CN117545017A - 一种面向无线供能移动边缘网络的在线计算卸载方法 - Google Patents

一种面向无线供能移动边缘网络的在线计算卸载方法 Download PDF

Info

Publication number
CN117545017A
CN117545017A CN202410026067.6A CN202410026067A CN117545017A CN 117545017 A CN117545017 A CN 117545017A CN 202410026067 A CN202410026067 A CN 202410026067A CN 117545017 A CN117545017 A CN 117545017A
Authority
CN
China
Prior art keywords
wireless
function
mobile edge
lyapunov
calculation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202410026067.6A
Other languages
English (en)
Other versions
CN117545017B (zh
Inventor
孙璐
梁日娜
万良田
林云
王小洁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Maritime University
Original Assignee
Dalian Maritime University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Maritime University filed Critical Dalian Maritime University
Priority to CN202410026067.6A priority Critical patent/CN117545017B/zh
Publication of CN117545017A publication Critical patent/CN117545017A/zh
Application granted granted Critical
Publication of CN117545017B publication Critical patent/CN117545017B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/09Management thereof
    • H04W28/0925Management thereof using policies
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/0464Convolutional networks [CNN, ConvNet]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/20Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/10Protocols in which an application is distributed across nodes in the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/09Management thereof
    • H04W28/0958Management thereof based on metrics or performance parameters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Computational Linguistics (AREA)
  • Molecular Biology (AREA)
  • Artificial Intelligence (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Health & Medical Sciences (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种面向无线供能移动边缘网络的在线计算卸载方法,涉及移动边缘计算技术领域,包括如下步骤:S1、建立随机任务数据到达和时变信道场景下无线供能辅助移动边缘计算模型的基本框架;S2、根据所述的无线供能辅助移动边缘计算模型的基本框架,对移动边缘计算资源分配进行数学建模,得到数学模型;S3、根据S2所得到的数学模型,利用李雅普诺夫优化方法结合基于模型的优化算法和无模型的机器学习方法在保证数据队列稳定性的前提下最大化所有无线设备的加权和计算速率,并联合优化无线供能持续时间、传输时间分配和计算卸载决策。本发明使用李雅普诺夫函数将随机优化问题解耦为每时间帧确定性问题,同时保证数据队列稳定性。

Description

一种面向无线供能移动边缘网络的在线计算卸载方法
技术领域
本发明涉及移动边缘计算技术领域,具体而言,尤其涉及一种面向无线供能移动边缘网络的在线计算卸载方法。
背景技术
新兴的移动边缘计算(Mobile Edge Computing,MEC)技术被广泛认为是提高无线设备计算性能的关键解决方案,特别是对于计算能力较低、尺寸受限的物联网设备。除了计算资源的限制外,可持续的无线设备能源供应成为另一个瓶颈。无线电力传输(WPT)被认为是MEC网络提供可持续能源的一种很有吸引力的解决方案,在MEC网络中,无线设备从能量发射器发射的射频信号中获取能量以传输信息。
现有的工作可通过射频能量发射器集成到MEC服务器中,将WPT应用于MEC。由于WPT的可控性,在无线供电的MEC系统中,用户的计算能量需求与边缘节点的无线供电之间的相互作用可以有效地调整和平衡。无线供电MEC系统设计需要解决的一个基本问题是:在考虑任务到达因果关系和能量收集约束的情况下,如何联合设计WPT、计算和通信资源分配,使无线供电MEC系统用户的计算速率最大。
近些年已有几项工作研究了无线供电MEC系统在各种设置下的联合WPT、通信和计算资源分配。然而,这些研究关注的是特定时隙的一次性优化,假设无线信道不变,用户处的静态任务模型不变,这将无法解决实际系统中动态任务到来带来的新设计挑战。CN117076121A公开了一种面向无线供能辅助移动边缘计算的智能任务分配方法,同时优化无线能量站的充电时间和终端设备的卸载路径选择来辅助移动边缘计算。然而,该专利仅考虑离线信道条件和任务数据到达,未考虑无线设备任务数据到达的随机性和信道条件的时变性,因此该专利所述方法无法解决在线条件(时变信道和随机任务数据到达)的计算卸载,在线计算卸载更加贴合实际情况。
发明内容
有鉴于此,本发明的目的在于提出一种面向无线供能移动边缘网络的在线计算卸载方法,以解决在在线情况下无线供能辅助移动边缘计算的通信和资源调度问题。
本发明采用的技术手段如下:
一种面向无线供能移动边缘网络的在线计算卸载方法,包括如下步骤:
S1、建立随机任务数据到达和时变信道场景下无线供能辅助移动边缘计算模型的基本框架;
S2、根据所述的无线供能辅助移动边缘计算模型的基本框架,对移动边缘计算资源分配进行数学建模,得到数学模型;
S3、根据S2所得到的数学模型,利用李雅普诺夫优化方法结合基于模型的优化算法和无模型的机器学习方法在保证数据队列稳定性的前提下最大化所有无线设备的加权和计算速率,采用拉格朗日对偶优化法对目标函数和分配比例决策进行资源分配,得到无线供能持续时间、传输时间分配和计算卸载决策。
进一步地,S1具体包括如下步骤:
S11、建立一个基站,多个无线设备系统模型,基站配备边缘计算服务器和射频能量发射器,每个设备都有一个天线,一个可充电电池,收集存储的能量,为设备的运行提供动力;将系统时间划分为等长的连续时间帧,表示第/>个时间帧,信道在单个时间帧内保持静态,但在不同时间帧中可能发生变化,/>表示第/>个时间帧的信道,并设置无线设备的任务数据到达服从指数分布,/>表示第/>个时间帧第/>个无线设备数据队列长度;
S12、根据时变信道条件和随机任务数据到达,无线设备从基站获取无线能量,进行合理的能量分配,使得所有无线设备加权和计算速率最大化,从而得到随机任务数据到达和时变信道场景下无线供能辅助移动边缘计算模型的基本框架。
进一步地,S2具体包括如下步骤:
建立如下目标函数:
其中,表示第/>个无线设备的权重,/>表示第/>个无线设备在第/>个时间帧的速率。
进一步地,S2中的目标函数为多阶段随机优化问题,S3具体包括如下步骤:
S31、通过设置李雅普诺夫函数、李雅普诺夫漂移及最小化漂移加惩罚上界的方法转化目标函数,并引入惩罚因子得到新的目标函数,将S2多阶段随机优化问题解耦为每时间帧确定性问题;
S32、所述无模型的机器学习方法为神经网络,系统生成信道信息和任务量并更新数据队列,将信道信息和数据队列/>输入至神经网络,得到关于能量的分配决策;
S33、将S32的分配决策进行单独处理以及加入噪声进行处理,得到一系列关于当前时刻用户能量的分配比例决策;
S34、所述基于模型的优化算法为拉格朗日对偶法,采用拉格朗日对偶方法对S31所得的目标函数和S33得到的分配比例决策进行资源分配,寻找使得目标函数最优的决策并得到该决策下对应的无线能量传输时间和无线设备的计算卸载方案。
进一步地,S31具体包括如下步骤:
S311、使用李雅普诺夫函数作为网络拥挤的度量标量,基于数据队列,李雅普诺夫函数值越小则表明所有队列都不拥挤,值越大表明至少存在一个队列拥挤,相应地用户等待处理的时间越长,李雅普诺夫函数定义为数据队列平方和形式,李雅普诺夫函数的公式如下:
其中,表示数据队列长度;
S312、将下一时间帧李雅普诺夫函数值减去当前时间帧李雅普诺夫函数值,得到李雅普诺夫漂移;所述李雅普诺夫漂移用来权衡资源分配策略的选择,通过控制函数在每一步的变化可以控制函数的最终值,李雅普诺夫漂移的公式如下:
S313、根据S312得到的李雅普诺夫漂移函数,将目标函数映射到合适的惩罚函数得到李雅普诺夫漂移加惩罚函数,公式如下:
其中,是非负的控制因子,通过调整/>的大小来获得数据队列积压减小和惩罚最小化的折中,最后得到的解是渐近最优解。
进一步地,S32具体包括如下步骤:
采用无模型的机器学习算法需借助历史数据,设置输入层,输出层,两个隐藏层,将信道条件与数据队列通过卷积神经网络,输出关于能量的分配决策。
进一步地,S33具体包括如下步骤:
根据神经网络输出的决策,衍生组决策,其中包含/>组加入噪声的卸载决策。
进一步地,S34具体包括如下步骤:
S341、通过引入对偶变量设置部分拉格朗日函数;
S342、求解部分拉格朗日函数对无线设备卸载任务时间的一阶偏导数,并令其等于零;
S343、根据朗伯函数的形式,化解上述S342部分拉格朗日一阶偏导等于零的函数,将无线设备卸载任务时间以及无线功率传输时间用关于对偶变量的函数表示;
S344、求解S341部分拉格朗日函数关于无线功率传输时间的一阶偏导数,并令其等于零;
S345、根据S344所得部分拉格朗日一阶偏导等于零的函数,采用二分法求解关于对偶变量的单调函数的极值点,即为当前最优计算卸载方案。
本发明还提供了一种存储介质,所述存储介质包括存储的程序,其中,所述程序运行时,执行上述任一项面向无线供能移动边缘网络的在线计算卸载方法。
本发明还提供了一种电子装置,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器通过所述计算机程序运行执行上述任一项面向无线供能移动边缘网络的在线计算卸载方法。
较现有技术相比,本发明具有以下优点:
1、本发明提出面向无线供能多用户移动边缘网络在线(时变信道条件和随机任务数据到达)计算卸载模型,相比于固定信道条件和已知任务数据的离线模型更加贴合实际情况;
2、本发明提供的基于李雅普诺夫的深度强化学习在线部分卸载算法,也称LyDROP算法,使用李雅普诺夫函数将随机优化问题解耦为每时间帧确定性问题,同时保证数据队列稳定性;
3、对于每时间帧确定性问题,本发明采用基于模型的优化(拉格朗日对偶法)与无模型的优化(神经网络)相结合的方式,既利用了历史数据,又使用了数学公式推导的方法,更好地完成了计算卸载。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图做以简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明基本框架图。
图2为本发明算法流程图。
图3为无线设备数量为10时,算法加权和计算速率结果对比图。
图4为无线设备数量为10时,算法平均数据队列长度结果对比图。
图5为无线设备数量为20时,算法加权和计算速率结果对比图。
图6为无线设备数量为20时,算法平均数据队列长度结果对比图。
图7为无线设备数量为30时,算法加权和计算速率结果对比图。
图8为无线设备数量为30时,算法平均数据队列长度结果对比图。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
如图1和2所示,本发明提供了一种面向无线供能移动边缘网络的在线计算卸载方法,包括如下步骤:
S1、建立随机任务数据到达和时变信道场景下无线供能辅助移动边缘计算模型的基本框架;
S11、建立一个基站,多个无线设备系统模型,基站配备边缘计算服务器和射频能量发射器,每个设备都有一个天线,一个可充电电池,收集存储的能量,为设备的运行提供动力;将系统时间划分为等长的连续时间帧,表示第/>个时间帧,信道在单个时间帧内保持静态,但在不同时间帧中可能发生变化,/>表示第/>个时间帧的信道,并设置无线设备的任务数据到达服从指数分布,/>表示第/>个时间帧第/>个无线设备数据队列长度;
S12、根据时变信道条件和随机任务数据到达,无线设备从基站获取无线能量,进行合理的能量分配,使得所有无线设备加权和计算速率最大化,从而得到随机任务数据到达和时变信道场景下无线供能辅助移动边缘计算模型的基本框架。
S2、根据所述的无线供能辅助移动边缘计算模型的基本框架,对移动边缘计算资源分配进行数学建模,得到数学模型;
建立如下目标函数:
其中,表示第/>个无线设备的权重,/>表示第/>个无线设备在第/>个时间帧的速率。
S3、根据S2所得到的数学模型,利用李雅普诺夫优化方法结合基于模型的优化算法和无模型的机器学习方法在保证数据队列稳定性的前提下最大化所有无线设备的加权和计算速率,采用拉格朗日对偶优化法对目标函数和分配比例决策进行资源分配,得到无线供能持续时间、传输时间分配和计算卸载决策。S2中的目标函数为多阶段随机优化问题。
S31、通过设置李雅普诺夫函数、李雅普诺夫漂移及最小化漂移加惩罚上界的方法转化目标函数,并引入惩罚因子得到新的目标函数,将S2多阶段随机优化问题解耦为每时间帧确定性问题;
S311、使用李雅普诺夫函数作为网络拥挤的度量标量,基于数据队列,李雅普诺夫函数值越小则表明所有队列都不拥挤,值越大表明至少存在一个队列拥挤,相应地用户等待处理的时间越长,李雅普诺夫函数定义为数据队列平方和形式,李雅普诺夫函数的公式如下:
其中,表示数据队列长度;
S312、将下一时间帧李雅普诺夫函数值减去当前时间帧李雅普诺夫函数值,得到李雅普诺夫漂移;所述李雅普诺夫漂移用来权衡资源分配策略的选择,通过控制函数在每一步的变化可以控制函数的最终值,李雅普诺夫漂移的公式如下:
S313、根据S312得到的李雅普诺夫漂移函数,将目标函数映射到合适的惩罚函数得到李雅普诺夫漂移加惩罚函数,公式如下:
其中,是非负的控制因子,通过调整/>的大小来获得数据队列积压减小和惩罚最小化的折中,最后得到的解是渐近最优解。
S32、所述无模型的机器学习方法为神经网络,系统生成信道信息和任务量并更新数据队列,将信道信息和数据队列/>输入至神经网络,得到关于能量的分配决策;
采用无模型的机器学习算法需借助历史数据,设置输入层,输出层,两个隐藏层,将信道条件与数据队列通过卷积神经网络,输出关于能量的分配决策。
S33、将S32的分配决策进行单独处理以及加入噪声进行处理,得到一系列关于当前时刻用户能量的分配比例决策;
根据神经网络输出的决策,衍生组决策,其中包含/>组加入噪声的卸载决策。
S34、所述基于模型的优化算法为拉格朗日对偶法,采用拉格朗日对偶方法对S31所得的目标函数和S33得到的分配比例决策进行资源分配,寻找使得目标函数最优的决策并得到该决策下对应的无线能量传输时间和无线设备的计算卸载方案。
S341、通过引入对偶变量设置部分拉格朗日函数;
S342、求解部分拉格朗日函数对无线设备卸载任务时间的一阶偏导数,并令其等于零;
S343、根据朗伯函数的形式,化解上述S342部分拉格朗日一阶偏导等于零的函数,将无线设备卸载任务时间以及无线功率传输时间用关于对偶变量的函数表示;
S344、求解S341部分拉格朗日函数关于无线功率传输时间的一阶偏导数,并令其等于零;
S345、根据S344所得部分拉格朗日一阶偏导等于零的函数,采用二分法求解关于对偶变量的单调函数的极值点,即为当前最优计算卸载方案。
本文提出的一种基于无线供能(WPT)辅助移动边缘计算在线任务分配方法,通过使用李雅普诺夫优化方法,结合基于模型的方法和无模型的机器学习算法,以最大化所有无线设备加权和计算速率为优化目标。
本实施例在实际的任务场景中进行实验,分别在终端无线设备数量下进行测试。本文的对比算法采用了李雅普诺夫结合坐标下降法(LyCD),李雅普诺夫结合随机部分卸载算法(LyRPO)以及短视算法(Myopic)。
如图3所示,为无线设备数量为10,相同时间范围内各算法加权和计算速率对比图。
如图4所示,为无线设备数量为10,相同时间范围内各算法下平均数据队列长度对比图。
由图3和图4可以看出,在无线设备数量为10时,尽管短视算法可以保证较高的计算速率,但是它无法保证数据队列的稳定性,所以在接下来的对比算法中,将不再考虑短视算法。
如图5所示,为无线设备数量为20,相同时间范围内各算法加权和计算速率对比图。
如图6所示,为无线设备数量为20,相同时间范围内各算法下平均数据队列长度对比图。
如图7所示,为无线设备数量为30,相同时间范围内各算法加权和计算速率对比图。
如图8所示,为无线设备数量为30,相同时间范围内各算法下平均数据队列长度对比图。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (8)

1.一种面向无线供能移动边缘网络的在线计算卸载方法,其特征在于,包括如下步骤:
S1、建立随机任务数据到达和时变信道场景下无线供能辅助移动边缘计算模型的基本框架;
S11、建立一个基站,多个无线设备系统模型,基站配备边缘计算服务器和射频能量发射器,每个设备都有一个天线,一个可充电电池,收集存储的能量,为设备的运行提供动力;将系统时间划分为等长的连续时间帧,表示第/>个时间帧,信道在单个时间帧内保持静态,但在不同时间帧中可能发生变化,/>表示第/>个时间帧的信道,并设置无线设备的任务数据到达服从指数分布,/>表示第/>个时间帧第/>个无线设备数据队列长度;
S12、根据时变信道条件和随机任务数据到达,无线设备从基站获取无线能量,进行合理的能量分配,使得所有无线设备加权和计算速率最大化,从而得到随机任务数据到达和时变信道场景下无线供能辅助移动边缘计算模型的基本框架;
S2、根据所述的无线供能辅助移动边缘计算模型的基本框架,对移动边缘计算资源分配进行数学建模,得到数学模型如下:
其中,表示第/>个无线设备的权重,/>表示第/>个无线设备在第/>个时间帧的速率;
S3、根据S2所得到的数学模型,利用李雅普诺夫优化方法结合基于模型的优化算法和无模型的机器学习方法在保证数据队列稳定性的前提下最大化所有无线设备的加权和计算速率,采用拉格朗日对偶优化法对目标函数和分配比例决策进行资源分配,得到无线供能持续时间、传输时间分配和计算卸载决策。
2.根据权利要求1所述的面向无线供能移动边缘网络的在线计算卸载方法,其特征在于,S2中的目标函数为多阶段随机优化问题,S3具体包括如下步骤:
S31、通过设置李雅普诺夫函数、李雅普诺夫漂移及最小化漂移加惩罚上界的方法转化目标函数,并引入惩罚因子得到新的目标函数,将S2多阶段随机优化问题解耦为每时间帧确定性问题;
S32、所述无模型的机器学习方法为神经网络,系统生成信道信息和任务量并更新数据队列,将信道信息和数据队列/>输入至神经网络,得到关于能量的分配决策;
S33、将S32的分配决策进行单独处理以及加入噪声进行处理,得到一系列关于当前时刻用户能量的分配比例决策;
S34、所述基于模型的优化算法为拉格朗日对偶法,采用拉格朗日对偶方法对S31所得的目标函数和S33得到的分配比例决策进行资源分配,寻找使得目标函数最优的决策并得到该决策下对应的无线能量传输时间和无线设备的计算卸载方案。
3.根据权利要求2所述的面向无线供能移动边缘网络的在线计算卸载方法,其特征在于,S31具体包括如下步骤:
S311、使用李雅普诺夫函数作为网络拥挤的度量标量,基于数据队列,李雅普诺夫函数值越小则表明所有队列都不拥挤,值越大表明至少存在一个队列拥挤,相应地用户等待处理的时间越长,李雅普诺夫函数定义为数据队列平方和形式,李雅普诺夫函数的公式如下:
其中,表示数据队列长度;
S312、将下一时间帧李雅普诺夫函数值减去当前时间帧李雅普诺夫函数值,得到李雅普诺夫漂移;所述李雅普诺夫漂移用来权衡资源分配策略的选择,通过控制函数在每一步的变化可以控制函数的最终值,李雅普诺夫漂移的公式如下:
S313、根据S312得到的李雅普诺夫漂移函数,将目标函数映射到合适的惩罚函数得到李雅普诺夫漂移加惩罚函数,公式如下:
其中,是非负的控制因子,通过调整/>的大小来获得数据队列积压减小和惩罚最小化的折中,最后得到的解是渐近最优解。
4.根据权利要求2所述的面向无线供能移动边缘网络的在线计算卸载方法,其特征在于,S32具体包括如下步骤:
采用无模型的机器学习算法需借助历史数据,设置输入层,输出层,两个隐藏层,将信道条件与数据队列通过卷积神经网络,输出关于能量的分配决策。
5.根据权利要求2所述的面向无线供能移动边缘网络的在线计算卸载方法,其特征在于,S33具体包括如下步骤:
根据神经网络输出的决策,衍生组决策,其中包含/>组加入噪声的卸载决策。
6.根据权利要求2所述的面向无线供能移动边缘网络的在线计算卸载方法,其特征在于,S34具体包括如下步骤:
S341、通过引入对偶变量设置部分拉格朗日函数;
S342、求解部分拉格朗日函数对无线设备卸载任务时间的一阶偏导数,并令其等于零;
S343、根据朗伯函数的形式,化解上述S342部分拉格朗日一阶偏导等于零的函数,将无线设备卸载任务时间以及无线功率传输时间用关于对偶变量的函数表示;
S344、求解S341部分拉格朗日函数关于无线功率传输时间的一阶偏导数,并令其等于零;
S345、根据S344所得部分拉格朗日一阶偏导等于零的函数,采用二分法求解关于对偶变量的单调函数的极值点,即为当前最优计算卸载方案。
7.一种存储介质,其特征在于,所述存储介质包括存储的程序,其中,所述程序运行时,执行所述权利要求1至6中任一项权利要求所述的面向无线供能移动边缘网络的在线计算卸载方法。
8.一种电子装置,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其特征在于,所述处理器通过所述计算机程序运行执行所述权利要求1至6中任一项权利要求所述的面向无线供能移动边缘网络的在线计算卸载方法。
CN202410026067.6A 2024-01-09 2024-01-09 一种面向无线供能移动边缘网络的在线计算卸载方法 Active CN117545017B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410026067.6A CN117545017B (zh) 2024-01-09 2024-01-09 一种面向无线供能移动边缘网络的在线计算卸载方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410026067.6A CN117545017B (zh) 2024-01-09 2024-01-09 一种面向无线供能移动边缘网络的在线计算卸载方法

Publications (2)

Publication Number Publication Date
CN117545017A true CN117545017A (zh) 2024-02-09
CN117545017B CN117545017B (zh) 2024-03-19

Family

ID=89786491

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410026067.6A Active CN117545017B (zh) 2024-01-09 2024-01-09 一种面向无线供能移动边缘网络的在线计算卸载方法

Country Status (1)

Country Link
CN (1) CN117545017B (zh)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109857546A (zh) * 2019-01-03 2019-06-07 武汉理工大学 基于Lyapunov优化的多服务器移动边缘计算卸载方法及装置
CN110621031A (zh) * 2019-07-31 2019-12-27 中南大学 一种基于异构能量获取的多用户多任务移动边缘计算节能方法
KR20210062944A (ko) * 2019-11-22 2021-06-01 한양대학교 에리카산학협력단 멀티 에이전트 다중슬롯머신 알고리즘을 이용한 무선 통신 네트워크에서의 랜덤 액세스 기법
CN113064665A (zh) * 2021-03-18 2021-07-02 四川大学 一种基于李雅普诺夫优化的多服务器计算卸载方法
CN113377447A (zh) * 2021-05-28 2021-09-10 四川大学 一种基于李雅普诺夫优化的多用户计算卸载方法
US20210409305A1 (en) * 2018-11-20 2021-12-30 Zte Corporation Method and apparatus for determining forwarding port in information centeric network
CN113905347A (zh) * 2021-09-29 2022-01-07 华北电力大学 一种空地一体化电力物联网云边端协同方法
CN114143355A (zh) * 2021-12-08 2022-03-04 华北电力大学 一种电力物联网低时延安全云边端协同方法
CN114697333A (zh) * 2022-03-22 2022-07-01 重庆邮电大学 一种能量队列均衡的边缘计算方法
CN115052297A (zh) * 2022-06-01 2022-09-13 山东大学 一种用于地海通信网络的功率分配及中继设计方法
CN116209084A (zh) * 2023-03-07 2023-06-02 重庆邮电大学 一种能量收集mec系统中任务卸载和资源分配方法
CN117062025A (zh) * 2023-09-19 2023-11-14 重庆邮电大学 一种车联网节能联合计算卸载与资源分配方法
CN117076121A (zh) * 2023-08-21 2023-11-17 大连海事大学 一种面向无线供能辅助移动边缘计算的智能任务分配方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210409305A1 (en) * 2018-11-20 2021-12-30 Zte Corporation Method and apparatus for determining forwarding port in information centeric network
CN109857546A (zh) * 2019-01-03 2019-06-07 武汉理工大学 基于Lyapunov优化的多服务器移动边缘计算卸载方法及装置
CN110621031A (zh) * 2019-07-31 2019-12-27 中南大学 一种基于异构能量获取的多用户多任务移动边缘计算节能方法
KR20210062944A (ko) * 2019-11-22 2021-06-01 한양대학교 에리카산학협력단 멀티 에이전트 다중슬롯머신 알고리즘을 이용한 무선 통신 네트워크에서의 랜덤 액세스 기법
CN113064665A (zh) * 2021-03-18 2021-07-02 四川大学 一种基于李雅普诺夫优化的多服务器计算卸载方法
CN113377447A (zh) * 2021-05-28 2021-09-10 四川大学 一种基于李雅普诺夫优化的多用户计算卸载方法
CN113905347A (zh) * 2021-09-29 2022-01-07 华北电力大学 一种空地一体化电力物联网云边端协同方法
CN114143355A (zh) * 2021-12-08 2022-03-04 华北电力大学 一种电力物联网低时延安全云边端协同方法
CN114697333A (zh) * 2022-03-22 2022-07-01 重庆邮电大学 一种能量队列均衡的边缘计算方法
CN115052297A (zh) * 2022-06-01 2022-09-13 山东大学 一种用于地海通信网络的功率分配及中继设计方法
CN116209084A (zh) * 2023-03-07 2023-06-02 重庆邮电大学 一种能量收集mec系统中任务卸载和资源分配方法
CN117076121A (zh) * 2023-08-21 2023-11-17 大连海事大学 一种面向无线供能辅助移动边缘计算的智能任务分配方法
CN117062025A (zh) * 2023-09-19 2023-11-14 重庆邮电大学 一种车联网节能联合计算卸载与资源分配方法

Also Published As

Publication number Publication date
CN117545017B (zh) 2024-03-19

Similar Documents

Publication Publication Date Title
Qian et al. NOMA assisted multi-task multi-access mobile edge computing via deep reinforcement learning for industrial Internet of Things
Chen et al. A DRL agent for jointly optimizing computation offloading and resource allocation in MEC
Liu et al. Resource allocation for edge computing in IoT networks via reinforcement learning
Zhang et al. Distributed energy management for multiuser mobile-edge computing systems with energy harvesting devices and QoS constraints
Liu et al. Online computation offloading and resource scheduling in mobile-edge computing
CN110928654B (zh) 一种边缘计算系统中分布式的在线任务卸载调度方法
Ren et al. Deep reinforcement learning based computation offloading in fog enabled industrial internet of things
Sun et al. Autonomous resource slicing for virtualized vehicular networks with D2D communications based on deep reinforcement learning
CN108958916A (zh) 一种移动边缘环境下工作流卸载优化算法
CN114650228B (zh) 一种异构网络中基于计算卸载的联邦学习调度方法
Zhang et al. Deep reinforcement learning based cooperative partial task offloading and resource allocation for IIoT applications
CN115175217A (zh) 一种基于多智能体的资源分配和任务卸载优化方法
Ouyang et al. Cost-aware edge resource probing for infrastructure-free edge computing: From optimal stopping to layered learning
Zhang et al. A deep reinforcement learning approach for online computation offloading in mobile edge computing
Zhu et al. Learn and pick right nodes to offload
Yang et al. Cooperative task offloading for mobile edge computing based on multi-agent deep reinforcement learning
Wang et al. Multi-layer computation offloading in distributed heterogeneous mobile edge computing networks
Muccini et al. Leveraging machine learning techniques for architecting self-adaptive iot systems
Hlophe et al. AI meets CRNs: A prospective review on the application of deep architectures in spectrum management
Xu et al. Deep reinforcement learning for dynamic access control with battery prediction for mobile-edge computing in green iot networks
Kashyap et al. DECENT: Deep learning enabled green computation for edge centric 6G networks
CN113821346A (zh) 基于深度强化学习的边缘计算中计算卸载与资源管理方法
Zhou et al. Hierarchical multi-agent deep reinforcement learning for energy-efficient hybrid computation offloading
CN117545017B (zh) 一种面向无线供能移动边缘网络的在线计算卸载方法
Xie et al. Backscatter-aided hybrid data offloading for mobile edge computing via deep reinforcement learning

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant