CN117522902A - 一种基于测地线模型的自适应割方法及设备 - Google Patents

一种基于测地线模型的自适应割方法及设备 Download PDF

Info

Publication number
CN117522902A
CN117522902A CN202410008844.4A CN202410008844A CN117522902A CN 117522902 A CN117522902 A CN 117522902A CN 202410008844 A CN202410008844 A CN 202410008844A CN 117522902 A CN117522902 A CN 117522902A
Authority
CN
China
Prior art keywords
edge
function
image
representing
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202410008844.4A
Other languages
English (en)
Other versions
CN117522902B (zh
Inventor
刘丽
张伟杰
陈达
王友明
梁宏达
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qilu University of Technology
Shandong Institute of Artificial Intelligence
Original Assignee
Qilu University of Technology
Shandong Institute of Artificial Intelligence
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qilu University of Technology, Shandong Institute of Artificial Intelligence filed Critical Qilu University of Technology
Priority to CN202410008844.4A priority Critical patent/CN117522902B/zh
Publication of CN117522902A publication Critical patent/CN117522902A/zh
Application granted granted Critical
Publication of CN117522902B publication Critical patent/CN117522902B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/12Edge-based segmentation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Image Analysis (AREA)
  • Image Processing (AREA)

Abstract

本发明涉及图像分割技术领域,具体涉及一种基于测地线模型的自适应割方法及设备,方法的具体步骤如下:输入目标图像,给定位与目标图像的目标区域内部的点;构建边缘特征函数;计算得到给定图像的边缘外观特征,构建边缘度量函数;计算到图像边界的自适应割;模型中包含测地线方法和边缘度量函数,自适应割方法能够通过目标区域边缘,使目标轮廓与自适应割仅存在一个交点,为后续各种各样的分割方法提供有利条件;同时,自适应割使用边缘度量函数,该指标在目标轮廓处具有高的函数值,其他区域具有低函数值,这种度量促使自适应割沿着梯度下降的方法传播。

Description

一种基于测地线模型的自适应割方法及设备
技术领域
本发明涉及图像分割技术领域,尤其涉及一种基于测地线模型的自适应割方法及设备。
背景技术
图像分割是进行图像分析的关键步骤,是一种把图像划分成若干具有较高相似性的区域并提取感兴趣区域的技术,图像分割具有多种分割模型,其中之一是最小路径模型,该模型致力于使用一系列分段并且受到约束的测地线路径来构建闭合轮廓,最小路径模型依赖于鞍点或关键点的探测,这就要求其需要一个源点来寻找闭合轮廓,环形最小路径方法是最小路径模型的一种方法,它将每个轮廓视为一个简单的闭合最小路径。
目前,环形测地线模型提供了一种使用目标轮廓内的单个点计算闭合测地线路径的途径,其关键思想是在基于轴割图像域重建一个新空间,该轴割从内部源点发出到图像边界结束,并且其方向与轴的方向一致。在环形测地线模型中,重建空间是与轴割相关的三维空间,其中第三维表示轴割与轮廓相交的数量,由于轴割是一条从源点发出的直线,因此可能与目标轮廓存在多个交点,在图像分割过程可能会增加计算成本和造成分割精度降低的风险。与轴割的射线段相反,本发明所提出的自适应割是一种源点位于目标轮廓内终点位于图像边界上的连续的参数曲线,并且自适应割只与目标轮廓相交一次。
因此,针对上述问题,提出一种基于测地线模型的自适应割方法及设备,来解决上述问题。
发明内容
本发明针对现有技术的不足,研制一种基于测地线模型的自适应割方法及设备,该发明可以有效降低后续进行图像分割的计算复杂度。
S1.输入目标图像,并给定位于目标图像/>中目标区域内部的固定源点/>
S2.通过将目标图像与高斯核的梯度算子进行卷积,计算得到基于图像梯度度量构造的给定图像的边缘特征函数,然后进行归一化操作,生成新的边缘特征函数;
S3.根据新的边缘特征函数中目标图像的边缘结构信息构建边缘度量函数;
S4.通过使用测地线距离图上的梯度下降常微分方程的解/>来获得到图像边界的自适应割的参数化曲线/>
进一步地,S1的具体步骤设定如下:目标图像定义为空间/>到空间/>的映射,记作,其中/>为实数空间,/>为图像的定义域,/>,/>为二维实数空间,/>为三维实数空间。
进一步地,S2具体步骤如下:
S21.将目标图像与高斯核的梯度算子进行卷积,得到边缘外观特征,所述边缘特征函数具体表达式如下:
其中是卷积运算符,/>表示标准导数为/>的高斯核,/>和/>分别表示沿/>轴和/>轴方向的偏导数,/>代表目标图像的第/>维,/>为目标图像的维数,/>为求和符号,/>表示目标图像上的点;
S22.将边缘特征函数的大小归一化到范围/>内生成新的边缘特征函数/>,具体表达式如下:
其中是边缘特征函数/>的正无穷大范数,/>表示目标图像/>上的点。
进一步地,S3具体步骤如下:
S31. Lipschitz连续曲线为空间/>到空间/>的映射,记作/>,Lipschitz连续曲线/>的加权曲线长度记作/>,用公式表示为:
其中,表示Lipschitz连续曲线/>的一阶导数,/>为空间/>到空间/>的映射范围内的度量函数,记作/>,/>表示一维正实数空间,度量函数/>在目标区域边缘具有较高值的函数值,在其他区域具有较低函数值;
S32.根据新的边缘特征函数提供的目标图像/>的边缘结构信息构建边缘度量函数,度量函数/>根据定义等于边缘度量函数/>,记作/>,/>表示根据定义等于;
S33.边缘度量函数表示为:
其中表示正常数,/>表示新的边缘特征函数。
进一步地,S4具体步骤如下:
S41.确定自适应割参数化曲线的终点/>,/>,通过公式:
其中,表示目标区域内部的固定源点,/>表示以/>为源点,/>为终点的测地线距离图,/>表示求/>最小时参数的取值,/>表示图像定义域/>的偏微分表示图像的边界;
S42.通过测地线距离图上的梯度下降常微分方程的解/>获得自适应割的参数化曲线/>,通过与边界条件/>的边缘度量函数/>关联的Eikonal偏微分方程获得测地线距离图/>,测地线距离图/>为空间/>到空间/>的映射,/>表示包含0和正实数的非负实数集;
S43.测地线距离图的计算公式为:/>
其中表示包含0和正实数的非负实数集,/>表示函数的下确界,/>表示包含所有Lipschitz连续曲线/>的集合,/>为目标区域内部给定的固定源点,/>为曲线/>的能量函数,/>表示目标图像中的一个点;
S44.梯度下降常微分方程ODE的计算公式为:
其中,,翻转路径/>表示翻转路径,/>表示对/>求导,/>表示梯度算子,/>表示/>的标准欧氏梯度,目标图像/>上的点/>,/>是一固定源点,当目标点/>到达源点/>时运算终止,分别令/>,/>,通过翻转路径/>检索弧长参数化的测地线路径/>
S45.测地线距离图满足如下Eikonal偏微分方程:
其中,表示图像的定义域/>与目标区域内部的固定源点/>的差集,/>表示梯度算子,/>表示/>的标准欧氏梯度,/>表示度量函数。
本发明还提供了一种计算设备,包括存储器,其被配置成存储计算机可执行指令;处理器,其被配置成当所述计算机可执行指令被处理器执行时执行基于测地线模型的自适应割方法。
本发明还提供了一种计算机可读存储介质,其存储有计算机可执行指令,当所述计算机可执行指令被执行时,执行基于测地线模型的自适应割方法。
发明内容中提供的效果仅仅是实施例的效果,而不是发明所有的全部效果,上述技术方案具有如下优点或有益效果:
本发明提供了一种基于测地线模型的自适应割方法及设备,模型中包含测地线方法和边缘度量函数;所述的自适应割方法能够通过目标区域边缘,使目标轮廓与自适应割仅存在一个交点,从而为后续各种各样的分割方法提供有利条件;同时,由于自适应割使用了边缘度量函数,该指标在目标轮廓处具有高的函数值,其他区域具有低函数值,这种度量促使自适应割沿着梯度下降的方法传播;与轴割方法相比,轴割可能与目标轮廓有多个交点,而所提出的自适应割与目标轮廓只有一个交点,可以有效降低后续进行图像分割的计算复杂度,证明了所述的自适应割模型的优势。本发明中的模型能通过在目标区域内提供的任意源点来构建通过目标区域边缘的自适应割,从而为后续的图像分割提供关键的初始条件。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。
图1为本发明的方法流程示意图。
图2为本发明中的自适应割方法与其他方法的结果对比图,其中,(a)为轴割,(b)为自适应割。
具体实施方式
在接下来的描述中进一步阐述了本发明的具体细节用于充分理解本发明。本发明中的说明书所使用的术语只是为了用于说明本发明的优点和特点,不是旨在于限制本发明。
实施例1 如图1所示,本发明提供了一种基于测地线模型的自适应割方法,包括如下步骤:
S1.输入目标图像,并给定位于目标图像/>中目标区域内部的固定源点/>
S2.通过将目标图像与高斯核的梯度算子进行卷积,计算得到基于图像梯度度量构造的给定图像的边缘特征函数,然后进行归一化操作,生成新的边缘特征函数;
S3.根据新的边缘特征函数中目标图像的边缘结构信息构建边缘度量函数;
S4.通过使用测地线距离图上的梯度下降常微分方程的解/>来获得到图像边界的自适应割的参数化曲线/>
进一步地,S1的具体步骤设定如下:目标图像定义为空间/>到空间/>的映射,记作,其中/>为实数空间,/>为图像的定义域,/>,/>为二维实数空间,/>为三维实数空间。
进一步地,S2具体步骤如下:
S21.将目标图像与高斯核的梯度算子进行卷积,得到边缘外观特征,所述边缘特征函数具体表达式如下:
其中是卷积运算符,/>表示标准导数为/>的高斯核,/>和/>分别表示沿/>轴和/>轴方向的偏导数,/>代表目标图像的第/>维,/>为目标图像的维数,/>为求和符号,/>表示目标图像上的点;
S22.将边缘特征函数的大小归一化到范围/>内生成新的边缘特征函数/>,具体表达式如下:
其中是边缘特征函数/>的正无穷大范数,/>表示目标图像/>上的点。
进一步地,S3具体步骤如下:
S31. Lipschitz连续曲线为空间/>到空间/>的映射,记作/>,Lipschitz连续曲线/>的加权曲线长度记作/>,用公式表示为:
其中,表示Lipschitz连续曲线/>的一阶导数,/>为空间/>到空间/>的映射范围内的度量函数,记作/>,/>表示一维正实数空间,度量函数/>在目标区域边缘具有较高值的函数值,在其他区域具有较低函数值;
S32.根据新的边缘特征函数提供的目标图像/>的边缘结构信息构建边缘度量函数,度量函数/>根据定义等于边缘度量函数/>,记作/>,/>表示根据定义等于;
S33.边缘度量函数表示为:
其中表示正常数,/>表示新的边缘特征函数。
进一步地,S4具体步骤如下:
S41.确定自适应割参数化曲线的终点/>,/>,通过公式:
其中,表示目标区域内部的固定源点,/>表示以/>为源点,/>为终点的测地线距离图,/>表示求/>最小时参数的取值,/>表示图像定义域/>的偏微分表示图像的边界;
S42.通过测地线距离图上的梯度下降常微分方程的解/>获得自适应割的参数化曲线/>,通过与边界条件/>的边缘度量函数/>关联的Eikonal偏微分方程获得测地线距离图/>,测地线距离图/>为空间/>到空间/>的映射,/>表示包含0和正实数的非负实数集;
S43.测地线距离图的计算公式为:/>
其中表示包含0和正实数的非负实数集,/>表示函数的下确界,/>表示包含所有Lipschitz连续曲线/>的集合,/>为目标区域内部给定的固定源点,/>为曲线/>的能量函数,/>表示目标图像中的一个点;
S44.梯度下降常微分方程ODE的计算公式为:
其中,,翻转路径/>表示翻转路径,/>表示对/>求导,/>表示梯度算子,/>表示/>的标准欧氏梯度,目标图像/>上的点/>,/>是一固定源点,当目标点/>到达源点/>时运算终止,分别令/>,/>,通过翻转路径/>检索弧长参数化的测地线路径/>
S45.测地线距离图满足如下Eikonal偏微分方程:
其中,表示图像的定义域/>与目标区域内部的固定源点/>的差集,/>表示梯度算子,/>表示/>的标准欧氏梯度,/>表示度量函数。
实施例2 一种计算设备,包括存储器,其被配置成存储计算机可执行指令;处理器,其被配置成当所述计算机可执行指令被处理器执行时执行基于测地线模型的自适应割方法。
实施例3 一种计算机可读存储介质,其存储有计算机可执行指令,当所述计算机可执行指令被执行时,执行基于测地线模型的自适应割方法。
实施例4 如图2所示,图2为本发明中的自适应割方法与其他方法的结果对比图,其中,(a)为轴割,(b)为自适应割,将图2中(b)自适应割与图2中(a)轴割进行比较,轴割与目标轮廓有多个交点,而本发明所提出的自适应割与目标轮廓只有一个交点,可以有效降低后续进行图像分割的计算复杂度。
上述虽然结合附图对发明的具体实施方式进行了描述,但并非对本发明保护范围的限制,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。

Claims (7)

1.一种基于测地线模型的自适应割方法,其特征是,包括如下步骤:
S1.输入目标图像,并给定位于目标图像/>中目标区域内部的固定源点/>
S2.通过将目标图像与高斯核的梯度算子进行卷积,计算得到基于图像梯度度量构造的给定图像的边缘特征函数,然后进行归一化操作,生成新的边缘特征函数;
S3.根据新的边缘特征函数中目标图像的边缘结构信息构建边缘度量函数;
S4.通过使用测地线距离图上的梯度下降常微分方程的解/>来获得到图像边界的自适应割的参数化曲线/>
2.根据权利要求1所述的基于测地线模型的自适应割方法,其特征是:S1的具体步骤设定如下:目标图像定义为空间/>到空间/>的映射,记作/>,其中/>为实数空间,/>为图像的定义域,/>,/>为二维实数空间,/>为三维实数空间。
3.根据权利要求2所述的基于测地线模型的自适应割方法,其特征是:S2具体步骤如下:
S21.将目标图像与高斯核的梯度算子进行卷积,得到边缘外观特征,所述边缘特征函数具体表达式如下:
其中是卷积运算符,/>表示标准导数为/>的高斯核,/>和/>分别表示沿/>轴和/>轴方向的偏导数,/>代表目标图像的第/>维,/>为目标图像的维数,/>为求和符号,/>表示目标图像上的点;
S22.将边缘特征函数的大小归一化到范围/>内生成新的边缘特征函数/>,具体表达式如下:
其中是边缘特征函数/>的正无穷大范数,/>表示目标图像/>上的点。
4.根据权利要求3所述的基于测地线模型的自适应割方法,其特征是:S3具体步骤如下:
S31. Lipschitz连续曲线为空间/>到空间/>的映射,记作/>,Lipschitz连续曲线/>的加权曲线长度记作/>,用公式表示为:
其中,表示Lipschitz连续曲线/>的一阶导数,/>为空间/>到空间/>的映射范围内的度量函数,记作/>,/>表示一维正实数空间;
S32.根据新的边缘特征函数提供的目标图像/>的边缘结构信息构建边缘度量函数,度量函数/>根据定义等于边缘度量函数/>,记作/>,/>表示根据定义等于;
S33.边缘度量函数表示为:
其中是正常数,/>是新的边缘特征函数。
5.根据权利要求4所述的基于测地线模型的自适应割方法,其特征是:S4具体步骤如下:
S41.确定自适应割参数化曲线的终点/>,/>,通过公式:
其中,表示目标区域内部的固定源点,/>表示以/>为源点,/>为终点的测地线距离图,表示求/>最小时参数的取值,/>表示图像定义域/>的偏微分表示图像的边界;
S42.通过测地线距离图上的梯度下降常微分方程的解/>获得自适应割的参数化曲线/>,通过与边界条件/>的边缘度量函数/>关联的Eikonal偏微分方程获得测地线距离图/>,测地线距离图/>为空间/>到空间/>的映射/>表示包含0和正实数的非负实数集;
S43.测地线距离图的计算公式为:/>
其中表示包含0和正实数的非负实数集,/>表示函数的下确界,/>表示包含所有Lipschitz连续曲线/>的集合,/>为目标区域内部给定的固定源点,/>为曲线/>的能量函数,/>表示目标图像中的一个点;
S44.梯度下降常微分方程ODE的计算公式为:
其中,,翻转路径/>表示翻转路径,/>表示对/>求导,/>表示梯度算子,表示/>的标准欧氏梯度,目标图像/>上的点/>,/>是一固定源点,当目标点/>到达源点时运算终止,分别令/>,/>,通过翻转路径/>检索弧长参数化的测地线路径/>
S45.测地线距离图满足如下Eikonal偏微分方程:
其中,表示图像的定义域/>与目标区域内部的固定源点/>的差集,/>表示梯度算子,/>表示/>的标准欧氏梯度,/>表示度量函数。
6.一种计算设备,其特征是:包括存储器,其被配置成存储计算机可执行指令;处理器,其被配置成当所述计算机可执行指令被处理器执行时执行如权利要求1-5中的任一项所述的方法。
7.一种计算机可读存储介质,其特征是:其存储有计算机可执行指令,当所述计算机可执行指令被执行时,执行如权利要求1-5中的任一项所述的方法。
CN202410008844.4A 2024-01-04 2024-01-04 一种基于测地线模型的自适应割方法及设备 Active CN117522902B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410008844.4A CN117522902B (zh) 2024-01-04 2024-01-04 一种基于测地线模型的自适应割方法及设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410008844.4A CN117522902B (zh) 2024-01-04 2024-01-04 一种基于测地线模型的自适应割方法及设备

Publications (2)

Publication Number Publication Date
CN117522902A true CN117522902A (zh) 2024-02-06
CN117522902B CN117522902B (zh) 2024-03-29

Family

ID=89753439

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410008844.4A Active CN117522902B (zh) 2024-01-04 2024-01-04 一种基于测地线模型的自适应割方法及设备

Country Status (1)

Country Link
CN (1) CN117522902B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117853320A (zh) * 2024-03-07 2024-04-09 电子科技大学成都学院 一种基于多媒体操控的图像映射方法、系统及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080247646A1 (en) * 2007-04-04 2008-10-09 Siemens Corporate Research, Inc. Method for segmenting an image using constrained graph partitioning of watershed adjacency graphs
CN112651933A (zh) * 2020-12-21 2021-04-13 山东省人工智能研究院 基于测地线距离图和程函方程的血管分割方法
CN114445443A (zh) * 2022-01-24 2022-05-06 山东省人工智能研究院 基于非对称测地线距离的交互式图像分割方法
CN114972388A (zh) * 2022-05-23 2022-08-30 山东省人工智能研究院 基于非对称测地线的交互式图像分割方法
US20220414891A1 (en) * 2019-09-09 2022-12-29 South China University Of Technology Method for automatic segmentation of fuzzy boundary image based on active contour and deep learning
CN115984288A (zh) * 2022-11-29 2023-04-18 山东省人工智能研究院 基于关键点检测与非对称测地线生长模型的图像分割方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080247646A1 (en) * 2007-04-04 2008-10-09 Siemens Corporate Research, Inc. Method for segmenting an image using constrained graph partitioning of watershed adjacency graphs
US20220414891A1 (en) * 2019-09-09 2022-12-29 South China University Of Technology Method for automatic segmentation of fuzzy boundary image based on active contour and deep learning
CN112651933A (zh) * 2020-12-21 2021-04-13 山东省人工智能研究院 基于测地线距离图和程函方程的血管分割方法
CN114445443A (zh) * 2022-01-24 2022-05-06 山东省人工智能研究院 基于非对称测地线距离的交互式图像分割方法
CN114972388A (zh) * 2022-05-23 2022-08-30 山东省人工智能研究院 基于非对称测地线的交互式图像分割方法
CN115984288A (zh) * 2022-11-29 2023-04-18 山东省人工智能研究院 基于关键点检测与非对称测地线生长模型的图像分割方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
孟颖慧;潘杨;朱磊;冯于珍;: "使用测地线活动轮廓模型的合成孔径雷达图像分割方法", 科学技术与工程, no. 20, 18 July 2020 (2020-07-18) *
潘改;高立群;张萍;: "基于LBF方法的测地线活动轮廓模型", 模式识别与人工智能, no. 12, 15 December 2013 (2013-12-15) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117853320A (zh) * 2024-03-07 2024-04-09 电子科技大学成都学院 一种基于多媒体操控的图像映射方法、系统及存储介质
CN117853320B (zh) * 2024-03-07 2024-05-28 电子科技大学成都学院 一种基于多媒体操控的图像映射方法、系统及存储介质

Also Published As

Publication number Publication date
CN117522902B (zh) 2024-03-29

Similar Documents

Publication Publication Date Title
Miklos et al. Discrete scale axis representations for 3D geometry
CN117522902B (zh) 一种基于测地线模型的自适应割方法及设备
US9208609B2 (en) Method for fitting primitive shapes to 3D point clouds using distance fields
EP2082370B1 (en) Generalized rigid alignment of 3d ear impression models
US10311099B2 (en) Method and system for 3D model database retrieval
CN111553858B (zh) 基于生成对抗网络的图像修复方法、系统及其应用
CN109829353B (zh) 一种基于空间约束的人脸图像风格化方法
WO2021136368A1 (zh) 钼靶图像中胸大肌区域自动检测方法及装置
WO2022193750A1 (zh) 一种基于深度学习的乳腺图像配准方法
WO2022116678A1 (zh) 目标物体位姿确定方法、装置、存储介质及电子设备
CN108305268B (zh) 一种图像分割方法及装置
CN111047608A (zh) 一种基于Distance-AttU-Net的端到端的乳腺超声图像的分割方法
Guo et al. SGLBP: Subgraph‐based local binary patterns for feature extraction on point clouds
CN116648723A (zh) 材料微结构的分析方法和装置
Gao et al. Extracting closed object contour in the image: remove, connect and fit
CN114445419A (zh) 一种基于支气管拓扑结构的肺段分割方法、装置及系统
Hauenstein et al. Curvature determination in range images: new methods and comparison study
Gan et al. Application study of PointNet++ and hybrid filtering based point cloud denoising and segmentation algorithms for Blisk
EP3871148A1 (en) Method and device for training a neural network to specify landmarks on 2d and 3d images
Zhou et al. A multi-dimensional importance metric for contour tree simplification
González Obando et al. Vector-Based Morphological Operations on Polygons Using Straight Skeletons for Digital Pathology
Chheda et al. Gastrointestinal tract anomaly detection from endoscopic videos using object detection approach
CN114419055B (zh) 一种基于高斯像的可展面分割-拟合方法
CN116403077B (zh) 异常检测模型训练方法、异常检测方法、装置及电子设备
Xiao et al. Method for Determining Grasping Position and Angle of Sea Cucumber by Rotatable Bounding Box

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant