发酵出水排入污水处理系统,与酿酒生产中排放的锅底水、其他低浓度生产废水一并处理。此时,综合废水污染物浓度大幅度削减,采用常规废水处理流程,即可使出水满足《发酵酒精和白酒工业水污染物排放标准》(GB27631-2011)表3直排标准。
下面进一步详细说明本发明的酱香型白酒生产企业窖底液资源化利用工艺,其工艺流程图如图1所示,包括以下步骤:
(1)窖底液单独收集后进入储罐储存,泵送至搅拌罐,投加碳酸氢铵与窖底液中的有机酸反应,生成以乙酸铵为主的有机铵盐,保护窖底液中的蛋白质和氨基酸,降低精馏与蒸发工段蛋白质氨基酸热敏性变性固化程度,减少总氨基酸量损失;
(2)采用精馏装置回收窖底液中以乙醇为主的低沸点有机物,用于生产燃料乙醇或污水处理用脱氮碳源;
(3)精馏釜底液进行蒸发二次分离,得到冷凝液和浓缩液;
(4)蒸发浓缩液作为有机水溶肥生产原料,添加一定比例的黄腐酸钾、聚乙二醇、EDTA等可生产特种有机水溶肥。
(5)蒸发冷凝液进行厌氧发酵产沼气,沼气用于燃气锅炉生产蒸汽,作为热能用于精馏与蒸发工段,厌氧发酵出水排入污水处理系统,与酿酒生产中排放的锅底水、其他低浓度生产废水一并处理。
酱香型白酒生产企业窖底液产生于酱香型白酒生产酒醅发酵过程,其指标如下:pH为3~5,总有机质80~180g/L,总氮为3.5~6.0g/L,氨氮为1.5~3.0g/L,总氨基酸量15~30g/L,其中含氮化合物为铵盐、游离氨基酸和蛋白质,氨基酸种类齐全(包含天门冬氨酸、谷氨酸、脯氨酸、丙氨酸、赖氨酸、亮氨酸、丝氨酸、精氨酸、甘氨酸、苏氨酸、缬氨酸、异亮氨酸、苯丙氨酸、组氨酸等17种氨基酸),总磷0.8~3.0g/L,总养分(N+P2O5+K2O)大于15g/L,乙醇含量2~5%。
窖底液经本发明中的步骤(1)、(2)、(3)处理后,回收以乙醇为主的低沸点组分,得到浓缩液和冷凝液,浓缩液和冷凝液进行发明中的步骤(4)和(5)处理,实现窖底液高值资源化利用,同时降低环境污染。
步骤(1)中,采用食品级不锈钢储罐单独收集窖底液,泵送至搅拌反应罐,投加碳酸氢铵,控制条件为:储存时间不大于3天,碳酸氢铵投加量5~30kg/m3,机械搅拌时间40~60min;窖底液中有厌氧微生物,控制储存时间可显著减少水中乙醇在微生物作用下水解为乙酸的量,提高精馏工段乙醇产量。窖底液呈酸性,含有以乙酸为主的多种有机酸,投加碳酸氢铵与窖底液中的有机酸反应生成以乙酸铵为主的有机铵盐,保护窖底液中的蛋白质和氨基酸,降低精馏与蒸发工段蛋白质和氨基酸热敏性变性固化程度,同时中和酸度,降低酸度对精馏与蒸发设备的腐蚀,节省建设投资。
液相温度高于65℃的工况下,蛋白质和氨基酸发生热敏性变性固化导致浓缩液营养价值降低,步骤(1)中投加碳酸氢铵,反应生成以乙酸铵为主的有机铵盐类保护剂,降低蛋白质和氨基酸在高温工况下变性固化程度,精馏与蒸发前后氨基酸的损失量减少至10%以内。
步骤(2)中,采用精馏装置回收窖底液中的以乙醇为主的低沸点物质,可用于生产燃料乙醇和污水处理用脱氮碳源。精馏装置控制条件为:物料预热至45℃~55℃,然后进入精馏装置,精馏装置真空度为-0.07~-0.08MPa、精馏温度65℃~75℃、馏出液酒精度55°~65°,馏出液外观清澈透明;与物料及二次蒸汽接触部分设备材质为食品级不锈钢;物料进行梯度升温预热,避免物料因快速升温产生泡沫,减少馏出液中杂质含量,控制馏出液的酒精度55°~65°。
步骤(3)中,采用蒸发装置(可采用MVR蒸发器、多效蒸发器、TVR蒸发器等类型)对步骤(2)精馏釜底液进行二次分离,控制条件为:真空度为-0.07~-0.09MPa、蒸发温度55℃-90℃、浓缩倍数3.0-5.0倍、成品比重1.15-1.35,具有流动性。以蒸汽为热能对精馏釜底液进行蒸发分离,釜底液的有机质、氮磷钾养分、氨基酸等营养物质富集于浓缩液中,其他有机物则在蒸发冷凝液中收集中。
步骤(3)中产生的冷凝液指标如下:COD为10000~40000mg/L,氨氮小于20mg/L,总氮小于50mg/L,总磷小于10mg/L;pH为6.0~6.5。
步骤(4)中,蒸发浓缩液有机质含量大于300g/L、总养分(N+P2O5+K2O)大于60g/L、氨基酸总量大于70g/L、水不溶物小于10g/L且重金属含量满足《水溶肥料汞、砷、镉、铅、铬的限量要求》(NY1110-2010),可作为有机水溶肥生产原料,添加黄腐酸钾、聚乙二醇、EDTA生产特种有机水溶肥,添加比例以重量计:浓缩液994-1000份、黄腐酸钾1-2份、聚乙二醇0.1-0.3份、EDTA2-4份。
蒸发浓缩液可达到以下指标:有机质含量350~450g/L、总养分(N+P2O5+K2O)62~70g/L、氨基酸总量75~85g/L。
步骤(5)中,蒸发冷凝液进行厌氧发酵,控制条件为:温度30-37℃,采用连续发酵工艺,发酵时间3-4天,进水pH6.0-6.5,反应器类型采用内循环厌氧反应器或升流式厌氧污泥床反应器。厌氧发酵过程蒸发冷凝液COD去除率90%-95%,沼气产量0.45-0.50Nm3/kgCOD,沼气中甲烷含量75%以上,沼气用于燃气锅炉生产蒸汽,作为热能用于精馏与蒸发工段,厌氧发酵出水COD小于2000mg/L,最终排入污水处理系统与锅底水及其他低浓度生产废水合并处理。
下面结合具体实施例对本发明的实施过程进行详细说明。
实施例1
本实施例的酱香型白酒生产中窖底液的资源化利用方法,以贵州某酱香型白酒生产企业为例,该企业日产生窖底液200m3,水质如下:总有机质150g/L,氨氮为2.5g/L,总氮为5.8g/L,总磷2.7g/L,pH3.5,总养分(N+P2O5+K2O)15.60g/L,氨基酸总量27.77g/L,乙醇含量4.8%,氨基酸含量如表2所示。
表2实施例1贵州某酱香型白酒生产企业窖底液中氨基酸含量(单位:g/L)
对上述窖底液资源化利用的步骤如下:
(1)窖底液单独收集至不锈钢储罐,储存时间2天。窖底液泵送至不锈钢搅拌罐,投加碳酸氢铵30kg/m3,搅拌60min,反应结束。
该步骤中,将窖底液单独收集,所用储罐采用耐腐蚀食品级材料,窖底液储存时间不超过3天,避免窖底液中的乙醇发酵转化为乙酸;然后泵送至搅拌反应罐,投加碳酸氢铵,碳酸氢铵与窖底液中的有机酸反应生成以乙酸铵为主的有机铵盐,保护窖底液中的蛋白质和氨基酸,降低精馏与蒸发工段蛋白质热敏性变性固化程度,减少总氨基酸量损失,同时窖底液pH升高,可降低对精馏与蒸发设备材质的腐蚀。
(2)加入碳酸氢铵后的料液泵送至精馏工段,经换热器初级升温至48℃后进入精馏塔,精馏塔真空度-0.08MPa,精馏温度68℃,馏出液酒精度60°、甲醇含量小于0.2g/L、铅未检出、馏出液日产量13.80t,用于生产污水处理用脱氮碳源。
(3)精馏釜底液泵送至五效蒸发装置,效体真空度-0.07~-0.09MPa,蒸发温度85℃-50℃,浓缩倍数3.2倍。浓缩液有机质含量400g/L、总养分(N+P2O5+K2O)65g/L、水不溶物7g/L、氨基酸含量如表3所示;蒸发冷凝液COD为35000mg/L、氨氮18mg/L、总氮25mg/L、总磷3mg/L。
表3实施例1贵州某酱香型白酒生产企业窖底液蒸发浓缩液中氨基酸含量(单位:g/L)
天冬门氨酸 精氨酸 脯氨酸 蛋氨酸 赖氨酸 谷氨酸
5.81 2.16 7.77 0.71 4.03 27.65
甘氨酸 丙氨酸 胱氨酸 苯丙氨酸 色氨酸 丝氨酸
4.31 6.96 0.55 2.12 0.49 2.98
苏氨酸 缬氨酸 异亮氨酸 亮氨酸 组氨酸 酪氨酸
2.96 3.60 2.61 3.65 2.12 1.10
窖底液蒸发浓缩3.2倍后浓缩液氨基酸总量81.58g/L;蒸发浓缩过程氨基酸损失8.20%。
(4)蒸发浓缩液作为有机水溶肥生产原料,添加黄腐酸钾、聚乙二醇、EDTA生产特种有机水溶肥。其重量配比如下:蒸发浓缩液994.80kg、黄腐酸钾2.00kg、聚乙二醇0.20kg、EDTA3.00kg。
(5)蒸发冷凝液经换热器降温后泵送至升流式厌氧污泥床发酵装置进行厌氧发酵,厌氧发酵时间4.0d,温度30℃,厌氧发酵COD去除率90%。厌氧发酵产生的沼气进入燃气锅炉生产蒸汽,产出0.8MPa蒸汽量16.80t/d,作为热能用于精馏与蒸发工段,节约一次蒸汽用量达42%。厌氧发酵出水与企业排放的锅底水及其他低浓度生产废水混合,采用“预处理+厌氧+好氧+深度处理”的工艺处理,出水满足《发酵酒精和白酒工业水污染物排放标准》(GB27631-2011)表3直排标准。
实施例2
本实施例的酱香型白酒生产中窖底液的资源化利用方法,以四川某酱香型白酒生产企业为例,该企业日产生窖底液120m3,水质如下:总有机质115g/L,氨氮为2.2g/L,总氮为5.0g/L,总磷2.2g/L,pH3.8,总养分(N+P2O5+K2O)14.50g/L,氨基酸总量24.18g/L,乙醇含量4.1%,氨基酸含量如表4所示。
表4实施例2四川某酱香型白酒生产企业窖底液中氨基酸含量(单位:g/L)
天冬门氨酸 精氨酸 脯氨酸 蛋氨酸 赖氨酸 谷氨酸
2.15 0.52 2.58 0.26 1.51 6.67
甘氨酸 丙氨酸 胱氨酸 苯丙氨酸 色氨酸 丝氨酸
0.92 1.55 0.21 0.57 0.15 0.97
苏氨酸 缬氨酸 异亮氨酸 亮氨酸 组氨酸 酪氨酸
0.77 1.34 0.93 1.88 0.62 0.58
对上述窖底液资源化利用的步骤如下:
(1)窖底液单独收集至储池,储存时间2天,然后泵送至搅拌罐,投加碳酸氢铵15kg/m3,搅拌反应50min,反应结束。
(2)加入碳酸氢铵的料液泵送至精馏塔,经换热器初级升温至45℃,精馏塔真空度-0.078MPa,精馏温度70℃,馏出液酒精度58°、甲醇含量小于0.2g/L、铅未检出,馏出液日产量7.6t,外售用于燃料乙醇生产。
(3)精馏釜底液泵送至MVR蒸发装置,蒸发装置控制真空度-0.085MPa,蒸发温度85℃,浓缩倍数3.8倍。浓缩液有机质含量410g/L、总养分(N+P2O5+K2O)62g/L、水不溶物6.5g/L、氨基酸含量如表5所示;蒸发冷凝液COD为30000mg/L、氨氮16mg/L、总氮22mg/L、总磷2mg/L。
表5实施例2四川某酱香型白酒生产企业窖底液蒸发浓缩液中氨基酸含量(单位:g/L)
窖底液蒸发浓缩3.8倍后浓缩液氨基酸总量83.95g/L;蒸发浓缩过程氨基酸损失8.63%。
(4)蒸发浓缩液作为有机水溶肥生产原料,添加黄腐酸钾、聚乙二醇、EDTA生产特种有机水溶肥。其重量配比如下:蒸发浓缩液994.65kg、黄腐酸钾1.80kg、聚乙二醇0.15kg份、EDTA3.40kg。
(5)蒸发冷凝液经换热器降温后泵送至内循环厌氧反应器进行厌氧发酵,厌氧发酵时间3.0d,温度35℃,厌氧发酵COD去除率92%。厌氧发酵产生的沼气进入燃气锅炉生产蒸汽,产出0.8MPa蒸汽量9.12t/d作为热能用于精馏与蒸发工段,减少一次蒸汽使用量达38%。厌氧发酵出水与企业排放的锅底水及其他低浓度生产废水混合,采用“预处理+厌氧+好氧+深度处理”的工艺处理,出水满足《发酵酒精和白酒工业水污染物排放标准》(GB27631-2011)表3直排标准。
实施例3
本实施例的酱香型白酒生产中窖底液的资源化利用方法,以贵州某酱香型白酒生产企业为例,该企业日产生窖底液100m3,水质如下:总有机质92g/L,氨氮为2.0g/L,总氮为4.6g/L,总磷2.1g/L,pH值4.3,总养分(N+P2O5+K2O)13.80g/L,氨基酸总量18.90g/L,乙醇含量3.2%,氨基酸含量如表6所示。
表6实施例3贵州某酱香型白酒生产企业窖底液中氨基酸含量(单位:g/L)
天冬门氨酸 精氨酸 脯氨酸 蛋氨酸 赖氨酸 谷氨酸
1.62 0.18 1.86 0.12 0.78 6.35
甘氨酸 丙氨酸 胱氨酸 苯丙氨酸 色氨酸 丝氨酸
1.11 1.63 0.12 0.53 0.15 0.62
苏氨酸 缬氨酸 异亮氨酸 亮氨酸 组氨酸 酪氨酸
0.63 0.87 0.68 1.02 0.37 0.26
对上述窖底液资源化利用的步骤如下:
(1)窖底液单独收集至储池,储存时间2.5天,然后泵送至搅拌罐,投加碳酸氢铵8kg/m3,搅拌反应40min,反应结束。
(2)加入碳酸氢铵的料液泵送至精馏塔,经换热器初级升温至47℃,精馏塔真空度-0.08MPa,精馏温度70℃,馏出液酒精度60°,甲醇含量小于0.2g/L、铅未检出,馏出液日产量5.4t,用于生产污水处理脱氮用有机碳源。
(3)精馏釜底液泵送至MVR蒸发装置,蒸发装置控制真空度-0.09MPa,蒸发温度80℃,浓缩倍数4.5倍。浓缩液有机质含量385g/L、总养分(N+P2O5+K2O)63g/L、水不溶物7.5g/L;蒸发冷凝液COD为32000mg/L、氨氮14mg/L、总氮20mg/L、总磷3.0mg/L、氨基酸含量如表7所示。
表7实施例3贵州某酱香型白酒生产企业窖底液蒸发浓缩液中氨基酸含量(单位:g/L)
天冬门氨酸 精氨酸 脯氨酸 蛋氨酸 赖氨酸 谷氨酸
6.86 0.74 7.67 0.49 3.22 25.87
甘氨酸 丙氨酸 胱氨酸 苯丙氨酸 色氨酸 丝氨酸
4.52 6.53 0.51 2.19 0.61 2.51
苏氨酸 缬氨酸 异亮氨酸 亮氨酸 组氨酸 酪氨酸
2.53 3.58 2.74 4.07 1.48 1.02
窖底液蒸发浓缩4.5倍后浓缩液氨基酸总量77.14g/L;蒸发浓缩过程氨基酸损失9.30%。
(4)蒸发浓缩液作为有机水溶肥生产原料,添加黄腐酸钾、聚乙二醇、EDTA生产特种有机水溶肥。其重量配比如下:蒸发浓缩液1000kg、黄腐酸钾1.85kg、聚乙二醇0.10kg份、EDTA4.00kg。
(5)蒸发冷凝液经换热器降温后泵送至内循环厌氧反应器进行厌氧发酵,厌氧发酵时间3.5d,温度37℃,厌氧发酵COD去除率94%。厌氧发酵产生的沼气用于燃气锅炉生产蒸汽,产出0.8MPa蒸汽量7.92t/d,作为热能用于精馏与蒸发工段,节约一次蒸汽使用量达40%。厌氧发酵出水与企业排放的锅底水及其他低浓度生产废水混合,采用“预处理+厌氧+好氧+深度处理”的工艺处理,出水满足《发酵酒精和白酒工业水污染物排放标准》(GB27631-2011)表3直排标准。
长期运行数据表明,采用本发明处理酱香型白酒企业窖底液,资源化利用率高、工艺稳定可靠,具有良好的社会效益、环保效益和经济效益。

Claims (10)

1.一种酱香型白酒生产中窖底水的资源化利用方法,其特征在于,包括以下步骤:
(1)利用碳酸氢铵和窖底水中的有机酸进行反应,生成含有机铵盐的窖底水;
(2)将步骤(1)所得窖底水进行精馏分离,得到乙醇馏分和精馏残液;
(3)将精馏残液进行蒸发分离,得到含氨基酸的浓缩液。
2.如权利要求1所述的酱香型白酒生产中窖底水的资源化利用方法,其特征在于,步骤(1)中,碳酸氢铵的投加量为5~30kg/m3,搅拌反应40~60min。
3.如权利要求2所述的酱香型白酒生产中窖底水的资源化利用方法,其特征在于,步骤(1)中,所述窖底水的储存时间不超过3天。
4.如权利要求1所述的酱香型白酒生产中窖底水的资源化利用方法,其特征在于,步骤(2)中,精馏分离时,真空度为-0.07~-0.08MPa,精馏温度65℃~75℃;塔顶馏出液酒精度55°~65°时接收,得到所述乙醇馏分。
5.如权利要求1所述的酱香型白酒生产中窖底水的资源化利用方法,其特征在于,步骤(3)中,蒸发分离时,真空度为-0.07~-0.09MPa,蒸发温度50℃~90℃,浓缩倍数3.0~5.0倍。
6.如权利要求1所述的酱香型白酒生产中窖底水的资源化利用方法,其特征在于,所述窖底水的pH为3~5,总有机质为80~180g/L,总氮为3.5~6.0g/L,氨氮为1.5~3.0g/L,总氨基酸量为15~30g/L,总磷为0.8~3.0g/L,总养分大于10g/L,乙醇含量为2~5%。
7.如权利要求6所述的酱香型白酒生产中窖底水的资源化利用方法,其特征在于,步骤(3)中,所述蒸发分离得到所述浓缩液和冷凝液;所述浓缩液中,有机质含量大于300g/L、总养分大于60g/L、氨基酸总量大于70g/L;所述冷凝液中,COD为10000~40000mg/L、氨氮小于20mg/L、总氮小于50mg/L、总磷小于10mg/L。
8.如权利要求1~6中任一项所述的酱香型白酒生产中窖底水的资源化利用方法,其特征在于,利用所述含氨基酸的浓缩液制作有机水溶肥,所述有机水溶肥由以下重量份数的组分组成:所述浓缩液994~1000份,黄腐酸钾1~2份,聚乙二醇0.1~0.3份,EDTA2~4份。
9.如权利要求8所述的酱香型白酒生产中窖底水的资源化利用方法,其特征在于,步骤(3)中,所述蒸发分离得到所述浓缩液和冷凝液,所述冷凝液进行厌氧发酵产沼气。
10.如权利要求9所述的酱香型白酒生产中窖底水的资源化利用方法,其特征在于,所产沼气用于燃气锅炉生产蒸汽,所产蒸汽作为热能用于步骤(2)精馏与步骤(3)蒸发工段。
CN202311305595.7A 2023-04-19 2023-10-10 一种酱香型白酒生产中窖底液的资源化利用方法 Pending CN117550992A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2023104227738 2023-04-19
CN202310422773.8A CN116425293A (zh) 2023-04-19 2023-04-19 酱香型白酒生产中窖底水的资源化利用方法

Publications (1)

Publication Number Publication Date
CN117550992A true CN117550992A (zh) 2024-02-13

Family

ID=87092506

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202310422773.8A Pending CN116425293A (zh) 2023-04-19 2023-04-19 酱香型白酒生产中窖底水的资源化利用方法
CN202311305595.7A Pending CN117550992A (zh) 2023-04-19 2023-10-10 一种酱香型白酒生产中窖底液的资源化利用方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202310422773.8A Pending CN116425293A (zh) 2023-04-19 2023-04-19 酱香型白酒生产中窖底水的资源化利用方法

Country Status (1)

Country Link
CN (2) CN116425293A (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116874144B (zh) * 2023-09-07 2023-12-01 北京博泰至淳生物科技有限公司 一种酿酒黄水高值资源化的方法

Also Published As

Publication number Publication date
CN116425293A (zh) 2023-07-14

Similar Documents

Publication Publication Date Title
Driessen et al. Experience on anaerobic treatment of distillery effluent with the UASB process
CN100558904C (zh) 以薯类为主原料的酒精双环形生产工艺
EP2802639B1 (en) Anaerobic process
US20090176289A1 (en) Apparatus And Process For The Conversion Into Biogas Of Fermentation Stillage Arising As A Waste Product Of Ethanol Production
CN117550992A (zh) 一种酱香型白酒生产中窖底液的资源化利用方法
CN113149203A (zh) 一种新型高普适性高效复合碳源的应用及其制备方法
US11193143B2 (en) Grain processing
Marín et al. Anaerobic digestion of food waste coupled with biogas upgrading in an outdoors algal-bacterial photobioreactor at pilot scale
Marafon et al. Use of sugarcane vinasse to biogas, bioenergy, and biofertilizer production
CN110255712B (zh) 一种反硝化碳源的制备方法
CN110357251B (zh) 一种用于反硝化的复合碳源、制备方法及应用
De Bazua et al. Vinasses biological treatment by anaerobic and aerobic processes: laboratory and pilot-plant tests
CN108841873B (zh) 一种回用厌氧消化出水和酒糟清液生产乙醇的方法
Rustrian et al. Nitrate reduction in acidogenic reactor: influence of wastewater COD/N-NO3 ratio on denitrification and acidogenic activity
CN111252897B (zh) 一种羰基复合碳源生物补碳剂及其制备方法
CN217732781U (zh) 一种高稻壳含量的白酒酒糟和高浓度酿酒废水协同处理装置
CN114672521B (zh) 一种酒糟与沼液联合青贮生产丁酸的方法及其应用
CN114921506A (zh) 一种含有酒糟水解液的发酵培养基及赖氨酸发酵生产方法
Danilova et al. Bioutilization of the distillery stillage of different grain species from bioethanol production
CN1056526A (zh) 酒精酒糟废液处理工艺
CN217418322U (zh) 一种白酒酒糟和高浓度酿酒废水的联合处理装置
CN114853164B (zh) 一种白酒酒糟和高浓度酿酒废水联合处理方法及处理装置
CN113321339B (zh) 一种蒸发冷凝水资源化处理并回用生产燃料乙醇的方法
CN109182393B (zh) 一种回用厌氧消化出水和精塔残液生产乙醇的方法
Rezachek et al. General Process Survey

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination