CN117500520A - 包含抗原和含有Al-MOF的佐剂的免疫原性组合物 - Google Patents

包含抗原和含有Al-MOF的佐剂的免疫原性组合物 Download PDF

Info

Publication number
CN117500520A
CN117500520A CN202280039897.1A CN202280039897A CN117500520A CN 117500520 A CN117500520 A CN 117500520A CN 202280039897 A CN202280039897 A CN 202280039897A CN 117500520 A CN117500520 A CN 117500520A
Authority
CN
China
Prior art keywords
acid
aluminum
fumarate
antigen
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202280039897.1A
Other languages
English (en)
Inventor
C·雅克亨利马克斯
C·西卡尔
E·加尼亚特苏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Office Of Scientific And Medical Biology Research
Versailles Yvonne St Constantine, University of
Centre National de la Recherche Scientifique CNRS
Original Assignee
Office Of Scientific And Medical Biology Research
Versailles Yvonne St Constantine, University of
Centre National de la Recherche Scientifique CNRS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Office Of Scientific And Medical Biology Research, Versailles Yvonne St Constantine, University of, Centre National de la Recherche Scientifique CNRS filed Critical Office Of Scientific And Medical Biology Research
Publication of CN117500520A publication Critical patent/CN117500520A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/39Medicinal preparations containing antigens or antibodies characterised by the immunostimulating additives, e.g. chemical adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • A61K39/025Enterobacteriales, e.g. Enterobacter
    • A61K39/0258Escherichia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • A61K39/08Clostridium, e.g. Clostridium tetani
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • A61K39/09Lactobacillales, e.g. aerococcus, enterococcus, lactobacillus, lactococcus, streptococcus
    • A61K39/092Streptococcus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/125Picornaviridae, e.g. calicivirus
    • A61K39/13Poliovirus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6949Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit inclusion complexes, e.g. clathrates, cavitates or fullerenes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/52Bacterial cells; Fungal cells; Protozoal cells
    • A61K2039/521Bacterial cells; Fungal cells; Protozoal cells inactivated (killed)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55505Inorganic adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55544Bacterial toxins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55561CpG containing adjuvants; Oligonucleotide containing adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/57Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2
    • A61K2039/575Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2 humoral response
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/62Medicinal preparations containing antigens or antibodies characterised by the link between antigen and carrier
    • A61K2039/622Medicinal preparations containing antigens or antibodies characterised by the link between antigen and carrier non-covalent binding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Immunology (AREA)
  • Epidemiology (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Virology (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明涉及一种免疫原性组合物,其含有至少一种抗原和至少一种佐剂,所述佐剂包含至少一种金属‑有机框架,所述金属‑有机框架包含基于铝的无机部分和基于多齿配体的有机部分,所述多齿配体选自富马酸盐、粘康酸盐、中康酸盐、草酸盐、草酰乙酸盐、琥珀酸盐、苹果酸盐、柠檬酸盐、乌头酸盐、间苯二甲酸盐、经取代的间苯二甲酸盐、2,5‑噻吩二羧酸盐、2,5‑呋喃二羧酸盐、均苯三甲酸盐、偏苯三甲酸盐和均苯四甲酸盐,所述抗原至少固定在所述金属‑有机框架内。

Description

包含抗原和含有Al-MOF的佐剂的免疫原性组合物
技术领域
本发明涉及免疫原性组合物领域,尤其涉及疫苗佐剂领域。
更具体地,本发明涉及特定的铝金属-有机框架(Al-MOF)系统作为抗原递送载体以及佐剂用于诱导有效免疫反应的用途。
背景技术
疫苗领域由于该行业的特殊性而与制药行业的其他领域不同。事实上,对健康群体、或甚至对整个群体施用的产品有高得多的安全性要求,对疗效的要求也更高,这导致了对批次的系统验证,并且它们的放行是由公共检查实验室而不是制造商自己。
佐剂制剂已用于疫苗组合物中多年以增强免疫反应,目的是提供针对靶向病原体的长期保护。因此,用于疫苗的佐剂通常对触发免疫反应和获得强大持久的保护性免疫是至关重要的。佐剂对于减少给定抗原的所需量、同时保持疫苗的有效免疫反应水平也是非常有用的。最后,还知道的是,一些佐剂只适合于某些抗原,而另一些佐剂的作用范围更广、与不同化学性质的抗原结合并且对不同种类的疾病是有效的。
在现有的佐剂中,铝盐是非活疫苗的参考佐剂,因为它们具有优异的炎症/免疫刺激比率,并且具有增强各种抗原的免疫反应的独特能力,尽管对替代品进行了深入研究。
然而,即使风险效益比非常好,这些佐剂也不是再吸收的,因此不会在体内降解,留下不能消除的沉积物。这是特别遗憾的,因为铝盐是可以用于人的最佳且几乎是唯一的功效/低局部反应折衷方案。
此外,对于这样的佐剂,抗原吸附在盐表面上,这并不适用于所有抗原。
已经开发出其他替代品(角鲨烯、脂质体等),但迄今为止不如铝佐剂令人满意。因此,对于大多数灭活疫苗来说,除了使用铝佐剂之外,没有切实可行的替代品。
在配制打算供人或动物使用的佐剂时,另一个问题是制备步骤应使用卫生机构普遍接受的低毒性产品。例如,应该避免使用有毒溶剂,例如DMF,而从药物的角度来看,应该优选使用其他更好接受的溶剂。
因此,仍然需要新的疫苗佐剂作为目前铝佐剂的替代品。特别地,需要一种在处理后将逐渐消失的新的基于铝的材料,并因此需要一种再吸收的新的基于铝的材料。
换句话说,需要一种基于铝的佐剂,该佐剂在发挥其作为佐剂和抗原的货物的作用后能够自己降解。
还需要新的制剂,例如佐剂组合物,其在免疫反应增强方面至少与市场上可获得的制剂一样有效,甚至更有效,因此可有利于抗原的呈递。
还需要佐剂制剂,其允许对广泛的抗原以及抗原和免疫定向剂的组合易于实施固定化。
此外,当免疫原大规模生产昂贵或复杂时,减少免疫原剂量的佐剂可以是有利的。为了更好的保护和限制所想要的加强剂的数量,总是想要更好、更强烈、并且最重要是更持久的抗体反应。
还需要易于制造(特别是在工业规模上易于制造)的佐剂制剂,涉及大多数卫生主管部门认为安全的原材料、制造中间体和工艺。
本发明的目的是满足这些需求的全部或部分。
发明内容
因此,本发明涉及一种免疫原性组合物,其含有至少一种抗原和至少一种佐剂,所述佐剂包含至少一种金属-有机框架MOF,所述金属-有机框架包含基于铝的无机部分和基于至少一种多齿配体的有机部分,并且所述抗原至少固定在所述金属-有机框架内。
因此,根据本发明的一个方面,本发明涉及一种免疫原性组合物,其含有至少一种抗原和至少一种佐剂,所述佐剂包含至少一种金属-有机框架MOF,所述金属-有机框架包含基于铝的无机部分和基于选自以下的至少一种多齿配体的有机部分:富马酸盐、粘康酸盐、中康酸盐、草酸盐、草酰乙酸盐、琥珀酸盐、苹果酸盐、柠檬酸盐、乌头酸盐、间苯二甲酸盐、经取代的间苯二甲酸盐、2,5-噻吩二羧酸盐、2,5-呋喃二羧酸盐、均苯三甲酸盐、偏苯三甲酸盐和均苯四甲酸盐,并且所述抗原至少固定在所述金属-有机框架内。
优选地,本发明涉及一种免疫原性组合物,其含有至少一种抗原和至少一种佐剂,所述佐剂包含至少一种金属-有机框架MOF,所述金属-有机框架包含基于铝的无机部分和至少包含富马酸盐的有机部分,并且所述抗原至少固定在所述金属-有机框架内。
如本文所使用的,术语“固定”是指抗原与金属-有机框架相关联,并且至少在金属-有机框架内,并且抗原不再在流体相中。固定化可以通过不同的方式发生。固定化可以使用单一步骤过程进行,这意味着MOF形成和固定化同时发生。金属-有机框架可以通过包围或包封来包埋抗原。在一些其他条件下,抗原也可以被包括在金属-有机框架的孔中,或者抗原可以被吸附在金属-有机框架的外表面上。抗原也可以与金属-有机框架连接,特别是通过共价键。应当理解,抗原固定化不限于这些类型的固定化,并且可以在相同的金属-有机框架中以不同的方式进行。
抗原可以固定在MOF内意味着尽管不一定位于MOF的孔中,但抗原被包埋在形成不可溶相的MOF颗粒之间。
应当理解,所有抗原或一些抗原被固定在所述金属-有机框架内。因此,根据一个实施方式,所有抗原都固定在所述金属-有机框架内。根据另一个实施方式,一些抗原被固定在所述金属-有机框架内,而其他抗原可以被所述金属-有机框架固定,例如固定在所述金属-有机框架的表面处。
出人意料的是,发明人发现称为金属-有机框架(MOF)的与铝结合的特定配位聚合物显示为特别有效的佐剂,允许克服上述详述的缺陷,从而实现更好的有效免疫反应。
金属-有机框架(MOF)是一种混合材料,在药物的矢量化和控制释放方面已经显示出强大的潜力,并且可以在体内降解。特别地,一些基于MOF的材料已被用作基质以在其中包埋一些抗原,但从未被用作疫苗制剂的唯一佐剂。事实上,就疫苗佐剂而言,据本发明人所知,抗原没有固定在用作单一佐剂分子的基于铝的MOF内。
特别地,本发明基于以下的结合:基于铝的配位聚合物(金属-有机框架)(表示为Al-MOF)与任何抗原(表示为Ag)、特别是前抗原,生物分子或化学分子、例如能够在活生物体中直接或间接引起特异性免疫反应,用于本文中称为免疫原的预防性或治疗性疫苗。为此,在选择以保持免疫原的抗原特性或由其诱导的物理化学条件下,在单一步骤过程中将免疫原固定在Al-MOF网络内。
与已知的铝佐剂对比,根据本发明的基于铝的MOF是再吸收物,并且允许固定任何类型的抗原。此外,根据本发明的佐剂显示出比已知的铝佐剂更好的免疫反应。
事实上,如下文实施例所示,本发明的基于铝金属-有机框架的佐剂在履行其不同于参考产品的作用同时降解。铝多齿配体MOF保留了铝的佐剂特性,但其优点是材料将逐渐降解为其化学成分、外源有机配体和可溶性Al3+离子。因此,铝将溶解,从而使其暂时存在于注射部位。
此外,根据本发明考虑的MOF是基质,其中可以用非常大的呈递表面固定大量抗原,因此可以减少所需的免疫原和佐剂的量。
WO 2021/097194描述了包封在金属-有机框架(特别是基于锌的)内的治疗剂。该文献没有描述铝金属-有机框架。此外,本申请的发明人表明,这种MOF不适合固定所有抗原。
根据本发明的另一个方面,本发明涉及一种金属-有机框架,其包括基于铝的无机部分和基于至少一种多齿配体的有机部分,所述多齿配体选自富马酸盐、粘康酸盐、中康酸盐、草酸盐、草酰乙酸盐、琥珀酸盐、苹果酸盐、柠檬酸盐、乌头酸盐、间苯二甲酸盐、经取代的间苯二甲酸盐、2,5-噻吩二羧酸盐、2,5-呋喃二羧酸盐、均苯三甲酸盐、偏苯三甲酸盐和均苯四甲酸盐,所述金属-有机框架用于将抗原固定在免疫原性组合物中,并且优选固定在疫苗佐剂中,所述抗原至少固定在所述金属-有机框架内。
根据本发明的另一个方面,本发明涉及金属-有机框架的用途,该金属-有机框架包括基于铝的无机部分和基于多齿配体的有机部分,所述多齿配体选自富马酸盐、粘康酸盐、中康酸盐、草酸盐、草酰乙酸盐、琥珀酸盐、苹果酸盐、柠檬酸盐、乌头酸盐、间苯二甲酸盐、经取代的间苯二甲酸盐、2,5-噻吩二羧酸盐、2,5-呋喃二羧酸盐、均苯三甲酸盐、偏苯三甲酸盐和均苯四甲酸盐,以将抗原固定在免疫原性组合物中,并且优选地固定在疫苗佐剂中,所述抗原至少固定在所述金属-有机框架内。
在一些优选的实施方式中,这种免疫原性组合物可用作疫苗组合物。优选地,免疫原性组合物、特别是疫苗组合物是再吸收的。
此外,本发明提出了一种简单且生物相容的方法,通过铝化合物和多齿配体之间的配位反应、与靶抗原接触,来合成MOF。
因此,根据本发明的另一个方面,本发明涉及一种制备如上定义的免疫原性组合物的方法,该方法至少包括以下步骤:在至少一种抗原的存在下,使至少一种铝化合物与至少一种多羧酸和/或与至少一种多羧酸盐反应,用于形成固定所述抗原的至少一种多羧酸铝金属-有机框架,所述多羧酸选自富马酸、粘康酸、中康酸、草酸、草酰乙酸、琥珀酸、苹果酸、柠檬酸、乌头酸、间苯二甲酸、经取代的间苯二甲酸、2,5-噻吩二羧酸、2,5-呋喃二羧酸、均苯三甲酸、偏苯三甲酸或均苯四甲酸,所述多羧酸盐选自富马酸盐、粘康酸盐、中康酸盐、草酸盐、草酰乙酸盐、琥珀酸盐、苹果酸盐、柠檬酸盐、乌头酸盐、间苯二甲酸盐、经取代的间苯二甲酸盐、2,5-噻吩二羧酸盐、2,5-呋喃二羧酸盐、均苯三甲酸盐、偏苯三甲酸盐和均苯四甲酸盐。
由于合成有利地在温和且可持续的条件下进行,因此其放大规模没有特别困难。此外,MOF的生产成本有利地保持较低(低成本的合成前体,过程在水中和室温下)。
因此,发明人还特别地开发了一种在物理化学条件下制造基于如上所述的多齿配体和铝的MOF的方法,这使得可以在不使生物体变性的情况下固定生物体。
出人意料的是,固定在根据本发明获得的MOF结构中的抗原的呈递表面有利地显著大于目前使用的蛋白质和铝盐的准宏观沉淀物的呈递表面。此外,如以下实施例所示,Al-MOF的固定化能力为100%重量,固定了所添加的全部抗原。这种可能性使得可以固定大量的具有非常大的呈递表面的抗原。
如以下实施例中所公开的,在生理条件下Al-MOF的逐渐降解也已在体内得到证实。
免疫原性组合物
本发明涉及一种免疫原性组合物。在一些优选的实施方式中,这种免疫原性组合物可以用作疫苗组合物。
如本文所用,术语“疫苗”是指直接或间接的免疫原性组合物,其施用于对象以诱导免疫反应,目的是保护或治疗对象免受病原体引起的疾病。
因此,疫苗组合物是用于引发对给定抗原的保护性免疫反应的组合物。疫苗通常被用作预防工具,但在某些情况下也可被用作治疗。
在疫苗中,应提及预防性疫苗和治疗性疫苗。预防性疫苗是指被施用用于预防传染病的疫苗,其使对象在暴露于导致这些疾病的病原体之前获得免疫力。治疗性疫苗是旨通过诱导免疫系统以排斥例如癌症细胞或重新产生特异性免疫反应来刺激免疫系统的疫苗。与基本上是预防性的预防性疫苗对比,治疗性疫苗主要施用用于治疗已经患有特定疾病(例如癌症或艾滋病)的对象。
根据本发明的免疫原性组合物或疫苗组合物包括用于诱导免疫的抗原和基于铝的金属-有机框架(MOF)。MOF主要作为组合物中的佐剂,以及起到其在抗原的固定化和保存中的作用。
佐剂
根据本发明,佐剂是疫苗佐剂。
在本发明中,术语“佐剂”或“佐剂效应”用于限定这样的化合物或组合物:当将其添加到含有抗原的免疫原性组合物或含有抗原的疫苗组合物中时,通过以下方式其有效地触发或增强对抗原的免疫反应:例如通过增强抗原向抗原特异性免疫细胞的呈递和/或通过激活这些细胞以提供针对靶向病原体的长期保护。
优选地,根据本发明的佐剂是再吸收的。再吸收是指免疫原是可吸收的,因此随着时间推移从注射部位消失或消除。
特别地,小于40重量%、优选小于30重量%、优选小于25重量%的注射的铝在1个月后保留在注射部位。
更特别地,小于30重量%、优选小于25重量%、优选小于10重量%的注射的铝在2个月后保留在注射部位。
更特别地,小于20重量%、优选小于15重量%、更优选小于6重量%的注射的铝在3个月后保留在注射部位。
根据本发明的佐剂包含至少一种金属-有机框架,所述金属-有机框架包含基于铝的无机部分和基于多齿配体的有机部分。
根据特定的实施方式,根据本发明的免疫原性组合物可以包含除包含至少一种金属-有机框架的佐剂之外的其他佐剂。
金属-有机框架(MOF)
金属-有机框架(MOF)也称为配位聚合物,是一种含有无机单元和有机配体的混合固体。MOF通常通过金属和多齿配体的组合形成结构,优选多孔结构。
根据本发明,MOF被配置为在体内分解。
包含基于铝的无机部分和基于如上所述的至少一种多齿配体的有机部分的任何种类的MOF都可以用于免疫原性组合物中。
将铝离子的类型和配位数与多齿配体的类型和拓扑结构适当结合,得到具有所想要结构的MOF。
MOF可以是结晶的或无定形的。
优选地,金属-有机框架是结晶的。
优选地,金属-有机框架是多孔的。
形成MOF的铝化合物和配体的组合可以根据期望的功能和期望的孔径来适当地确定。
因此,本发明的MOF可以包括孔,特别是微孔和/或中孔。微孔定义为直径小于2nm的孔,中孔定义为直径在2nm至50nm范围内,在每种情况下对应于IUPAC或Pure AppliedChem.57(1985),第603-619页中给出的定义。
微孔和/或中孔的存在可以通过吸附测量来检查。
MOF可以以粉末形式或作为附聚物存在。
根据优选的实施方式,根据本发明的MOF不在单独的载体中实施,并且优选不在酵母中实施。
基于铝的无机部分
这优选是选自铝盐、氧化铝、氢氧化铝和烷醇铝、或其混合物的铝化合物。
优选地,铝化合物选自铝盐、氧化铝和氢氧化铝、或其混合物。
铝盐包括无机铝盐和有机铝盐。
无机铝盐可以选自硝酸铝、硫酸铝、磷酸铝、碳酸铝、卤化铝和高氯酸铝。
卤化铝可以是氯化铝、溴化铝、氟化铝或碘化铝。
有机铝盐可以选自草酸铝、乙酸铝、硬脂酸铝、乳酸铝、月桂酸铝和柠檬酸铝。
乙酸铝可以是碱性单乙酸铝、碱性二乙酸铝或中性三乙酸铝。
烷醇铝特别包括异丙醇铝、乙醇铝和丁醇铝。
显然,可以设想使用上述各种铝化合物的共混物。
特别优选的是无水或水合物形式的硫酸铝,特别是其十八水合物或十四水合物形式的。
作为至少一种铝化合物,也可以使用铝酸盐。
例如碱金属铝酸盐可以特别是NaAlO2。由于这具有碱性性质,因此可以反应中不需要碱性物质的存在。然而,也可以使用额外的碱性物质。
优选地,基于铝的无机部分由硫酸铝形成。
根据一个实施方式,当抗原是破伤风类毒素时,抗原/铝的质量比为10-5至1,优选为10-2至10-1
应当理解,这种抗原/铝的比率将取决于所选择的抗原。
本发明的MOF至少包括铝离子作为金属离子。
在一个实施方式中,铝离子是MOF框架中唯一的一种金属离子。
在另一个实施方式中,多于一种金属离子存在于MOF中。
除了铝之外,这些一种或多种金属离子可以位于MOF的孔中或参与框架格子的形成。在后一种情况下,所述至少一种多齿有机化合物将同样与这样的金属离子结合。
如果MOF中包含超过一种的金属离子,则这些金属离子可以以化学计量或非化学计量的量存在。
优选地,MOF具有仅一种金属离子,并且更优选地为铝。
基于多齿配体的有机部分
如本文所用,“多齿配体”是指可以形成两个或更多个配位键的配体,并理解为如由IUPAC定义的。
有机多齿配体的实例包括WO2010/075610中列出的配体。
优选地,所使用的配体是无毒的。
MOF中的多齿配体通常是有机配体,其实例包括羧酸阴离子和杂环化合物。羧酸阴离子的实例包括二羧酸阴离子和三羧酸阴离子。
这些一种或多种另外的至少多齿有机化合物例如衍生自二羧酸、三羧酸或四羧酸。其他至少多齿有机化合物也可以参与框架的形成。然而,同样可能的是,至少不是多齿的有机化合物也包含在框架中。例如,这些可以从单羧酸衍生而来。
出于本发明的目的,术语“衍生”是指二羧酸、三羧酸或四羧酸可以以部分去质子化或完全去质子化的形式存在于框架中。此外,二羧酸、三羧酸或四羧酸可以包括取代基或多个独立的取代基。这种取代基的非限制性实例是-OH、-NH2、-OCH3、-CH3、-NH(CH3)、-N(CH3)2、-CN和卤化物。此外,用于本发明目的的术语“衍生”是指二羧酸、三羧酸或四羧酸也可以以相应的硫类似物的形式存在。硫类似物是官能团-C(=O)SH及其互变异构体和C(=S)SH,它们可以代替一个或多个羧酸基团使用。此外,用于本发明目的的术语“衍生”是指一个或多个羧酸官能团可以被磺酸基团(-SO3H)代替。此外,除了2、3或4个羧酸官能团之外,同样可以存在磺酸基团。此外,用于本发明目的的术语“衍生”是指一个或多个羧酸官能团可以是盐的形式,例如羧酸钠盐或羧酸钾盐。
除了上述官能团之外,二羧酸、三羧酸或四羧酸还可以具有与这些官能团结合的有机框架或有机化合物。这里,上述官能团原则上可以与任何合适的有机化合物结合,只要确保带有这些官能团的有机化合物适合于形成用于产生框架的配位键。
有机化合物可以衍生自饱和或不饱和的脂族化合物、或芳族化合物、或脂族化合物和芳族化合物两者。
脂族化合物、或脂族化合物和芳族化合物两者的脂族部分可以是线性和/或支化和/或环状的,每个化合物也可以具有多个环。脂族化合物、或脂族化合物和芳族化合物两者的脂族部分例如包含1至18个,更优选1至14个,更优选1至13个,更优选1至12个,更优选1至11个,特别优选1至10个碳原子,例如1、2、3、4、5、6、7、8、9或10个碳原子。特别地,它可以是甲烷、金刚烷、乙炔、乙烯或丁二烯。
芳族化合物、或芳族化合物和脂族化合物两者的芳族部分可以具有一个或多个环,例如两个、三个、四个或五个环,这些环能够彼此分开存在和/或至少两个环能够以缩合形式存在。芳族化合物、或脂族化合物和芳族化合物两者的芳族部分特别具有一个、两个或三个环,一个或两个环是特别优选的。所述化合物的每个环可以独立地包含至少一个杂原子,例如N、O、S、B、P、Si,例如N、O和/或S。芳族化合物、或芳族化合物和脂族化合物两者的芳族部分可包含一个或两个C6环,这两个环单独地或以缩合形式存在。可以特别提及苯、萘和/或联苯和/或联吡啶和/或吡啶基作为芳族化合物。
多齿有机化合物是例如具有1至18个,优选1至10个,特别是6个碳原子并且仅具有2、3或4个羧基作为官能团的脂族或芳族、无环或环状的烃。
例如,多齿有机化合物衍生自二羧酸,例如富马酸、草酸、琥珀酸、苹果酸、天冬氨酸、谷氨酸、戊二酸、酒石酸、1,4-丁烷二羧酸、1,4-丁烯二羧酸、4-氧代吡喃-2,6-二羧酸、1,6-己烷二羧酸、癸烷二羧酸、1,8-十七烷二羧酸、1,9-十七烷二羧酸、十七烷二羧酸、乙炔二羧酸、1,2-苯二羧酸、1,3-苯二羧酸、2,3-吡啶二羧酸、吡啶-2,3-二羧酸、1,3-丁二烯-1,4-二羧酸、1,4-苯二羧羧、对苯二二羧酸、咪唑-2,4-二羧酸、2-甲基喹啉-3,4-二羧酸、喹啉-2,4-二羧酸、喹喔啉-2,3-二羧酸、6-氯喹喔啉-2,3-二羧酸、4,4’-二氨基苯基甲烷-3,3’-二羧酸、喹啉-3,4-二羧酸、7-氯-4-羟基喹啉-2,8-二羧酸、二酰亚胺二羧酸、吡啶-2,6-二羧酸、2-甲基咪唑-4,5-二羧酸、噻吩-3,4-二羧酸、2-异丙基咪唑-4,5-二羧酸、四氢吡喃-4,4-二羧酸、苝-3,9-二羧酸、苝二羧酸、3,6-二氧杂辛烷二羧酸、3,5-环己二烯-1,2-二羧酸、辛烷二羧酸、戊烷-3,3-羧酸、4,4’-二氨基-1,1’-联苯基-3,3’-二羧酸、4,4’-二氨基联苯基-3,3’-二羧酸、联苯胺-3,3’-二羧酸、1,4-双(苯氨基)苯-2,5-二羧酸、1,1’-联萘二羧酸、7-氯-8-甲基喹啉-2,3-二羧酸、1-苯胺基蒽醌-2,4’-二羧酸、聚四氢呋喃250二羧酸、1,4-双(羧甲基)哌嗪-2,3-二羧酸、7-氯喹啉-3,8-二羧酸、1-(4-羧基)苯基-3-(4-氯)苯基吡唑啉-4,5-二羧酸、1,4,5,6,7,7-六氯-5-降冰片烯-2,3-二羧酸、苯基茚满二羧酸、1,3-二苄基-2-氧代咪唑烷-4,5二羧酸、1,4-环己烷二羧酸、萘-1,8-二羧酸、2-苯甲酰基苯-1,3-二羧酸、1,3-二苄基-2-氧代咪唑烷-4,5-顺式二羧酸、2,2’-二喹啉-4,4’-二羧酸、吡啶-3,4-二羧酸、3,6,9-三氧十一烷二羧酸、羟基二苯甲酮二羧酸、商业化合物Pluriol E 200-二羧酸、Pluriol E 300-二羧酸、Pluriol E 400-二羧酸和Pluriol E 600-二羧酸、吡唑-3,4-二羧酸、2,3-吡嗪二羧酸、5,6-二甲基-2,3-吡嗪二羧酸、双(4-氨基苯基)醚二亚胺二羧酸、4,4’-二氨基二苯基甲烷二亚胺二羧酸、双(4-氨基苯基)砜二亚胺二羧酸、1,4-萘二羧酸、2,6-萘二羧酸、1,3-金刚烷二羧酸、1,8-萘二羧酸、2,3-萘二羧酸、8-甲氧基-2,3-萘二羧酸、8-硝基-2,3-萘羧酸、8-磺基-2,3-萘二羧酸、蒽-2,3-二羧酸、2’,3’-二苯基-对-三苯基-4,4”-二羧酸、(二苯醚)-4,4’-二羧酸、咪唑-4,5-二羧酸、4(1H)-氧代硫代色烯-2,8-二羧酸、5-叔丁基-1,3-苯二羧酸、7,8-喹啉二羧酸、4,5-咪唑二羧酸、4-环己烯-1,2-二羧酸、三十六烷二羧酸、十四烷二羧酸、1,7-庚烷二羧酸、5-羟基-1,3-苯二羧酸、2,5-二羟基-1,4-苯二羧酸、吡嗪-2,3-二羧酸、呋喃-2,5-二羧酸、1-壬烯-6,9-二羧酸、二十烯二羧酸、4,4’-二羟基-二苯基甲烷-3,3’-二羧酸、1-氨基-4-甲基-9,10-二氧代-9,10-双氢蒽-2,3-二羧酸、2,5-吡啶二羧酸、环己烯-2,3-二羧酸、2,9-二氯荧红环(dichlorofluorubin)-4,11-二羧酸、7-氯-3-甲基喹啉-6,8-二羧酸、2,4-二氯二苯酮-2’,5’-二羧酸、1,3-苯二羧酸、2,6-吡啶二羧酸、1-甲基吡咯-3,4-二羧酸、1-苄基-1H-吡咯-3,4二羧酸、蒽醌-1,5-二羧酸、3,5-吡唑二羧酸、2-硝基苯-1,4-二羧酸、庚烷-1,7-二羧酸、环丁烷-1,1-二羧酸、1,14-十四烷二羧酸、5,6-脱氢降莰烷-2,3-二羧酸、5-乙基-2,3-吡啶二羧酸、或樟脑二羧酸。
多齿有机化合物可以是例如上述作为实例的二羧酸中的一者。
例如,多齿有机化合物可以衍生自三羧酸,例如2-羟基-1,2,3-丙烷三羧酸、7-氯-2,3,8-喹啉三羧酸、1,2,3-苯三羧酸、1,2,4-苯三羧酸、1,2,4-丁烷三羧酸、2-膦酰基-1,2,4-丁烷三羧酸、1,3,5-苯三羧酸、1-羟基-1,2,3-丙烷三羧酸,4,5-二羟基-4,5-二氧代-1H-吡咯并[2,3-F]喹啉-2,7,9-三羧酸、5-乙酰基-3-氨基-6-甲基苯-1,2,4-三羧酸、3-氨基-5-苯甲酰基-6-甲基苯-1,2,4-三羧酸、1,2,3-丙烷三羧酸、或金精三羧酸。
多齿有机化合物可以是例如上述作为实例的三羧酸中的一者。
衍生自四羧酸的多齿有机化合物的实例为1,1-二氧杂苝(Dioxidoperylo)[1,12-BCD]噻吩-3,4,9,10-四羧酸、苝四羧酸(例如苝-3,4,9,10-四羧酸或(苝-1,12-砜)-3,4,9,10-四羧酸)、丁烷四羧酸(例如1,2,3,4-丁烷四羧酸或间-1,2,3,4-丁烷四羧酸)、癸烷-2,4,6,8-四羧酸、1,4,7,10,13,16-六氧杂环十八烷-2,3,11,12-四羧酸、1,2,4,5-苯四羧酸、1,2,11,12-十二烷四羧酸、1,2,5,6-己烷四羧酸、1,2,7,8-辛烷四羧酸、1,4,5,8-萘四羧酸、1,2,9,10-癸烷四羧酸、二苯甲酮四羧酸、3,3’,4,4’-二苯甲酮四羧酸、四氢呋喃四羧酸、或环戊烷四羧酸(例如环戊烷-1,2,3,4-四羧酸)。
多齿有机化合物可以是例如上述作为实例的四羧酸中的一者。
多齿有机化合物可以例如选自任选地具有一个、两个、三个、四个或更多个环的至少单取代的芳族二羧酸、三羧酸或四羧酸,其中每个环可以包括至少一个杂原子,在这种情况下,两个或更多个环可以包括相同或不同的杂原子。多齿有机化合物可以例如选自单环二羧酸、单环三羧酸、单环四羧酸、双环二羧酸、双环三羧酸、双环四羧酸、三环二羧酸、三环三羧酸、三环四羧酸、四环二羧酸、四环三羧酸和/或四环四羧酸。合适的杂原子例如是N、O、S、B、P,特别是N、S和/或O。这里合适的取代基特别是-OH、硝基、氨基或烷基或烷氧基。
多齿有机化合物可以例如选自乙炔二羧酸(ADC)、樟脑二羧酸、富马酸、琥珀酸、苹果酸、天冬氨酸、谷氨酸、戊二酸、苯二羧酸、萘二羧酸、联苯二羧酸(例如4,4’-联苯二羧酸(BPDC))、吡嗪二羧酸(例如2,5-吡嗪二羧酸)、联吡啶二羧酸(例如2,2’-联吡啶二羧酸、例如2,2’-联吡啶-5,5’-二羧酸)、苯三羧酸(例如1,2,3-苯三羧酸、1,2,4-苯三羧酸或1,3,5-苯三羧酸(BTC))、苯四羧酸、金刚烷四羧酸(ATC)、金刚烷二苯甲酸盐(ADB)、苯三苯甲酸盐(BTB)、甲烷四苯甲酸盐(MTB)、金刚烷四苯甲酸盐、或二羟基对苯二甲酸(例如2,5-二羟基对苯二甲酸(DHBDC))。
多齿有机化合物可以例如选自邻苯二甲酸、间苯二甲酸、对苯二甲酸、2,6-萘二羧酸、1,4-萘二羧酸、1,5-萘二羧酸、1,2,3-苯三羧酸、1,2,4-苯三羧酸、1,3,5-苯三羧酸、或1,2,4,5-苯四羧酸。
具体实例包括富马酸、柠檬酸、苹果酸、对苯二甲酸、间苯二甲酸、琥珀酸、天冬氨酸、谷氨酸、戊二酸、均苯三甲酸及其衍生物的阴离子。杂环化合物的实例包括联吡啶、咪唑、腺嘌呤及其衍生物。替选地,配体可以是胺化合物、磺酸阴离子或磷酸阴离子。
多齿配体的实例包括以下的阴离子:2,3-吡嗪二羧酸(pzdc);吡嗪;均苯三甲酸(BTC);对苯二甲酸(BDC);1,4-二氮杂双环[2,2,2]辛烷(dabco);咪唑;1,3,5-苯三羧酸;柠檬酸;苹果酸;间苯二甲酸;2,5-二羟基对苯二甲酸(HBDC);4,4’-氧代双苯甲酸(OBA);1,3,5-三(4’-羧基-4,4’-联苯)苯(BTB);4,4’-4”-苯-1,3,5-三基-三联苯羧酸(BBC);壬二酸;唑来膦酸;邻溴对苯二甲酸(o-Br-BDC);2-氨基对苯二甲酸(H2N-BDC);[C3H7O]2-BDC;[C5H11O]2-BDC;[C2H4]-BDC;1,4-萘二羧酸(1,4-NDC);2,6-萘二羧酸(2,6-NDC);4,4’-联苯二羧酸(BPDC);四氢芘-2,7-二羧酸(HPDC);芘二羧酸(PDC);三联苯二羧酸(TPDC);甲酸;m-BDC;BzPDC;5,5’-(9,10-蒽二基)二异磷酸盐;1,1’-联萘-4,4’-二羧酸(BNDC);4,4’-联苯二羧酸(BPDC);二苄基磷酸盐(DBP);1,3,5,7-金刚烷四羧酸(ATC);乙炔二羧酸(ADC);金刚烷四苯甲酸(ATB);甲烷四苯甲酸(MTB);草酸;1,4-联苯二丙烯酸(PDAC);4,4’-二苯乙烯二羧酸(SDBC);1,3,5-三(4’-羧基-4,4’-联苯)苯(BTB);4,4’,4”-[苯-1,3,5-三基-三(乙炔-2,1-二基)]三苯甲酸(BTE);1,2,4,5-四(4-羧基苯基)苯(TCPB);1,4-二羧基苯-2,3-二硫纶(DCBDT);苛性酸(3,4,5-三羟基苯甲酸)。
例如,多齿有机化合物可以衍生自二羧酸,例如富马酸、苹果酸、天冬氨酸、谷氨酸或戊二酸。
MOF可以进一步包含至少一种单齿配体。
根据本发明,多齿配体选自富马酸盐、粘康酸盐、中康酸盐、草酸盐、草酰乙酸盐、琥珀酸盐、苹果酸盐、柠檬酸盐、乌头酸盐、间苯二甲酸盐、经取代的间苯二甲酸盐、2,5-噻吩二羧酸盐、2,5-呋喃二羧酸盐、均苯三甲酸盐、偏苯三甲酸盐和均苯四甲酸盐,或衍生自富马酸、粘康酸、中康酸、草酸、草酰乙酸、琥珀酸、苹果酸、柠檬酸、乌头酸、间苯二甲酸、经取代的间苯二甲酸、2,5-噻吩二羧酸、2,5-呋喃二羧酸、均苯三甲酸、偏苯三甲酸或均苯四甲酸。
特别地,多齿配体选自富马酸盐、粘康酸盐、中康酸盐、琥珀酸盐、苹果酸盐、间苯二甲酸盐、经取代的间苯二甲酸盐、2,5-噻吩二羧酸盐、2,5-呋喃二羧酸盐、均苯三甲酸盐、偏苯三甲酸盐和均苯四甲酸盐,或衍生自富马酸、粘康酸、中康酸、琥珀酸、苹果酸、间苯二甲酸、经取代的间苯二甲酸、2,5-噻吩二羧酸、2,5-呋喃二羧酸、均苯三甲酸、偏苯三甲酸或均苯四甲酸。
更特别地,多齿配体选自富马酸盐、粘康酸盐、间苯二甲酸盐、2,5-噻吩二羧酸盐、2,5-呋喃二羧酸盐和均苯三甲酸盐,或衍生自富马酸、粘康酸、间苯二甲酸、2,5-噻吩二羧酸、2,5-呋喃二羧酸或均苯三甲酸。
特别地,多齿配体选自富马酸盐、粘康酸盐、2,5-呋喃二羧酸盐、均苯三甲酸盐和均苯四甲酸盐,或衍生自富马酸、粘康酸、2,5-呋喃二羧酸、均苯三甲酸或均苯四甲酸。
优选地,多齿配体选自富马酸盐、粘康酸盐、2,5-噻吩二羧酸盐、2,5-呋喃二羧酸盐和均苯三甲酸盐,或衍生自富马酸、粘康酸、2,5-噻吩二羧酸、2,5-呋喃二羧酸或均苯三甲酸。
优选地,多齿配体选自富马酸盐、粘康酸盐、均苯三甲酸盐和均苯四甲酸盐,或衍生自富马酸、粘康酸、2酸、均苯三甲酸或均苯四甲酸。
更优选地,多齿配体选自富马酸盐、粘康酸盐和均苯三甲酸盐,或衍生自富马酸、粘康酸或均苯三甲酸。
更优选地,所使用的配体是富马酸盐,或衍生自富马酸。
MOF结构
根据有机配体和/或合成条件,可以获得不同的结构,因此已经报道了许多Al-MOF结构。下面介绍一些示例。
特别地,作为具有二羧酸配体的Al-MOF,可以列举具有富马酸盐配体的Al-MOF、具有粘康酸盐配体的Al-MOF、具有中康酸盐配体的Al-MOF、具有草酸盐配体的Al-MOF、具有草酰乙酸盐配体的Al-MOF、具有琥珀酸盐配体的Al-MOF、具有苹果酸盐配体的Al-MOF、具有间苯二甲酸盐(1,3-苯二羧酸盐)配体的Al-MOF、具有经取代的间苯二甲酸盐配体的Al-MOF、具有2,5-噻吩二羧酸盐配体的Al-MOF、和具有2,5-呋喃二羧酸盐配体的Al-MOF。
二羧酸Al-MOF结构的典型示例是MIL-53(Al)的同构(类似的拓扑结构,但具有不同的有机配体)系列(MIL=“Matériaux Institut Lavoisier de Versailles”)。MIL-53(Al)结构由共享角的Al(III)八面体的1D AlO4(OH)2链由线性二羧酸盐(富马酸盐、粘康酸盐等)连接在一起组成。配体也可以被官能团取代,导致MIL-53(A1)结构的孔隙率降低,因为MOF通道中存在待定官能团。
当二羧酸盐是富马酸盐配体(衍生自富马酸)时,其结构为富马酸铝(或MIL-53(Al)-FA或Basolite A520),这是一种具有自由孔径的1D通道的微孔结构。
当二羧酸盐是粘康酸盐配体(衍生自粘康酸)时,结构可以是MIL-53(Al)-muc,这是一种具有自由孔径的1D通道的微孔结构。
当间苯二甲酸盐配体(1,3-苯二羧酸盐)(衍生自间苯二甲酸)与共享顺式角的AlO6八面体的螺旋链连接时,获得了另一种Al-MOF结构。例如,CAU-10-H(CAU=Christian-Albrechts-)显示了具有/>自由孔径的方形一维通道的3D微孔结构。
替选地,用2,5-噻吩二羧酸盐,通过共享连续的反式角和顺式角的AlO6多面体获得CAU-23结构,从而产生自由孔径的方形通道微孔。
用2,5-呋喃二羧酸盐配体获得的MOF的典型示例是MIL-160(Al)。MIL-160(Al)由AlO4(OH)2八面体链与2,5-呋喃二羧酸盐配体的连接产生。这导致了具有直径约为的方形正弦1D通道的3D结构。
作为具有三羧酸配体的Al-MOF,可以列举具有均苯三甲酸盐配体的Al-MOF、具有偏苯三甲酸盐(1,2,4-苯三羧酸盐)配体的Al-MOF、具有柠檬酸盐配体的Al-MOF、和具有乌头酸盐配体的Al-MOF。
基于相同的建立单元,即铝和均苯三甲酸盐(1,3,5-苯三羧酸盐),可以获得不同的3D框架,例如MIL-96(Al)、MIL-100(Al)和MIL-110(Al)。MIL-96(Al)是由铝三聚体与均苯三甲酸盐配体配位并连接到由铝八面体链构建的额外六方18元环亚单元的组装而成。MIL-96(Al)的微孔由三种类型的空腔组成:空腔自由直径约为的球形笼、尺寸为的细长空腔、和尺寸为/> 的窄空腔。MIL-100(Al)由均苯三甲酸盐配体和Al(III)三聚体的连接产生,导致中孔结构,具有两种不同直径(/>和/>)的空腔,可通过微孔窗口(/>和/>)进入。MIL-110(Al)具有由8个铝八面体组成的三维框架,通过均苯三甲酸盐配体连接形成微孔结构,具有/>宽的六边形通道。
作为具有四羧酸配体的Al-MOF,可以列举具有均苯四甲酸盐(1,2,4,5-苯四羧酸盐)配体的Al-MOF。
可以获得不同的框架,例如MIL-118(Al)或MIL-120(Al)。MIL-118(Al)由无限链的反式连接的铝中心八面体组成,通过均苯四甲酸盐配体相互连接。根据水合/干燥状态,框架可以呈现出三个不同的相。MIL-120(Al)由八面体配位中的铝中心的无限链组成,通过均苯四甲酸盐配体相互连接,形成的通道。
优选地,多羧酸盐包括富马酸盐。
MOF可以包含两种或更多种类型的配体。
可以使用仅一种类型的MOF,或者可以组合使用两种或更多种类型的MOF。
MOF可以用聚合物或其他改性剂进行表面改性。
免疫原性组合物中MOF的含量例如为90质量%至99.9质量%,优选为95质量%至99.8质量%,更优选为99质量%至99.6质量%。这种含量理解为在不含溶剂的疫苗组合物中。
免疫原性组合物中MOF的含量可以尤其取决于抗原的性质,特别是抗原的重量和/或纯度。
因此,根据另一个实施方式,免疫原性组合物中MOF的含量可以例如在70质量%至99.9质量%的范围内,优选在75质量%至99.8质量%的范围内,更优选在85质量%至99.6质量%的范围内。
根据另一个实施方式,例如当使用细菌时,免疫原性组合物中MOF的含量可以例如在3质量%至99.9质量%的范围内,优选在4质量%至99.8质量%的范围内,更优选在5质量%至99.6质量%的范围内。
根据本发明的一个实施方式的免疫原性组合物可以进一步包含除MOF之外的其他佐剂或免疫定向剂。
免疫原性组合物还可以包含免疫刺激剂,例如TLR配体、RLR配体、NLR配体、环状二核苷酸或细胞因子。
抗原
本发明的免疫原性组合物含有至少一种抗原,所述抗原至少固定在所述金属-有机框架内。
根据一个实施方式,根据本发明的免疫原性组合物可以进一步包含至少一种未固定在金属-有机框架内的抗原。
可用于免疫原性组合物或疫苗组合物中的合适抗原如下所述。
术语“抗原”包括任何分子,例如肽、蛋白质、多糖或结合糖,其包括将引发免疫反应和/或免疫反应所针对的至少一个表位。例如,抗原是一种分子,其任选地在处理后诱导免疫反应,该免疫反应例如对抗原或表达抗原的细胞是特异性的。
事实上,根据本发明,“抗原”是指可以和/或能够产生抗原的任何化合物。特别地,抗原可以选自蛋白质、多糖及其脂质衍生物,例如聚糖苷(polyoside)、脂质、通过氨基酸聚合获得的分子、编码抗原的核酸(天然的或修饰的)、复制的或非复制的核酸、编码抗原、病毒、伪病毒、疫苗、质粒、噬菌体等,或改变对应的免疫反应。
根据本发明,可以设想作为免疫反应候选物的任何合适的抗原。抗原可以对应于或可以衍生自天然存在的抗原。这种天然存在的抗原可以包括或可以衍生自过敏原、病毒、细菌、真菌、寄生虫和其他传染源和病原体,或者抗原也可以是肿瘤抗原。所述抗原可以是蛋白质或肽抗原、多糖抗原或结合糖抗原。
换句话说,根据本发明的术语抗原包括抗原、前抗原、抗原诱导分子或超过一种抗原的结合、或能够驱动免疫反应为给定类型的分子。因此,根据本发明的抗原可以作为任何直接或间接的特异性免疫反应诱导剂。
本发明的含有抗原的组合物的价可以变化。价是指组合物中抗原成分的数量。在一些实施方式中,所述组合物是单价的。它们也可以是包含多于一价的组合物,例如二价、三价或多价组合物。
本发明的含有抗原的组合物可用作免疫原性组合物,特别是用作疫苗组合物,以保护、治疗或治愈因接触传染源(例如细菌、病毒、真菌、原生动物和寄生虫)而引起的感染。
根据一个实施方式,适合于本文的抗原可以选自由以下组成的组:细菌抗原、原生动物抗原、病毒抗原、真菌抗原、寄生虫抗原或肿瘤抗原。
在另一个实施方式中,可以使用野生型或重组抗原、或其片段或亚单元。所述抗原可以是蛋白质、肽、多糖和/或结合糖。
优选地,抗原选自蛋白质、聚糖苷、脂质、核酸、病毒、细菌、寄生虫及其混合物,特别选自破伤风类毒素、源自SARS-CoV-2病毒的蛋白质、灭活的大肠杆菌(Escherichiacoli)、灭活的脊髓灰质炎病毒和脑膜炎球菌多糖、及其混合物。
细菌抗原
细菌抗原可以来自革兰氏阳性细菌或革兰氏阴性细菌。细菌抗原可得自巴氏不动杆菌(Acinetobacter baumannii)、炭疽杆菌(Bacillus anthracis)、枯草芽孢杆菌(Bacillus subtilis)、百日咳博德特氏菌(Bordetella pertussis)、伯氏疏螺旋体(Borrelia burgdorferi)、流产布鲁氏菌(Brucella abortus)、犬布鲁氏菌(Brucellacanis)、羊布鲁氏杆菌(Brucella melitensis)、猪布鲁氏杆菌(Brucella suis)、空肠弯曲杆菌(Campylobacter jejuni)、肺炎衣原体(Chlamydia pneumoniae)、沙眼衣原体(Chlamydia trachomatis)、鹦鹉热衣原体(Chlamydophila psittaci)、肉毒杆菌(Clostridium botulinum)、艰难梭菌(Clostridium difficile)、产气荚膜梭菌(Clostridium perfringens)、破伤风梭菌(Clostridium tetani)、凝固酶阴性葡萄球菌(coagulase Negative Staphylococcus)、白喉棒状杆菌(Corynebacterium diphtheria)、粪肠球菌(Enterococcus faecalis)、屎肠球菌(Enterococcus faecium)、大肠杆菌(Escherichia coli)、产肠毒素大肠杆菌(enterotoxigenic Escherichia coli,ETEC)、肠致病性大肠杆菌(enteropathogenic E.coli)、大肠杆菌0157:H7、肠杆菌属(Enterobactersp.)、土拉氏杆菌(Francisella tularensis)、流感嗜血杆菌(Haemophilus influenzae)、幽门螺杆菌(Helicobacter pylori)、肺炎克雷伯菌(Klebsiella pneumoniae)、嗜肺军团菌(Legionella pneumophila)、询问性钩端螺旋体(Leptospira interrogans)、单核细胞增多性李斯特菌(Listeria monocytogenes)、卡他莫拉克菌(Moraxella catarralis)、麻风分枝杆菌(Mycobacterium leprae)、结核分枝杆菌(Mycobacterium tuberculosis)、肺炎支原体(Mycoplasma pneumoniae)、淋病奈瑟菌(Neisseria gonorrhoeae)、脑膜炎奈瑟球菌(Neisseria meningitides)、奇异变形杆菌(Proteus mirabilis)、变形杆菌(Proteussps.)、铜绿假单胞菌(Pseudomonas aeruginosa)、立克次体(Rickettsia rickettsii)、伤寒沙门氏菌(Salmonella typhi)、鼠伤寒沙门氏杆菌(Salmonella typhimurium)、马尔森沙雷氏菌(Serratia marcesens)、福氏菌(Shigella flexneri)、宋尼氏菌(Shigellasonnei)、金黄色葡萄球菌(Staphylococcus aureus)、表皮葡萄球菌(Staphylococcusepidermidis)、腐生葡萄球菌(Staphylococcus saprophyticus,)、无乳链球菌(Streptococcus agalactiae)、变形链球菌(Streptococcus mutans)、肺炎链球菌(Streptococcus pneumoniae)、化脓性链球菌(Streptococcus pyogenes)、苍白密螺旋体(Treponema pallidum)、霍乱弧菌(Vibrio cholerae)或鼠疫杆菌(Yersinia pestis)。
病毒抗原
病毒抗原可得自腺病毒;单纯疱疹,1型;单纯疱疹,2型;脑炎病毒;乳头瘤病毒;水痘-带状疱疹病毒;爱泼斯坦-巴尔病毒(Epstein-barr virus);人巨细胞病毒(CMV);人疱疹病毒,8型;人乳头瘤病毒;BK病毒;JC病毒;天花;脊髓灰质炎病毒;乙型肝炎病毒;人博卡病毒;细小病毒B19;人星状病毒;诺瓦克病毒;柯萨奇病毒;甲型肝炎病毒;脊髓灰质炎病毒;鼻病毒;严重急性呼吸综合征病毒;丙型肝炎病毒;黄热病病毒;登革热病毒;西尼罗河病毒;风疹病毒;戊型肝炎病毒;人免疫缺陷病毒(HIV);甲型或乙型流感病毒;瓜纳里托病毒;胡宁病毒;拉沙病毒;马秋波病毒;萨比亚病毒;克里米亚-刚果出血热病毒;埃博拉病毒;马尔堡病毒;麻疹病毒;腮腺炎病毒;副流感病毒;呼吸道合胞病毒(RSV);人偏肺病毒;亨德拉病毒;尼帕病毒;狂犬病病毒;丁型肝炎;轮状病毒;环状病毒;科罗病毒(Coltivirus);汉坦病毒;中东呼吸道冠状病毒;SARS-Cov-2病毒;基孔肯雅病毒;寨卡病毒;副流感病毒;人肠道病毒;汉塔病毒;日本脑炎病毒;水疱性疱疹病毒(Vesicularexanthemavirus);东部马脑炎;或版纳病毒。
在一个实施方式中,抗原来自甲型流感或乙型流感病毒株或其组合。甲型流感或乙型流感毒株可与鸟、猪、马、狗、人或非人的灵长类动物有关。
核酸可以编码血凝素蛋白或其片段。血凝素蛋白可以是H1、H2、H3、H4、H5、H6、H7、H8、H9、H10、Hl 11、H12、H13、H14、H15、H16、H17、H18或其片段。血凝素蛋白可以包含或可以不包含头部结构域(HA1)。替选地,血凝素蛋白可以包含或可以不包含细胞质结构域。
在某些实施方式中,血凝素蛋白是截短的血凝素蛋白质。截短的血凝素蛋白可以包含跨膜结构域的一部分。
在一些实施方式中,病毒可以选自由H1N1、H3N2、H7N9、H5N1和H10N8病毒或B株病毒组成的组。
在另一个实施方式中,抗原可以来自CMV。特别地,抗原可以是五聚体(gH/gL/pUL128/pUL130/pUL131)和gB的组合。
在另一个实施方式中,抗原来自冠状病毒,例如SARS-Cov-1病毒、SARS-Cov-2病毒或MERS-Cov病毒。
在另一个实施方式中,抗原可以来自RSV。抗原可以是PreF铁蛋白。适合的预融合RSV F抗原可以如WO 2014/160463A1或WO 2019/195316A1中所公开的。
真菌抗原
真菌抗原可得自子囊菌门(Ascomycota)(例如,尖孢镰刀菌Fusarium oxysporum、吉氏肺孢子虫Pneumocystis jiroviecii、曲霉菌属Aspergillus spp.、粗球孢子菌Coccidioides immitis/posadasii、白色念珠菌Candida albicians)、担子菌门(Basidiomycota)(例如,新型线黑粉菌Filobasidiella neormans、毛孢子菌属Trichosporon)、微孢子虫(Microsporidia)(例如,兔脑炎原虫Encephalitozooncuniculi、比氏肠胞Enterocytozoon bieneusi)、或毛霉亚门(Mucoromycotina)(例如,卷枝毛霉菌Mucor circinelloides、米根霉Rhizopus oryzae、伞状毛霉菌Lichtheimiacorymbifera)。
原生动物抗原
原生动物抗原可得自溶组织内阿米巴(Entamoeba histolytica)、蓝氏贾第鞭毛虫(Giardia lamblia)、阴道毛滴虫(Trichomonas vaginalis)、布氏锥虫(Trypanosomabrucei)、克鲁兹锥虫(T.cruzi)、杜氏利什曼原虫(Leishmania donovani)、结肠小袋虫(Balantidium coli)、弓形虫(Toxoplasma gondii)、疟原虫(Plasmodium spp.)或微小巴贝虫(Babesia microti)。
寄生虫抗原
寄生虫抗原可得自棘阿米巴原虫、异尖线虫、蛔虫(Ascaris lumbricoides)、马蝇、结肠小袋虫、臭虫、绦虫、恙螨、螺旋蝇(Cochliomyia hominivorax)、溶组织内阿米巴、肝片吸虫(Fasciola hepatica)、蓝氏贾第鞭毛虫、钩虫、利什曼原虫、舌形虫(Linguatulaserrata)、肝吸虫(liver fluke)、罗阿丝虫、并殖吸虫(Paragonimus)、蛲虫、恶性疟原虫(Plasmodium falciparum)、血吸虫、粪类圆线虫(Strongyloides stercoralis)、螨、绦虫、弓形虫、锥虫、鞭虫、或班氏吴策线虫(Wuchereria bancrofti)。
肿瘤抗原
在一个实施方式中,抗原可以是肿瘤抗原,即癌症细胞的成分,例如在癌症细胞中表达的蛋白质或肽。术语“肿瘤抗原”涉及在正常条件下在有限数量的组织和/或器官中或在特定发育阶段中特异性表达并且在一个或多个肿瘤或癌症组织中表达或异常表达的蛋白质。肿瘤抗原包括例如分化抗原,例如细胞类型特异性分化抗原,即在正常条件下在某一分化阶段的某一细胞类型中特异性表达的蛋白质,和种系特异性抗原。例如,肿瘤抗原由癌症细胞呈递,在该细胞中表达该肿瘤抗原。
例如,肿瘤抗原包括癌胚抗原、1-胎蛋白、异铁蛋白和胎儿硫甘聚糖(fetalsulphoglycoprotein)、cc2-H-铁蛋白和γ-胎蛋白。
可用于本发明的肿瘤抗原的其它实例为p53、ART-4、BAGE、β-连环蛋白/m、Bcr-abLCAMEL、CAP-1、CASP-8、CDC27/m、CD 4/m、CEA、闭合蛋白家族的细胞表面蛋白(例如闭合蛋白-6、闭合蛋白-18.2和闭合蛋白-12)、c-MYC、CT、Cyp-B、DAM、ELF2M、ETV6-AML1、G250、GAGE、GnT-V、Gapl OO、HAGE、HER-2/neu、HPV-E7、HPV-E6、HAST-2、hTERT(或hTRT)、LAGE,LDLR/FUT、MAGE-A(例如MAGE-A1、MAGE-A2、MAGE-A3、MAGE-A4、MAGE-A5、MAGE-A6、MAGE-A7、MAGE-A8、MAGE-A9、MAGE-A10、MAGE-A11或MAGE-A12)、MAGE-B、MAGE-C、MART-1/Melan-A、MC1R、肌球蛋白/m、MUC1、MUM-1、MUM-2、MUM-3、NA88-A、NF1、NY-ESO-1、NY-BR-1、pl 90小BCR-abL、Pm l/RARa、PRAME、蛋白酶3、PSA、PSM、RAGE、RUl或RU2、SAGE、SART-1或SART-3、SCGB3A2、SCP 1、SCP2、SCP3、SSX、SURVrVIN、TEL/AML1、TPI/m、TRP-1、TRP-2、TRP-2/1NT2、TPTE和WT(例如WT-1)。
可以仅使用一种类型的抗原,或者可以组合使用两种或更多种类型的抗原。
疫苗组合物中抗原的含量例如为0.1质量%至10质量%,优选为0.2质量%至5质量%,更优选为0.4质量%至1质量%。这种含量理解为在不含溶剂的疫苗组合物中。
疫苗组合物中抗原的含量可以显著地取决于抗原的性质,特别是其重量和/或其纯度。
在一个实施方式中,本文公开的免疫原性组合物是亚单位免疫原性组合物,例如亚单位疫苗组合物。
本文公开的免疫原性或疫苗组合物可以配制成固体、半固体、液体形式的制剂,例如片剂、胶囊、粉末、气溶胶、针、纳米针、悬浮液或乳液。施用这种组合物的典型途径包括但不限于口服、局部、透皮、吸入、胃肠外、舌下、颊、鼻内。本文使用的术语胃肠外施用包括皮下注射、静脉内、肌肉内、皮内、胸骨内注射或输注技术。在一些实施方式中,本文公开的疫苗组合物可以通过透皮、皮下、皮内或肌内途径施用。本发明的组合物是基于递送模式配制的,包括例如配制用于经由胃肠外递送(例如肌内、皮内或皮下注射)来递送的组合物。
本文公开的免疫原性组合物可以通过任何合适的途径施用,例如通过粘膜施用(例如鼻内或舌下)、胃肠外施用(例如肌内、皮下、经皮或皮内途径)或口服施用。如本领域技术人员所理解的,免疫原性组合物可以适当地配制成与预期给药途径相容。在一个实施方式中,本文公开的免疫原性组合物可以配制成通过肌内途径、皮内途径或皮下途径施用。在一个实施方式中,免疫原性组合物可以配制成通过肌内途径施用。
本文公开的组合物被配制成使得其中包含的活性成分在将组合物施用给对象时是生物可利用的。
制备这种剂型的实际方法对本领域技术人员来说是已知的,或者将是明显的;例如参见Remington:The Science and Practice of Pharmacy,第20版(PhiladelphiaCollege of Pharmaceutical and Science,2000)。
本文公开的免疫原性组合物可以用任何药学上可接受的载体配制。组合物可以包含至少一种惰性稀释剂或载体。一种示例性的药学上可接受的载体是生理盐水缓冲液。其他生理学上可接受的载体是本领域技术人员已知的,并在例如Remington’sPharmaceutical Sciences(第18版),A.Gennaro编辑,1990,Mack Publishing Company,宾夕法尼亚州伊斯顿中进行了描述。本文公开的免疫原性组合物可以任选地含有如接近生理条件所需要的药学上可接受的辅助物质,例如pH调节剂和缓冲剂、张力调节剂、润湿剂等,例如乙酸钠、乳酸钠、氯化钠、氯化钾、氯化钙、山梨糖醇单月桂酸酯、油酸三乙醇胺、人血清白蛋白、必需氨基酸、非必需氨基酸、L-精氨酸盐酸盐、蔗糖、D-海藻糖脱水物、山梨醇,三(羟甲基)氨基甲烷和/或尿素。此外,疫苗组合物可任选地包含药学上可接受的添加剂,包括例如稀释剂、粘合剂、稳定剂和保存剂。
在一个实施方式中,组合物可以是液体的形式,例如乳液或悬浮液。该液体可以用于通过注射来递送。打算通过注射施用的组合物可包含表面活性剂、保存剂、润湿剂、分散剂、悬浮剂、缓冲剂、稳定剂和等渗剂中的至少一者。本文公开的液体组合物可以包括以下中的至少一者:无菌稀释剂例如注射用水,盐水溶液例如生理盐水,林格溶液,等渗氯化钠,固定油例如可以用作溶剂或悬浮介质的合成单甘油酯或二甘油酯,聚乙二醇,甘油,丙二醇或其他溶剂;抗菌剂,例如苯甲醇或对羟基苯甲酸甲酯;抗氧化剂,例如抗坏血酸或亚硫酸氢钠;螯合剂,例如乙二胺四乙酸;缓冲剂,例如醋酸盐、柠檬酸盐或磷酸盐以及用于调节张力的试剂,例如氯化钠或右旋糖;用作冷冻保护剂的试剂,例如蔗糖或海藻糖。
本文公开的免疫原性组合物的pH可在约5.5至约8的范围内,例如约6.5至约7.5,或可为约7.4。可以通过使用缓冲液来保持稳定的pH。作为可能的可用的缓冲液,可以列举Tris缓冲液、HEPES缓冲液或组氨酸缓冲液。本文公开的免疫原性组合物通常可以包括缓冲液。免疫原性组合物对于哺乳动物、例如人可以是等渗的。免疫原性组合物还可以包含一种或几种额外的盐,例如NaCl。
胃肠外制剂可以封装在安瓿、一次性注射器或由玻璃或塑料制成的多剂量小瓶、透皮高压注射器中。可注射组合物例如是无菌的。
本文公开的组合物可通过制药领域众所周知的方法制备。例如,打算通过注射施用的组合物可以将本文公开的组合物与无菌、蒸馏水或其他载体结合以形成无菌溶液或无菌悬浮液来制备。可以添加表面活性剂以促进均匀溶液或悬浮液的形成。
本文公开的组合物以治疗有效量给药,其将根据多种因素而变化,包括所使用的特异性治疗剂的活性;治疗剂的代谢稳定性和作用时间;患者的年龄、体重、总体健康状况、性别和饮食;施用方式和时间;排泄速率;药物组合;特定病症或状况的严重程度;以及正在接受治疗的对象。
在一个实施方式中,本文公开的免疫原性组合物可以通过任何保存方法包装和储存,例如以干燥形式、例如冻干组合物,或通过WO 2009/109550中所述的造粒方法获得的微丸。
干燥的组合物可包括稳定剂,例如甘露醇、蔗糖或十二烷基麦芽糖苷、及其混合物,例如乳糖/蔗糖混合物、蔗糖/甘露醇混合物等。
用于制备免疫原性组合物的方法
用于制备根据本发明的免疫原性组合物的方法至少包括以下步骤:在至少一种抗原的存在下,使至少一种铝化合物与至少多羧酸和/或与至少多羧酸盐反应,以形成固定所述抗原的至少一种多羧酸铝金属-有机框架,所述多羧酸选自富马酸、粘康酸、中康酸、草酸、草酰乙酸、琥珀酸、苹果酸、柠檬酸、乌头酸、间苯二甲酸、经取代的间苯二甲酸、2,5-噻吩二羧酸、2,5-呋喃二羧酸、均苯三甲酸、偏苯三甲酸或均苯四甲酸,所述多羧酸盐选自富马酸盐、粘康酸盐、中康酸盐、草酸盐、草酰乙酸盐、琥珀酸盐、苹果酸盐、柠檬酸盐、乌头酸盐、间苯二甲酸盐、经取代的间苯二甲酸盐、2,5-噻吩二羧酸盐、2,5-呋喃二羧酸盐、均苯三甲酸盐、偏苯三甲酸盐或均苯四甲酸盐。
优选地,铝化合物是硫酸铝。
根据本发明,铝化合物可以与所述至少多羧酸和/或与所述至少多羧酸盐反应。因此,反应可以用已经单独去质子化的多羧酸盐或用铝前体进行。因此,这样的步骤可以在根据本发明的方法之前或期间进行。
优选地,根据本发明的方法至少包括使至少一种铝化合物与至少选自以下的多羧酸反应的步骤:富马酸、粘康酸、中康酸、草酸、草酰乙酸、琥珀酸、苹果酸、柠檬酸、乌头酸、间苯二甲酸、经取代的间苯二甲酸、2,5-噻吩二羧酸、2,5-呋喃二羧酸、均苯三甲酸、偏苯三甲酸或均苯四甲酸,优选与至少富马酸反应。
优选地,用于反应的铝化合物与多羧酸和/或多羧酸盐的摩尔比为0.001至2.5,优选0.1至1.5,优选0.1至1,优选0.4至0.8,更优选0.4至0.6。
特别优选的是摩尔比为0.5。
本发明方法中的反应在水性溶剂(水性介质)的存在下进行。
这里,如果使用混合物,则水含量优选大于50重量%,更优选大于60重量%,甚至更优选大于70重量%,甚至更优选大于80重量%,甚至更优选大于90重量%,甚至更优选大于95重量%,甚至更优选大于99重量%。特别地,水性溶剂仅由水组成。
此外,或者作为替选,碱性物质可以用于反应中。
反应通常在碱性物质存在下在作为溶剂的水中进行。
优选使用碱金属氢氧化物或多种不同碱金属氢氧化物的混合物作为碱性物质。实例特别是氢氧化钠和氢氧化钾。然而,还可以想到另外的无机氢氧化物或碳酸盐或有机碱,例如胺。氢氧化钠是特别优选的。
优选地,反应在碱性物质的存在下进行,优选一种碱金属氢氧化物或多种不同碱金属氢氧化物的混合物,更优选氢氧化钠。
特别地,反应在1巴至2巴的绝对压力下进行,并且优选反应在大气压下进行。然而,由于该装置的存在,可以出现略高于大气压或低于大气压的压力。因此,出于本发明的目的,术语“大气压”是指由1013毫巴的实际大气压给出的压力范围。
根据另一个实施方式,反应可以在2巴下进行。
合适的压力将由本领域技术人员根据所选择的抗原来选择,并且在任何情况下都将保持介质的完整性,特别是抗原的完整性。
反应可以在室温(20℃)下进行。然而,反应可以在高于室温的温度下进行。
优选地,反应在4℃至75℃,特别是4℃至70℃,例如4℃至65℃,尤其是10℃至70℃,优选10℃至45℃,更优选10℃至40℃的温度下进行。
然而,该过程可以在负温度下进行,提供避免冻结的介质组合物。
此外,在混合反应混合物的情况下进行反应是有利的。因此,反应可以在搅拌下进行,这在放大的情况下也是有利的。在反应过程中可以通过泵送循环进行更有效的混合。这使得本发明方法的连续操作成为可能。
为了获得高的时空产率,反应进行1分钟至96小时。反应优选进行2小时至48小时。该反应更优选进行5小时至24小时。该反应更优选进行8小时至16小时。
如果使用碱性物质,则用于反应的多羧酸和/或多羧酸盐与所用的碱性物质的摩尔比优选在0.05至2的范围内。更优选0.1至1.5的范围,甚至更优选0.2至1的范围。
优选地,根据本发明的方法还包括在反应结束时的离心步骤,然后任选地包括再分散步骤。
根据本发明的方法还可以包括在反应结束时的至少一个常规洗涤步骤。
通过参考以下实施例和附图将更好地理解本发明,这些实施例和附图仅用于说明目的,不应被解释为以任何方式限制本发明。
附图说明
图1示出富马酸铝的典型表征技术;(a)PXRD、(b)FT-IR和(c)TGA。
图2示出富马酸铝在HEPES缓冲液(20mM,pH 7.4)中的稳定性;(a)4天的PXRD,(b)两个月通过ICP-OES定量的Al3+浸出,(c)两个月通过HPLC定量的富马酸浸出,以及(d)两个月基于HPLC数据的富马酸铝降解的重量百分比。
图3示出富马酸铝生物复合材料的PXRD图,其中生物分子被添加到配体/碱性物质溶液、金属盐溶液中或直接添加到反应混合物中;(a)BSA、(b)漆酶和(c)细胞色素c。
图4示出富马酸铝和佐剂在储存4天后的(a)固定化能力和(b)蛋白质浸出,使用BSA和细胞色素c作为模型生物分子,通过各自上清液中发现的生物分子的量来定量。
图5示出M0(a,b)和M1(c,d)浓度的TT@富马酸铝疫苗的表征(a,c)PXRD,(b,d)FT-IR。
图6示出(a)M0和M1制剂的TT固定化效率,通过使用微BCA蛋白质测定法在上清液中检测到的TT(未吸附的TT)的量来定量,(b)示出TT浸出形式TT@富马酸铝和TT@的百分比,在疫苗制剂制造1周后,使用微BCA蛋白质测定法,通过上清液中检测到的TT(未吸附的TT)的量来定量。
图7示出以4种不同浓度(C0-C3)使用的两种疫苗制剂TT@富马酸铝和TT@的Ig和IgG抗TT的指数,(a)IgG抗TT Ab和(b)全Ig和IgG抗TT Ab(抗轻链Elisa)。Elisa OD表示为指数,例如从免疫小鼠获得的值除以在对照未免疫的未试验过小鼠的血清中观察到的值。小鼠在D30时放血。
图8示出所有亚组(S-TT@富马酸铝,M-TT@和TT)和对照组的平均体重和小鼠个体体重的演变。
图9示出在使用TT@或TT@富马酸铝免疫的10对小鼠中观察到的在D14或D32的IgG抗TT反应。描述了在ELISA中观察到的直接OD。
图10示出TT@富马酸铝和TT@从第7天、第14天、第32天、第60天开始使用200至3200份血清的系列稀释液的Ig反应的对比。a)以国际单位表示的校准曲线,b)描绘稀释曲线,c)和d)分别从在D32和D60的血清获得的曲线的对比。
图11示出用以下免疫后32天的IgG抗TT反应:从左到右为9个月TT@富马酸铝、初始的TT@富马酸铝(9个月前使用的相同的制剂、相同的免疫)和新鲜制备的TT@富马酸铝。
图12示出(a)在富马酸铝的表面的TT固定化效率,通过使用微BCA蛋白质测定法,在上清液中检测到的TT(未吸附的TT)的量来定量,(b)在疫苗制剂制造1周后的TT浸出形式TT@富马酸铝-表面和TT@的百分比,通过使用微BCA蛋白质测定法,上清液中检测到的TT(未吸附的TT)的量来定量。
图13示出TT@富马酸铝和TT@富马酸铝-表面制剂、富马酸铝和TT在H2O中的ζ-电位测量。
图14示出用以下免疫后32天的IgG抗TT反应:从左到右为TT、TT@TT@富马酸铝或TT@富马酸铝-表面。
图15示出注射后第7天至第60天小鼠注射部位(右肢)处存在的Al3+量,具有log x轴,通过ICP-OES来定量,以及从ICP-OES数据中扣除的注射部位处存在的Al3+重量%。
图16示出注射后第7天至第60天小鼠注射部位(右肢)处存在的Al3+的重量%,具有线性x轴,如从ICP-OES数据中定量和扣除的。
图17示出荧光-TT@富马酸铝的PXRD图谱。
图18示出注射荧光-TT和荧光-TT@富马酸铝的小鼠随时间推移在注射部位的初始荧光辐射的%。每个点代表3只小鼠的平均值。
图19示出来自未试验过小鼠(上排)和注射TT@富马酸铝的小鼠(下排)的器官的组织的HES染色。比例尺表示500μm。
图20示出TT@ZIF-8和ZIF-8的试验值和计算值的PXRD图谱。
图21示出TT、TT@富马酸铝和TT@ZIF-8免疫后1个月获得的Ig抗TT。
图22示出甲醛灭活的大肠杆菌@富马酸铝、富马酸铝的试验值和计算值的PXRD图谱(从CCDC获得,保藏号:1051975,数据库标识符:DOYBEA)。
图23示出染色的灭活的大肠杆菌(未固定,顶部图像)和灭活的大肠杆菌@富马酸铝(底部图像)的TEM图像。
图24示出甲醛灭活的大肠杆菌@富马酸铝的Al和O的STEM-EDX定位。
图25示出灭活的大肠杆菌(未固定,左)、灭活的大肠杆菌@富马酸铝(中)、从大肠杆菌@富马酸铝释放的灭活的大肠杆菌(右)的流式细胞术分析;上排:在BD LSR FortessaTM设备上获得的轴向和侧向散射,下排:使用Thermo Fisher AttuneTMCytpixTM对在散射体上门控的细菌和/或SYTO 9荧光团检测细菌DNA进行的直接视频成像。
图26示出用灭活的大肠杆菌@富马酸铝、灭活的大肠杆菌或灭活的大肠杆菌@免疫的小鼠中的Ig抗大肠杆菌。排名值在每组5只小鼠中以相同的顺序从较低到较高的Ig反应描述。
图27示出灭活的脊髓灰质炎病毒@富马酸铝、富马酸铝的试验值和计算值的PXRD图谱(从CCDC获得,保藏号:1051975,数据库标识符:DOYBEA)。
图28示出a)在IMOVAX POLIO溶液、富马酸铝的对照反应的上清液和灭活的脊髓灰质炎病毒@富马酸铝的上清液中,使用微BCA蛋白测定法检测的蛋白质的量,b)灭活的脊髓灰质炎病毒@富马酸铝的固定化效率,从上清液中发现的量中扣除。
图29示出聚糖@富马酸铝和计算值的PXRD图谱(从CCDC获得,保藏号:1051975,数据库标识符:DOYBEA)。
图30示出富马酸铝和聚糖@富马酸铝的13C RMN光谱。
图31示出CpG1018@富马酸铝、富马酸铝的试验值和计算值的PXRD图谱(从CCDC获得,保藏号:1051975,数据库标识符:DOYBEA)。
图32示出CpG1018+TT@富马酸铝、富马酸铝的试验值和计算值的PXRD图谱(从CCDC获得,保藏号:1051975,数据库标识符:DOYBEA)。
图33示出实施例25的BSA@粘康酸铝和粘康酸铝的PXRD图谱。
图34示出实施例26的MIL-160的PXRD图谱。
图35示出实施例27的BSA@均苯三甲酸铝和均苯三甲酸铝的PXRD图谱。
图36示出实施例28的BSA@均苯四甲酸铝的PXRD图谱。
具体实施方式
实施例
材料和方法
除非另有规定,所有生物分子和化学品都是从商业来源购买的,并且在没有进一步纯化的情况下使用。
破伤风类毒素蛋白2.8mg/mL、1428Lf/mL、5712UI/mL购自Creative Biolabs。
2%的佐剂购自InvivoGen。
牛血清白蛋白,标准级,ZebaTM自旋脱盐柱(7k MWCO,2mL)购自Thermo FisherScientific。
来自马心脏的细胞色素C,≥95%,来自云芝(Trametes versicolor)的漆酶,≥0.5U/mg,硫酸铝,USP检测规格,富马酸USP/NF规格,氢氧化钠,欧洲药典,BP,NF,E524,98-100.5%规格,ICP铝标准,995mg/L,QuantiProTMBCA测定试剂盒,磷酸盐缓冲盐水片,HEPES缓冲溶液,1M于H2O中,盐酸,1mol/L,欧洲药典,UPS规格,硝酸,70%,≥99.999%,ICP锌标准,1000mg/L,ICP磷标准,1000mg/L,37%甲醛,多聚甲醛,95-100%,2-甲基咪唑,Ph.Sec.Std.,均苯三甲酸,95%,2,5-呋喃二羧酸,1,2,4,5-苯-四羧酸购自Sigma-Aldrich。
乙酸锌从Fluka获得。
90%的碱性乙酸铝从Acros Organics获得。
硝酸52.5%,AnalaR分析试剂购自VWR。
氯化钠、粘康酸购自Alfa Aesar。
盐酸,37%,用于分析ISO,购自Carlo Erba。
小鼠抗破伤风类毒素ELISA试剂盒、全Ig(IgG、IgA、IgM)小鼠抗大肠杆菌(E.coli)ELISA试剂盒(参考500-100ECP)购自Alpha Diagnostics International。
680XL蛋白质标签试剂盒购自Perkin Elmer。
来自Sanofi Pasteur。
疫苗来自MSD。
CpG 1018来自Proteogenix。
小鼠研究
对于所有研究,小鼠被集中安置在通风架中的一次性标准笼中,温度控制在21±3℃,湿度在30%-70%之间,光照周期为12小时光照/12小时黑暗。为啮齿动物随意提供过滤水和高压灭菌标准实验室食品。施用前,在挥发性麻醉(异氟烷和氧气作为载气)下麻醉小鼠。
对于所有研究,就在动物施用之前,疫苗在室温下保存几分钟,以免施用冷溶液。
在注射之前,就在填充注射器之前,通过涡旋(3次,每次约5秒)小心地重新悬浮每种疫苗,除非另有规定。
对于所有研究,使用放置在50μL Hamilton注射器上的26G一次性针头进行注射。
对于所有研究,根据标准方案对全血进行采样并用于血清制备。
对于中间采样,使用毛细管(未涂抗凝剂)通过眶后窦途径对全血进行采样。就在安乐死前的最后一次采样中,在挥发性麻醉(异氟烷和氧气作为载气)下,通过心脏内穿刺对全血进行采样。
仪器
粉末X射线衍射图是在Siemens D5000衍射仪上使用CuKα辐射在Bragg Brentano几何[(θ-2θ)模式]下测量的,除非另有规定。
电感耦合等离子体光学发射光谱(ICP-OES)是用具有轴向观察等离子体的Agilent 720系列进行的。除非另有规定,所有样品在注入仪器之前均经过过滤。
傅立叶变换红外光谱(FT-IR)在ThermoScientificNicolet 6700FT-IR上进行。
热重分析(TGA)在Mettler Toledo TGA/DSC 1,系统设备上,在O2流下进行。
ELISA试剂盒的光密度在双波长Tecan Spark装置上的单个微量滴定板上测量。
Origin被用作统计软件。
缩略语列表
PXRD:粉末X射线衍射
FT-IR:傅立叶变换红外光谱
TGA:热重分析
ICP-OES:电感耦合等离子体光学发射光谱
BSA:牛血清白蛋白
Cyt c:细胞色素c
HEPES:4-(2-羟乙基)-1-哌嗪乙烷磺酸
PBS:磷酸盐缓冲盐水
BCA:二辛可宁酸
SEM:扫描电子显微镜
TEM:透射电子显微镜
STEM-EDS:扫描透射电子显微镜结合能量色散X射线光谱
HPLC:高效液相色谱
RT:室温
PFA4%:多聚甲醛4%溶液
Ab:抗体
Ig:免疫球蛋白
IgG:免疫球蛋白G
OD:光密度
CCDC:剑桥晶体学数据中心
NIR:近红外
IQR:四分位间距
SD:标准偏差
BKG:背景
IU:国际单位
实施例1
富马酸铝MOF的合成
为了合成富马酸铝MOF,将700mg Al2(SO4)3·xH2O(x~18)溶解在10mL milliQ H2O中。
制备在10mL milliQ H2O中含有243mg富马酸和256mg NaOH的单独溶液,并将其添加到金属盐溶液中。
观察到立即的白色沉淀,并将混合物在室温、大气压下搅拌8小时。
通过离心(3分钟,24500g)回收产物,在100℃下干燥过夜,并使用典型的表征技术(PXRD、FT-IR、TGA)分析,如图1所示。富马酸铝(A520)的经计算的PXRD图谱从剑桥晶体学数据中心(CCDC)获得;保存编号:1051975,数据库标识符:DOYBEA。
表征结果与富马酸铝的形成一致。
如果需要,可以用milliQ H2O或HEPES(20mM,pH 7.4)进行洗涤步骤。
实施例2
富马酸铝在HEPES中的稳定性
选择浓度为20mM和pH 7.4的HEPES缓冲液作为富马酸铝佐剂制剂的注射介质。富马酸铝在所述缓冲液中的稳定性研究了0天至2个月的时间。
更准确地,制备富马酸铝浓度为8.5mg/mL HEPES缓冲液(20mM,pH 7.4)的悬浮液,并将其保持在4℃,直到分析。在不同的时间段内手动振荡悬浮液以模拟运输条件。在指定的稳定性时间点,通过离心(20分钟,24500g)收集富马酸铝,并在100℃下干燥3小时用于分析。使用典型表征技术(PXRD)在4天内评估制剂稳定性,从而确定缓冲液可能引起的结构改变。此外,采用ICP-OES和HPLC分析技术,通过定量溶液(上清液)中分别浸出至多两个月的Al3+和富马酸的量,评估富马酸铝在缓冲液中的溶解情况。请注意,在每个时间点对单独的样品进行分析。
发现富马酸铝在HEPES缓冲液(20mM,pH 7.4)中是稳定的,因为在4天的时间内没有观察到结构改变。在2个月的时间里,在上清液中检测到非常低量的Al3+和富马酸(图2),证实了富马酸铝在HEPES缓冲液(20mM,pH=7.4)中至少两个月的稳定性。
实施例3
富马酸铝合成过程中生物分子添加的影响
在富马酸铝合成过程中,使用具有不同结构特征、等电点和大小的模型生物分子牛血清白蛋白(BSA)、漆酶和细胞色素c(Cyt c)进行生物分子添加。
还通过将各自的生物分子添加到金属盐溶液、配体/碱性物质溶液、或在混合所有反应物几秒钟后的反应中,来检查在富马酸铝反应中生物分子的添加方式。
所获得的结果显示,与各自生物分子的添加方式或结构特征无关,生物分子在富马酸铝的合成中对PXRD图谱没有影响(图3)。
实施例4
富马酸铝和 佐剂的固定化能力
使用模型生物分子牛血清白蛋白(BSA)和细胞色素c(Cyt c)研究了富马酸铝和的固定化能力。
此外,对具有两种佐剂的生物复合材料的稳定性进行了为期4天的检查,以确定溶液中浸出的生物分子的量。
对于富马酸铝佐剂,在混合金属盐和配体/碱性物质溶液几秒钟后,将BSA或Cyt c加入到反应中。
对于佐剂,将BSA或Cyt c与佐剂的悬浮液混合5分钟。/>
在各自过程结束时,将产物离心(3分钟,10500g),并收集上清液,通过微BCA蛋白质测定法,定量溶液中剩余生物分子(未被佐剂吸附)的量(图4a)。
此外,对于富马酸铝和将产物分别重新分散在HEPES(20mM,pH7.4)和PBS(10mM,pH 7.4)中,并在4℃下储存,以检查生物分子从佐剂中的可能浸出。在不同的时间段(0至4天),将样品离心(3分钟,10500g),并收集其上清液,以定量浸出的任何生物分子(通过微BCA)。再次将样品重新分散在各自的缓冲液中,并在4℃下储存,直到下一次测量,至多4天。在各自的上清液中检测到的BSA和Cyt c的至多4天的累积量如图4b所示。
根据本发明的富马酸铝对两种测试的生物分子都表现出优异的固定化能力(对于BSA为98重量%,对于Cyt c为99重量%),而对BSA(99重量%)的固定化效率远高于Cyt c(49重量%)(图4a)。
此外,蛋白质浸出研究表明,从富马酸铝解吸的生物分子量最小(图4b)。
这项研究强调,富马酸铝适合固定各种特征的生物分子,并可以广泛用于制造不同的疫苗。
实施例5
破伤风类毒素在富马酸铝中的固定化
制备具有不同浓度的两种TT@富马酸铝疫苗(M0和M1),同时TT/Al3+的比率保持恒定为0.08IU/Alμg,与模型人破伤风疫苗一致。
破伤风类毒素也以相同的浓度(S0和S1)和比率(0.08IU/Alμg)吸附在商业佐剂上,两种疫苗组均用于体内研究。
图5示出两种TT@富马酸铝疫苗的PXRD和FT-IR数据,与对照反应对比,在对照反应中,富马酸铝是在没有抗原的情况下形成的,使用与M0/M1完全相同的反应条件。
可以看出,TT不影响MOF的形成,这与上面在实施例3中使用其他生物分子(BSA、漆酶和Cyt c)进行的先前研究一致。
最后,使用微BCA蛋白质测定法,在M0和M1的上清液中未检测到破伤风类毒素,证实了抗原在疫苗中的完全固定化(图6a)。
实施例6
用富马酸铝或 制备破伤风类毒素(TT)抗原疫苗组合物及其剂量的 调节
不同的疫苗组合物和剂量基于破伤风类毒素单价人疫苗,并且如下表1所示。
表1
对于两种佐剂体系(富马酸铝和),制备C0和C1疫苗,C1用作C2和C3稀释疫苗的原液。
破伤风类毒素(TT)抗原在富马酸铝中的固定化
对于富马酸铝佐剂疫苗,制备两种TT@富马酸铝疫苗M0和M1,并且M1用作M2和M3稀释疫苗的原液。所有使用的溶液(反应物、缓冲液和MilliQ溶液)在使用前均使用具有孔径为0.2μm的膜的注射器过滤器消毒。
所用的确切量显示在下面的表2中,该表显示了制备TT@富马酸铝疫苗的试验细节。
表2
对于两种疫苗,均使用Al2(SO4)3·xH2O(700mg)在10mL milliQ H2O中的原液和富马酸(243mg)/NaOH(256mg)在10mL milliQ H2O中的原液。
从Creative Biolabs购买的2.8mg/mL破伤风类毒素溶液直接用于制备疫苗。
详细地,制备了两种分别含有金属盐或配体/碱性物质的109μL和136μL的单独溶液(M0和M1)。混合两种溶液几秒钟后,将破伤风类毒素溶液加入反应中(M0为8.4μL,M1为10.5μL)。将最终混合物在室温下搅拌8小时。
随后,将疫苗以10500g离心3分钟,去除上清液并用300μL(对于M0)或750μL(对于M1)的HEPES缓冲液(20mM,pH 7.4)代替。
TT@富马酸铝疫苗在4℃下保存约2天,直到进行体内研究。
TT在富马酸铝中的固定量基于M0和M1上清液中发现的TT的量,通过微BCA蛋白质测定法定量。M0和M1上清液中TT的量是可忽略不计的,这证实了TT的完全固定化(图6a)。通过ICP-OES也证实了疫苗及其对照的Al3+含量,并且与预期值没有显示出重要变化。表3显示TT@富马酸铝疫苗及其对照的Al3+含量,通过ICP-OES定量。
ICP-OES的矿化程序:所有样品在处理前在100℃下加热16小时。将1mL HCl(1M)加入所有干燥的产品中,然后在80℃的封闭容器中加热16小时。
在完全矿化后,用milliQ H2O将样品稀释至40mL,用于ICP-OES分析。使用1000-10000ppb的Al的校准曲线用于分析。
表3
破伤风类毒素(TT)抗原在 中的固定化
对于佐剂疫苗,制备两种TT@/>疫苗S0和S1,S1用作S2和S3稀释疫苗的原液。所用的缓冲溶液在使用前使用具有孔径为0.2μm的膜的注射器过滤器消毒。
所用的确切量如表4所示,表4详细说明了制备TT@疫苗的试验细节。
表4
从Creative Biolabs购买的2.8mg/mL破伤风类毒素溶液和从InvivoGen购买的2%佐剂直接用于疫苗的制备。
详细地,8.4μL(对于S0)或10.5μL(对于S1)破伤风类毒素溶液在各自的PBS缓冲液体积(10mM,pH 7.4)中稀释,然后加入指定体积的悬浮液。
将混合物用移液器吸取上下5分钟,以允许吸附抗原,最后加入剩余量的PBS缓冲液。
TT@疫苗在4℃下保存约2天,直到进行体内研究。
还研究了商业的Al3+含量。下表5显示了通过ICP-OES定量的的Al3+含量。
表5
实施例7
TT@富马酸铝和TT@ 制剂在抗原浸出方面的稳定性
TT@富马酸铝制剂在抗原浸出方面的稳定性通过测定在4℃下储存1周后在溶液(上清液)中浸出的TT的量来研究。未观察到TT的浸出,证实了制剂的稳定性(图6b)。
TT@制剂显示,在4℃下储存1周后,溶液(上清液)中浸出了约8重量%的TT(图6b)。
实施例8
通过实施例6的疫苗诱导的免疫反应的体内评估
通过在后腿股四头肌肌肉内注射20μL的TT@富马酸铝或TT@对约18g的7周龄Balb/c雌性小鼠进行免疫。
测试了富马酸铝和佐剂两者的四种浓度,TT/Al3+的恒定比率=0.08IU/Alμg。/>
对于每种浓度,每个佐剂组使用两只小鼠,另外两只小鼠作为对照组纳入研究,对照组不接受任何疫苗注射(未试验过小鼠)。
在注射部位未观察到局部反应。所有小鼠在免疫后的一个月内体重增加。
免疫小鼠和2只对照小鼠(未试验过小鼠)在一个月时处死并放血。
使用抗小鼠轻链Elisa分析血清的全抗体(Ab)反应,并使用抗小鼠IgG特异性Elisa分析血清的IgG Ab反应。Elisa是根据制造商的说明进行的。
在450nm和630nm两个波长下记录读数,用于校正斑块背景变化。血清测试以1:10和1:100稀释液进行Ig检测,以1:100和1:1000稀释液进行IgG检测。还在最高Ag浓度下对1:2500稀释液的IgG进行测试。将所使用的所有血清稀释液的蛋白质和洗涤剂浓度标准化。
每个试剂盒包括校准样品的参考曲线,允许以kU/mL的Ab表示结果。
抗体(Ab)反应指数是通过将从免疫小鼠的观察到的值除以减去试剂盒稀释剂背景后的未试验过小鼠中的血清的值来计算的(图7)。使用富马酸铝和佐剂两者评估全Ig和IgG Ab反应。反应与所使用的TT和佐剂浓度成比例。在所有测试浓度下,富马酸铝诱导的Ab反应在统计学上比/>显著更强。
实施例9
由实施例6的两种佐剂疫苗和游离抗原触发的免疫反应的动力学研究
通过在后腿股四头肌肌肉内注射20μL的TT@富马酸铝、TT@或TT,对约18g的7周龄Balb/c雌性小鼠进行免疫。
对于富马酸铝和佐剂两者均使用C1浓度(1.6IU TT/20μgAl3+),在没有佐剂制剂的情况下向小鼠注射1.6IU。
对于每种制剂(TT@富马酸铝、TT@和TT),每组使用24只小鼠,另外两只小鼠作为对照组被纳入研究,对照组没有接受任何疫苗注射(未试验过小鼠)。
在注射部位未观察到局部反应。所有小鼠在免疫后的一个月内体重增加(图8)。
在注射后第7天、第14天、第32天和第60天处死每组的6只小鼠,收集血清用于ELISA分析。
在第14天和第60天处死2只未试验过小鼠。
第14天的5对小鼠和第32天的5对小鼠的数据如图9所示,显示了在TT@富马酸铝注射的小鼠中的Ab反应比TT@注射的小鼠更好。
分析第7天、第14天、第32天、第60天的200至3200份连续稀释血清中的Ab含量(图10)。在OD为0.6(50U)时,TT@富马酸铝或TT@Ig导致稀释比率TT@富马酸铝到TT@/>分别在D32时为3(20kU/60kU)和在D60时为2.5(40kU/100kU)。
实施例10
TT@富马酸铝在免疫原性功效方面的长期稳定性
为了证明TT@富马酸铝疫苗在免疫原性方面的长期稳定性,与实施例9中使用的制剂同时制备浓度为M1(1.6IU TT/20μg Al3+)的TT@富马酸铝制剂,在4℃下储存并在9个月后测试。制剂中未添加稳定剂/保存添加剂。
通过在右后肢肌肉内注射20μL新鲜制备的TT@富马酸铝或9个月的TT@富马酸铝(溶液的制备在实施例6中描述),对约19g的7周龄Balb/cByJ雌性小鼠进行免疫。
所有疫苗均含有注射的1.6IU TT/20μL Al。通过ICP-OES检查样品之间Al含量的变化,发现其小于8%。
对于每种制剂(新鲜制备的TT@富马酸铝或9个月的TT@富马酸铝),每组使用6只小鼠。
研究持续32天,对于所有小鼠,在注射后32天(D32)收集血清。
在注射部位未观察到局部反应。所有小鼠在免疫后的一个月内体重增加,这与实施例8和实施例9的先前研究一致。
使用Ig抗小鼠ELISA试剂盒分析来自该研究的血清以及9个月前用相同免疫原制剂在老化前获得的血清(实施例9)的全抗体(Ab)反应。根据制造商的说明进行ELISA。
在450nm和630nm两个波长下记录读数,用于校正斑块背景变化。血清以1:1000稀释液用于IgG检测。对于所使用的所有血清稀释液标准化蛋白质和洗涤剂浓度。
每个试剂盒包括校准样品的参考曲线,允许以kU/mL的Ab表达结果。
Ab反应直接表示为OD。在3个平板上测试的所有样品,每个平板上都有相同的参考曲线,允许校正OD值,即使原始的参考曲线数据几乎相同(分别为1%和5%的变化)。
如图11所示,9个月的TT@富马酸铝没有表现出其免疫原性的任何降低。老化样品、新鲜制备的样品和从9个月前用老化前的相同免疫原制剂收集的血清中获得的样品之间的IgG水平具有可比性。
用在4℃无添加剂条件下储存15个月的TT@富马酸铝制剂进行类似的试验。15个月的制剂的免疫原性特性保持在新鲜制备的TT@富马酸铝的功效≥95%的范围内。
本研究突出了富马酸铝适合设计稳定的疫苗制剂。
实施例11
利用破伤风类毒素(TT)在富马酸铝上的表面固定化制备TT抗原疫苗(TT@富马酸 铝-表面)
使用用于制剂的M1浓度,测试富马酸铝的TT的表面吸附。所有使用的溶液(反应物、缓冲液和MilliQ溶液)在使用前均使用具有孔径为0.2μm的膜的注射器过滤器消毒。
所用的确切量如下表6所示,该表显示了制备TT@富马酸铝-表面疫苗的试验细节。
表6
对于富马酸铝的合成,使用Al2(SO4)3·xH2O(700mg)在10mL milliQ H2O中的原液和富马酸(243mg)/NaOH(256mg)在10mL milliQ水中的原液。详细地,将两种136μL的含有金属盐或配体/碱性物质的单独溶液混合在一起。在混合两种溶液几秒钟后,向反应中加入10.5μL H2O,相当于如果制备TT@富马酸铝制剂通常添加的TT溶液的体积。将最终混合物在室温下搅拌8小时。
随后,将产物以10500g离心3分钟,并除去上清液。将富马酸铝重新分散在272μLmilliQ H2O中,并添加10.5μL TT溶液(从Creative Biolabs购买的2.8mg/mL)用于固定化过程。
在固定化过程结束时(16h),TT@富马酸铝-表面疫苗以10500g离心3分钟,去除上清液并用750μL HEPES缓冲液(20mM,pH 7.4)代替。
将TT@富马酸铝-表面疫苗保持在4℃,以供进一步研究。
基于在上清液中发现的TT的量,通过微BCA蛋白质测定法对富马酸铝表面的TT的固定量进行定量。如图12a所示,全部TT被固定在MOF的表面。
对于在H2O中的TT@富马酸铝、TT@富马酸铝-表面、富马酸铝和TT进行ζ电位测量,以研究TT固定化后富马酸铝表面电荷的任何变化。如图13所示,制剂和MOF都具有正的ζ电位,而TT具有约-8mV的ζ电位。然而,虽然TT@富马酸铝和富马酸铝显示出相似的ζ电位值(分别为约9mV和10mV),但TT@富马酸铝-表面具有约6mV的降低的ζ电位。该差值表明对于TT@富马酸铝制剂,抗原被包埋在MOF颗粒之间,而对于TT@富马酸铝-表面,抗原固定在MOF的外表面,由于TT的负电荷,降低了其ζ电位值。
通过测定在4℃下储存1周后在溶液(上清液)中浸出的TT的量,研究了TT@富马酸铝-表面制剂在抗原浸出方面的稳定性。未观察到TT从TT@富马酸铝-表面浸出,证实了制剂的稳定性,而约8重量%的TT从Alhydrogel佐剂的表面浸出(图12b)。
实施例12
实施例7的疫苗(TT@富马酸铝-表面)的评估
通过在右后肢肌肉内注射20μL的TT、TT@TT@富马酸铝或TT@富马酸铝-表面,对约19g的7周龄Balb/cByJ雌性小鼠进行免疫。
所有疫苗均含有注射的1.6IU TT/20μL(参见实施例6和实施例11)。
通过ICP-OES确认了三种铝佐剂的Al3+含量。对于ICP-OES的矿化流程:200μL的TT@TT@富马酸铝或TT@富马酸铝-表面疫苗悬浮液在处理前在100℃下加热过夜。将1mL HCl(37%)添加到所有干燥的产品中,然后将其在封闭容器中在80℃下加热16小时。在样品完全矿化后,用milliQ H2O将样品稀释至5mL,用于ICP-OES分析。样品在注入仪器之前未过滤。
如表7所示,三种疫苗显示出相似的铝含量。
表7
对于每种制剂(TT、TT@TT@富马酸铝或TT@富马酸铝-表面),每组使用6只小鼠,另外两只小鼠作为对照组纳入研究,对照组没有接受任何疫苗注射(未试验过小鼠)。
研究持续32天,对于所有动物,在注射后32天(D32)收集血清。
在注射部位未观察到局部反应。所有小鼠在免疫后的一个月内体重增加,这与实施例8、实施例9和实施例10的先前研究一致。
使用抗小鼠轻链Elisa分析血清的全抗体(Ab)反应,并使用抗小鼠IgG特异性Elisa分析血清的IgG Ab反应。Elisa是根据制造商的说明(Alpha DiagnosticsInternational)进行的。
在450nm和630nm两个波长下记录读数,用于校正斑块背景变化。以1:1000测试血清用于Ig和IgG检测。
每个试剂盒包括校准样品的参考曲线,允许以kU/mL的Ab表示结果。
使用TT、TT@TT@富马酸铝或TT@富马酸铝-表面评估IgG Ab反应(图14)。根据实施例8和实施例9的研究,TT@富马酸铝获得的IgG水平显著高于用TT@获得的IgG水平以及用不含佐剂的TT获得的IgG水平。使用TT@富马酸铝-表面获得的IgG水平低于使用TT@富马酸铝获得的水平,并且与使用参考佐剂TT@/>获得的水平相似。
实施例13
富马酸铝体外再吸收特性的研究:血清和血浆中的研究
本研究通过检测MOF在血清和血浆中的溶解来进行。
更准确地,将8.76mg富马酸铝分散在1.7mL血清或血浆中,并在37℃下在二维连续搅拌(60×60rpm)下孵育1个月。在1个月结束时,通过离心(12000g,20分钟)回收富马酸铝,并收集上清液(血清或血浆),用于通过ICP-OES测定Al3+含量。
上清液的Al3+-ICP-OES分析显示,1个月后,引入的富马酸铝在血清和血浆中分别降解了25.1重量%和24.0重量%,详见表8。
表8
实施例14
富马酸铝体内再吸收特性的评估
通过定量小鼠注射部位(右肢)和血液循环中剩余Al3+的量,并与非再吸收的TT@对比,评估TT@富马酸铝制剂的再吸收特性。
通过ICP-OES研究了Al3+(来源于两种佐剂)在注射部位(右肢)和小鼠血液循环中的存在。还通过ICP-OES分析了所有样品的左肢,以及仅注射TT的所有小鼠的四肢和未试验过小鼠的四肢,作为阴性对照。
肢体样品的消化程序:将所有肢体样品从其储存介质中取出(PFA 4%在20mM pH7.4的HEPES缓冲液、或EtOH abs、或20mM pH 7.4的HEPES缓冲液中),并在处理前在100℃下脱水5小时。脱水后,用2.5mL HNO3(70%,分析级)在RT下预消化四肢3天,然后在50℃下完全消化3小时。对于ICP分析,使用milliQ H2O将所有消化的样品稀释至20mL的最终体积。使用50ppb至5000ppb的Al的校准曲线用于分析。
血液样品的消化程序:所有血液样品在处理前在100℃下脱水5小时。在脱水后,用300μL HNO3(70%,分析级)在RT下预消化血液样品3天,然后在50℃下完全消化3小时。对于ICP-OES分析,使用milliQ H2O将所有消化的样品稀释至5mL的最终体积。使用50ppb至5000ppb的Al的校准曲线用于分析。
图15和图16显示了通过ICP-OES定量的Al3+的量,其来源于TT@富马酸铝和TT@组小鼠的经消化右肢,以及注射部位剩余的减去的Al3+重量%。对于两种佐剂,第7天注射的Al3+量(约9μg)只有不到一半留在注射部位。然而,从第14天开始,可以观察到TT@富马酸铝的铝的逐渐降解,而来自TT@/>的铝保留在注射部位,如检测到的Al3+量不变所示。在第60天,注射TT@/>的小鼠的Al3+比注射TT@富马酸铝的小鼠多3.6倍。来自TT@富马酸铝的铝的半衰期在25天的范围内,而来自TT@Alhydrogel的铝几乎恒定,显示出超过220天的表观半衰期。该研究证实了TT@富马酸铝制剂的再吸收特性。
注射TT@富马酸铝和注射TT@的小鼠左肢(未注射肢体)未检测到Al3 +
在注射TT的小鼠的右肢或左肢以及在未试验过小鼠的右肢或左肢均未检测到Al3 +
在任何小鼠组(注射TT@富马酸铝或TT@或TT、或未试验过小鼠)的血液循环中均未检测到Al3+
用更高的注射量(每后肢50μg铝)进行了类似的研究,第90天通过ICP-OES在注射部位检测到的Al3+量如表9所示。在90天时,对于注射TT@富马酸铝的小鼠只有5%的注射的Al3+保留在注射部位,而注射TT@的小鼠呈现出多10倍的Al3+
表9
实施例15
荧光标记的TT@富马酸铝的体内动力学
为了评估来自TT@富马酸铝的TT在注射部位的局部生物分布和持久性,通过使用荧光探针InVivo Tag 680NHS荧光染料(PerkinElmer)标记的TT的时间依赖性体内NIR成像进行研究。
制备荧光-TT@富马酸铝
荧光-TT是根据制造商的说明通过将InVivo Tag 680XL NHS荧光团结合到TT来制备的。在荧光-TT封装之前检查Zeba柱纯化后不存在游离的剩余染料。
脱盐和荧光染料结合:使用2mL Zeba旋转柱(7k MWCO)将TT脱盐至NaCl 9:1000。通过以1000g离心3分钟,使用1mL NaCl 9:1000洗涤柱两次。在170μL中加入500μL的TT(2.8mg/mL),然后加入130μL,最后加入40μL的NaCl 9:1000,然后在1000g下离心3分钟。将NHS荧光染料溶解在10μLDMSO中。将4μL添加到由标记试剂盒中的50μL碳酸氢盐溶液缓冲的脱盐TT中。在每隔5分钟搅拌75分钟后,在使用试剂盒的纯化柱柱除去游离荧光染料后,回收荧光染料结合的TT(荧光-TT),该试剂盒先前使用3分钟1000g离心在NaCl 9:1000中平衡。
使用试剂盒制造商提供的摩尔消光系数和方程,使用280nm和668nm波长下的吸光度测量来确定蛋白质浓度和荧光比。得到的荧光-TT溶液为1mg/mL(510Lf/mL,2040UI/mL)。
对于荧光-TT@富马酸铝制剂,将81.4μL的Al2(SO4)3·xH2O原液(700mg在10mLmilliQ H2O中)和81.4μL的富马酸和NaOH的原液(分别为243mg和256mg在10mL milliQ H2O中)混合在一起。混合两种溶液几秒钟后,向反应中加入17.64μL的荧光-TT溶液(1mg/mL)。将最终混合物在室温下搅拌8小时。将悬浮液以10000g离心3分钟。
然后,对于体内研究,去除上清液并用450μL HEPES缓冲液(20mM,pH7.4)代替。
出于表征目的,离心后,将获得的粉末在100℃下干燥过夜,收集上清液并通过微BCA测定法进行分析。
通过PXRD证实了在荧光-TT存在下富马酸铝的形成(图17)。发现使用微BCA蛋白质测定法定量的上清液中剩余的荧光-TT的量可以忽略不计,证实了荧光-TT几乎全部固定在富马酸铝中。
这表明富马酸铝适合于InVivo Tag 680标记的TT的固定化。
通过将432μL HEPES缓冲液(20mM,pH 7.4)添加到17.64μL的荧光-TT溶液中,也制备了荧光-TT疫苗。
两种制剂均在4℃的黑暗中保存约6天,直到进行体内研究。
荧光-TT@富马酸铝在注射部位的存在的体内评估
约19g的7周龄Balb/cByJ雌性小鼠通过在右后肢肌内注射50μL的荧光-TT或荧光-TT@富马酸铝进行免疫。
制备制剂,使所有小鼠注射4IU(1.96μg)荧光-TT。
对于荧光-TT和荧光-TT@富马酸铝制剂两者,每组使用3只小鼠,研究中还包括未试验过小鼠用于背景评估。
荧光采集用Perkin Elmer的光学成像系统IVIS Spectrum进行。通过荧光染料(本研究中为VivoTag680染料)发射的光的灵敏检测进行2D荧光成像。用异氟烷和氧气作为载气的混合物在麻醉小鼠上进行体内荧光采集。在体内采集过程中,将动物放在左侧(以采集来自注射部位的荧光信号)。
体内荧光成像的参数描述如下:
视野(FOV):14x 14厘米(FOV C)
荧光标签:InVivo Tag 680XL
激发波长:640nm
发射波长:720nm
暴露时间:自动
最小计数:6000
像素合并(Binning):在16到4之间(根据荧光信号强度自动调整)
F/STOP:2
对象高度:1.5厘米
在注射后的不同时间点(如图18的横坐标所示)评估荧光信号。
定量:为了计算荧光信号,在小鼠右后肢上放置感兴趣区域(ROI)。对于每个时间点的每个ROI,获得与荧光信号相对应的总辐射效率(以p/s/(μW/cm2)为单位)。
在进行第二次荧光采集的情况下,在第二图像上计算总辐射效率。
将获得的总辐射效率信号与包括其标准偏差(BKG+3SD)的平均背景参考信号进行比较。该参考信号(背景辐射效率水平-BKG辐射效率)对应于小鼠的自身荧光和光学成像系统的相机发出的噪音。根据以下公式在BKG小鼠(C组)上计算:
BKG水平=平均BKG信号(总采集)+3*BKG标准偏差(总采集)
所有高于BKG辐射效率的荧光信号都被认为是由注射制剂发出的。
计算每只小鼠的荧光信号(总辐射效率)。在对照小鼠大腿的剃光区域上测量参考自发荧光信号。
观察到MOF内荧光信号的强猝灭,荧光-TT@富马酸铝信号是游离荧光-TT的一半,这与荧光-TT完全包埋在富马酸铝中一致。
基于在t=0测量的值,将辐射信号标准化为100%。来自荧光-TT@富马酸铝和对照背景的多个Log10辐射信号允许进行至多4周的纵向研究。
如图18所示,与单独使用荧光-TT相比,注射荧光-TT@富马酸铝的小鼠观察到注射部位的荧光辐射衰减较慢。
50%的荧光水平,对于单独的荧光-TT,在约60小时后观察到,并且对于荧光-TT@富马酸铝,在约168小时的几乎三倍长的时间内观察到。
用Al-MOF固定化抗原、特别是TT在富马酸铝中,导致抗原在注射部位的释放比没有MOF时更慢。
实施例16
TT@富马酸铝的体内毒性的评估
如前面的实施例(实施例8、实施例9、实施例10和实施例12)所示,当给小鼠注射20μL浓度为C1的TT@富马酸铝,即注射1.6IU TT和20μg Al3+时,所有小鼠在研究过程中体重增加(图8),表明没有急性毒性。
为了进一步评估TT@富马酸铝制剂的体内毒性,每只小鼠注射更高剂量(多100倍),并通过小鼠体重的变化、通过ICP-OES测定的可能储存器官中的铝含量以及这些器官的组织学分析来评估毒性。
约21g的7周龄Balb/cByJ雌性小鼠通过在双后肢肌肉内注射50μL和在右侧皮下(SC)注射100μL浓度为M1的TT@富马酸铝进行免疫(参见实施例6)。因此,小鼠总共注射了200μg Al和16IU TT。
安乐死在注射后第7天(1只小鼠)和第32天(2只小鼠)、第60天(2只小鼠)和第90天(2只小鼠)进行。
所有小鼠在免疫后的几个月内体重增加,证实没有急性毒性。
使用未注射的未试验过小鼠进行ICP背景检查,并在第7天、第60天和第90天进行组织的正常组织学检查和安乐死。
收获感兴趣的器官(脾、肝),并将其固定在4% PFA的HEPES缓冲液20mM pH 7.4中用于ICP分析或固定在固定剂AFA(乙醇-福尔马林-乙酸)中用于组织学评估。
通过ICP-OES分析注射后60天和90天的脾和肝中Al3+的量。
器官的消化程序:将所有器官从其储存介质中取出(PFA 4%在HEPES缓冲液20mMpH 7.4中),并在处理前在100℃下脱水5小时。在脱水后,用2.5mL HNO3(70%,分析级)在RT下预消化器官3天,然后在50℃下完全消化3小时。对于ICP分析,使用milliQ H2O将所有消化的样品稀释至20mL的最终体积。
在脾和肝中检查注射后7天的组织的组织学特征。注射50μL Al的小鼠和未试验过小鼠的肾也在注射后35天进行检查。
对于组织学分析,将组织固定在AFA中至少过夜,至多4天。在乙醇、丙酮和二甲苯的连续浴中脱水后,将固定的器官包埋在石蜡中。每个器官被切成5μM的切片,用切片机每100μm切片一次,并用蛋白化甘油粘在未经处理的脱脂玻片上。在石蜡去除后,使用HES染色(苏木精、曙红G和番红)对切片进行常规染色。使用连接到由图像采集软件(LAS V4.2)驱动的数码相机(Leica DF420C)的光学显微镜(Leica DM2000)使切片成像。
如表10所示,在注射后60天和90天,在脾和肝中检测到的Al3+的量可忽略不计,并且低于注射量的0.6重量%,表明在可能的储存器官中没有铝的积聚。
N=小鼠数量
表10
注射后7天(200μg Al)的肝和脾以及注射后35天(50μg Al)的肾的HES染色切片的图像在组织切片上没有显示任何异常(图19)。特别是,没有观察到细胞浸润或异常细胞形态。组织学特征与未试验过的健康小鼠组织完全相当。肾组织切片未显示任何肾小球或肾小管病理特征。
该研究突出了没有急性毒性,铝在生物体和保存的组织中没有储存。
实施例17
铝在TT@富马酸铝的免疫原性中的作用的评估
为了证明铝的相关性,在体内破伤风类毒素免疫原性功效方面,将富马酸铝与咪唑锌MOF,ZIF-8(ZIF=沸石咪唑框架)进行对比。
制备TT@ZIF-8
将TT固定在ZIF-8内。制备3mol·L-1的2-甲基咪唑原液和1mol·L-1的乙酸锌原液。将426.5μL 2-甲基咪唑原液、10.4μL milliQ H2O和23.1μL破伤风类毒素溶液(TT,2.8mg/mL,1428Lf/mL,5712UI/mL)混合在一起并涡旋10秒。然后,加入40μL乙酸锌原液。将混合物涡旋30秒,然后在室温下搅拌1小时。
作为对照实验,加入23.1μL milliQ H2O代替TT溶液。
然后,对于体内研究,去除上清液并用1650μL HEPES缓冲液(20mM,pH 7.4)代替。
出于表征目的,在离心后,将获得的粉末在100℃下干燥过夜。
ZIF-8的PXRD计算图谱是从CCDC获得的;保藏号:602542,数据库标识符:VELVOY。
PXRD图谱(图20)证实了具有和不具有TT的ZIF-8的形成。
基于Al或Zn的佐剂引发的免疫反应的体内评估
通过在右后肢肌肉内注射20μL的TT、TT@富马酸铝或TT@ZIF-8,对约19g的7周龄Balb/cByJ雌性小鼠进行免疫。
TT、TT@富马酸铝疫苗按照与实施例6相同的方案以C1浓度制备。
所有疫苗的制备目的是含有1.6IU TT/20μL的注射量。TT@富马酸铝和TT@ZIF-8的金属含量通过ICP-OES确认。ICP-OES的矿化程序:在处理前,将200μL的每种疫苗在100℃下加热16小时。将1mL HCl(1M)添加到所有干燥的产品中,然后将其在封闭容器中在80℃下加热16小时。在样品完全矿化后,用milliQ H2O将样品稀释至5mL,用于ICP-OES分析。注射前未将样品过滤。
如表11所示,两种疫苗显示出相似的金属含量。
表11
对于每种制剂(TT、TT@富马酸铝或TT@ZIF-8),每组使用6只小鼠,另外2只小鼠作为对照组纳入研究,对照组没有接受任何疫苗注射(未试验过小鼠)。
研究持续30天,对于所有动物,在注射后30天(D30)收集血清。
在注射部位未观察到局部反应。所有小鼠在免疫后的一个月内体重增加。
使用抗小鼠轻链Elisa分析血清的全Ig抗体(Ab)反应。Elisa是根据制造商的说明(Alpha Diagnostics International)进行的。在两个波长450nm和630nm下记录读数,用于校正板背景变化。将血清以1:1000测试用于Ig检测。
每个试剂盒包括校准样品的参考曲线,允许标准化板间变化或以kU/mL的Ab表示结果。
使用TT、TT@富马酸铝或TT@ZIF-8评估Ig Ab反应(图21)。TT和TT@富马酸铝之间的Ig水平差异与之前的研究(实施例12)一致,使用TT@富马酸铝获得的Ig水平要高得多。用TT@ZIF-8获得的Ig水平可忽略不计,表明没有免疫作用。
该研究表明ZIF-8不适用于固定所有抗原,尤其是TT。
实施例18
甲醛灭活的大肠杆菌在富马酸铝中的固定化
在CPSO琼脂上从尿路感染中分离出无抗生素耐药性的野生尿路病原体大肠杆菌菌株。回收一些大肠杆菌菌落,并将其重悬浮于37%甲醛、1% BSA的PBS缓冲液(0.150mM,7.4)的1%水性溶液中。灭活的大肠杆菌悬浮液保持约4℃直到使用。
在固定化之前,用0.9%的NaCl洗涤灭活的大肠杆菌悬浮液两次(2400g,5分钟)。调节所得悬浮液,使其含有9·106-10·106个细菌/μL(通过细胞术测定,见下文)。
制备Al2(SO4)3·xH2O(700mg)在10mL milliQ H2O中的原液和富马酸(243mg)/NaOH(256mg)在10mL milliQ H2O水中的原液。将两种原液(铝前体和配体/碱性物质)各1360μL混合在一起。混合几秒钟后,将灭活细菌悬浮液加入反应中(105μL,9.6·106个细菌/μL)。将最终混合物在室温下搅拌8小时。随后,将悬浮液以2000g离心5分钟,并用0.9% NaCl溶液洗涤两次。
同样的程序也在不添加细菌的情况下进行,作为对照实验。
将最终产物在100℃下干燥过夜,并使用典型的表征技术(PXRD、TEM)分析,或将其作为悬浮液在4℃下保存用于流式细胞术分析。
图22显示了使用和不使用甲醛灭活的大肠杆菌获得的样品的PXRD图谱,这两者都与富马酸铝MOF的形成一致。
通过TEM图像(图23)和TEM-EDS定位(图24)证实细菌的固定化。
成像程序:在成像之前,用H2O洗涤样品两次,以去除NaCl并避免其在成像网格上重结晶。将样品稀释以减少TEM网格上的细菌数量。对于TEM网格制备,将一滴样品放置在碳-Formar涂覆的Cu网TEM网格(EMC)上。使用0.1%磷钨酸(EMC)滴液使灭活细菌着色。一旦网格被干燥,就使用透射电子显微镜(TEM,Hitachi HT-7700,日本)对其进行检查。使用数码相机(Hamamatsu,日本)拍摄图像。在配备有Bruker x射线检测器的Hitachi HT-7700电子显微镜上对未着色的样品进行STEM-EDS。
TEM图像清楚地显示灭活细菌周围存在颗粒(图23)。未染色的STEM-EDS定位证实,样品中存在均匀分布的Al元素(图24)。
在BD LSR FortessaTM上和在Thermo Fisher AttuneTMCytpixTM设备上使用TrueCountTMBecton-Dickinson试剂盒的细菌计数后,通过流式细胞术分析甲醛灭活的大肠杆菌。在两种设备上分析轴向和侧向散射。直接视频成像使用Thermo FisherAttuneTMCytpixTM对散射体上门控的细菌和/或SYTO 9荧光团检测细菌DNA进行。
在3种条件下分析细菌:在2mL 100mM EDTA、10mM PBS pH 7.4中孵育500μL悬浮液3天后,没有MOF,包埋在MOF中,在MOF溶解后。
如图25所示,包埋的细菌表现出与未包埋的细菌不同的散射特征,表明它们被MOF基质包被。
另一方面,从溶解的MOF中释放的细菌表现出与未包埋的细菌相同的散射特征,表明它们的释放没有形态损伤。在AttuneTMCytpixTMThermo Fisher设备的直接成像下,未包埋的细菌和释放的细菌之间的相似图像方面进一步证实了这一点。
该研究突出了富马酸铝适用于固定化灭活细菌,该灭活细菌保留其形态特征,尤其是灭活的大肠杆菌。
实施例19
用富马酸铝或 制备甲醛灭活的大肠杆菌抗原疫苗组合物
从CPSO琼脂上的尿路感染中分离出无抗生素耐药性的野生尿路病原体大肠杆菌菌株。将一个大肠杆菌菌落置于TSA琼脂上。回收大量细菌培养皿,并通过充满37%甲醛、1% BSA的PBS缓冲液(0.150mM,7.4)的1%水性溶液进行重悬浮。灭活的大肠杆菌悬浮液保持约4℃直到使用。
在固定化之前,用NaCl 0.9%洗涤灭活的大肠杆菌悬浮液两次(2400g,5min)。调整得到的悬浮液,使其含有约7·106至8·106个细菌/μL(通过流式细胞术测定)。
除经甲醛固定消毒的细菌悬浮液外,所使用的所有溶液(反应物、缓冲液和MilliQ溶液)在使用前均使用膜孔径为0.2μm的注射器过滤器消毒。
灭活的大肠杆菌抗原在富马酸铝中的固定化(大肠杆菌@富马酸铝)
为了制备灭活的大肠杆菌@富马酸铝,将362μL的每种溶液(金属盐和配体/碱性物质)混合在一起。混合两种溶液几秒钟后,将28μL灭活的大肠杆菌悬浮液(约7.5·106个细菌/μL)加入反应中。将最终混合物在室温下搅拌8小时。随后,将悬浮液以2400g离心5分钟,除去上清液并用1000μL HEPES缓冲液(20mM,pH 7.4)代替。
灭活的大肠杆菌@富马酸铝疫苗在4℃下保存约7天,直到体内研究。
灭活的大肠杆菌抗原在Alhydrogel中的固定化
对于佐剂疫苗,从InvivoGen购买的2%佐剂直接用于疫苗的制备。
用583μL PBS缓冲液(10mM,pH 7.4)稀释28μL灭活的大肠杆菌悬浮液(约7.5·106个细菌/μL),然后加入194μL悬浮液。
将混合物用移液器上下吸取5分钟,以允许吸附抗原,最后加入196μLPBS缓冲液。
灭活的大肠杆菌@疫苗在4℃下保存约7天,直到体内研究。
大肠杆菌疫苗的Al含量
灭活的大肠杆菌@富马酸铝和灭活的大肠杆菌@疫苗的Al3+含量通过ICP-OES进行研究。
用于ICP-OES的矿化程序:200μL灭活的大肠杆菌@富马酸铝和灭活的大肠杆菌@疫苗在处理前在100℃下加热16小时。将1mL HCl(37%)添加到所有干燥的产品中,然后将其在封闭容器中在80℃下加热16小时。在样品完全矿化后,用milliQ H2O将样品稀释至5mL,用于ICP-OES分析。样品在注入仪器之前未过滤,并进行重复测试。
表12显示了通过ICP-OES定量的灭活的大肠杆菌疫苗的Al3+含量。正如可看到的,灭活的大肠杆菌@富马酸铝和灭活的大肠杆菌@疫苗两者具有相对相似的铝含量。
表12
没有佐剂的灭活的大肠杆菌抗原
对于灭活的大肠杆菌疫苗,用972μL PBS缓冲液(10mM,pH 7.4)稀释28μL灭活的大肠杆菌悬浮液(约7.5·106个细菌/μL)。灭活的大肠杆菌疫苗在4℃下保存约7天,直到体内研究。
实施例20
实施例19的疫苗的体内免疫反应的评估
通过在右后肢肌肉内注射50μL灭活的大肠杆菌、灭活的大肠杆菌@富马酸铝或灭活的大肠杆菌@对约20g的7周龄Balb/cByJ雌性小鼠进行免疫。
如实施例19所述,对于富马酸铝和佐剂两者,制备每种疫苗以含有相当量的细菌,且铝的比率恒定。
对于每种制剂(灭活的大肠杆菌、灭活的大肠杆菌@富马酸铝或灭活的大肠杆菌@),每组使用10只小鼠,另外3只小鼠作为对照组纳入研究,对照组未接受任何疫苗注射(未试验过小鼠)。
在注射后21天(D21)对一半的小鼠(n=5)进行安乐死,在注射后42天(D42)对其余的小鼠(n=5)进行安乐死。注射后21天处死1只未试验过小鼠,在42天处死2只未试验过小鼠。
注射后21天,每组其余小鼠在右后腿股四头肌中接受另一次50μL肌肉内注射。
对于每组中的一只动物,在研究开始时(D0),使用允许凝结的干毛细管通过眶后窦途径对血液采样,然后用于血清制备。对于所有动物,在安乐死(D21或D42)之前,通过心脏内穿刺采集全血并用于血清制备。
所有小鼠在免疫后的21天或42天内体重增加。
使用来自Alpha Diagnostic International编号500-100ECP的小鼠抗大肠杆菌Elisa试剂盒检测血清中的全Ig(IgG,IgA,IgM)。用TOP10、K12、DH5a、BL21、HB101大肠杆菌菌株的纯化裂解物包被平板。按照制造商的说明,将血清稀释至1:1000进行测试。
在D21的血清中(图26a),注射灭活的大肠杆菌@富马酸铝的全部5只小鼠显示出强烈的Ig反应,而注射灭活的大肠杆菌@或注射没有佐剂的灭活的大肠杆菌的小鼠的Ig水平保持较低,灭活的大肠杆菌@富马酸铝比率指数分别为16.9和1.6。较小的比率是由于无佐剂组中的非典型小鼠表现出更高的Ig反应和比其他未免疫小鼠高2.7倍的预免疫水平,表明先前有敏化作用。其他无佐剂小鼠的Ig水平保持在注射大肠杆菌@小鼠的极低水平。
在D42(图26b),来自灭活的大肠杆菌@富马酸铝的小鼠表现出比其他组的小鼠更高的Ig水平,比没有佐剂的小鼠高3倍,比使用参考佐剂的小鼠高1.63倍。
该研究突出了,富马酸铝适用于固定化灭活细菌,该灭活细菌保持其免疫原性潜力,与裸的灭活细菌、甚至参考佐剂相比,富马酸铝作为佐剂导致增强的免疫反应。
实施例21
灭活的脊髓灰质炎病毒在富马酸铝中的固定化(灭活的脊髓灰质炎病毒@富马酸 铝)
来自Sanofi Pasteur的POLIO疫苗被用作灭活的脊髓灰质炎病毒的来源。一剂(0.5mL)含有灭活的脊髓灰质炎病毒:1型(在VERO细胞上产生的Mahoney株)40D-抗原单位(DU),2型(在VERO细胞上产生的MEF-1株)8DU,3型(在VERO细胞上产生的Saukett株)32DU。
制备Al2(SO4)3·xH2O(700mg)在10mL milliQ H2O中的原液和富马酸(243mg)/NaOH(256mg)在10mg milliQ H2O中的原液。将两种原液(铝前体和配体/碱性物质)各1554μL混合在一起。混合几秒钟后,将POLIO溶液加入反应中(120μL)。将最终混合物在室温下搅拌8小时。产物(灭活的脊髓灰质炎病毒@富马酸铝)通过离心(10000g,3分钟)回收。
还进行同样的程序,添加120μL H2O代替POLIO溶液作为对照实验(富马酸铝)。
将最终产物在100℃下干燥过夜,并使用PXRD表征技术进行分析(图27)。
通过微BCA蛋白质测定法收集上清液以定量溶液中剩余蛋白质(未吸附)的量(图28)。使用120μLPOLIO溶液作为微BCA蛋白质测定法的对照。
所获得的PXRD图谱与在灭活的脊髓灰质炎病毒存在下富马酸铝的形成一致(图27)。
根据本发明的富马酸铝证明,基于合成上清液中剩余蛋白质的微BCA测定法的定量,所引入的灭活脊髓灰质炎病毒悬浮液的固定化能力>50%(图28)。
该研究突出了,富马酸铝适用于固定灭活病毒,特别是来自POLIO疫苗的灭活的脊髓灰质炎病毒。
实施例22
聚糖在富马酸铝中的固定化(聚糖@富马酸铝)
将来自MSD的疫苗用作肺炎球菌荚膜聚糖苷的来源。一剂(0.5mL)含有25μg的23种肺炎球菌多聚糖血清型(1、2、3、4、5、6B、7F、8、9N、9V、10A、11A、12F、14、15B、17F、18C、19F、19A、20、22F、23F、33F)。
在使用之前,将疫苗溶液冻干。将样品浸入液氮中几分钟,然后冷冻干燥24小时。将所得粉末溶解在50μL MilliQ H2O中。
制备Al2(SO4)3·xH2O(700mg)在10mL milliQ H2O中的原液和富马酸(243mg)/NaOH(256mg)在10mL milliQ H2O中的原液。653μL的两种原液(铝前体和配体/碱性物质)混合在一起。混合几秒钟后,向反应中加入50μL聚糖溶液(每份25μg/50μL)。将最终混合物在室温下搅拌8小时。产物(聚糖@富马酸铝)通过离心(10000g,3分钟)回收。
还进行同样的程序,添加50μL H2O代替聚糖溶液,作为对照实验(富马酸铝)。
将最终产物在100℃下干燥过夜,并使用PXRD(图29)和13C NMR光谱(图30)进行分析。PXRD在Bruker D8 Advance衍射仪上测量,该衍射仪具有Debye-Scherrer几何结构,配备有选择Cu Kα1辐射的Ge(111)单色仪和LynxEye探测器。将粉末装载在玻璃毛细管中。在Advance Bruker 500MHz NMR光谱仪上记录13C RMN光谱,该光谱仪在11.7T的静态磁场下操作,对应于13C的126MHz的拉莫尔频率。13C{1H}CPMAS光谱是在5×0.5ms接触时间、20kHz下获得的。
PXRD图谱显示富马酸铝在聚糖存在的情况下形成(图29)。
13C NMR光谱(图30)表明在聚糖@富马酸铝样品中存在糖单元的Csp3特征(δ~71ppm),富马酸铝样品中不存在这些碳。这些结果证实了MOF粉末中存在聚糖,表明其固定化。
该研究突出了,富马酸铝适用于固定聚糖,尤其是来自疫苗中的聚糖。
实施例23
核酸(CpG1018)在富马酸铝中的固定化(CpG1018@富马酸铝)
CpG 1018(硫代磷酸寡核苷酸,22聚体,序列:在粉末形式中并且无需进一步纯化直接使用。TGACTGTGAACGTTCGAGATGA,修饰:所有碱基)从Protogenix获得。
将1051.83μg CpG 1018溶解在35μL MilliQ H2O中。
制备Al2(SO4)3·xH2O(700mg)在10mL milliQ H2O中的原液和富马酸(243mg)/NaOH(256mg)在10mL milliQ H2O中的原液。将136μL的两种原液(铝前体和配体/碱性物质)混合在一起。混合几秒钟后,将CpG溶液加入反应中(10μL,30μg/μL)。将最终混合物在室温下搅拌8小时。通过离心(10000g,5分钟)回收产物。
作为对照实验,也进行了相同的程序,加入10μL H2O代替CpG溶液。
将最终产物在50℃下干燥8小时,并使用PXRD技术分析,收集上清液以定量溶液中剩余CpG 1018(未固定)的量。
通过ICP-OES研究CpG的固定化,因为CpG 1018含有P元素,而富马酸铝不含有任何P元素。
ICP-OES的矿化程序:在处理之前,将所有样品在50℃下加热8小时。将300μL HCl(37%)添加到所有干燥产品中,然后在80℃的密闭容器中加热16小时。在样品完全矿化后,用milliQ H2O将样品稀释至5mL,用于ICP-OES分析。样品在注射前未过滤。
如图31所示,PXRD图谱显示富马酸铝在CpG 1018存在下形成。
下表13显示了富马酸铝和CpG1018@富马酸铝样品、以及通过ICP-OES检测到的其各自的上清液的P含量。
表13
由于在富马酸铝样品及其上清液中检测到的P的量可忽略不计,因此证实富马酸铝中不存在P元素。
在CpG1018@富马酸铝的上清液中发现的P元素可忽略不计,表明CpG1018不存在,而在CpG1018@富马酸铝样品中检测到P元素,表明其与富马酸铝固定。
该研究突出,富马酸铝适用于固定核酸,特别是CpG 1018。
实施例24
核酸(CpG1018)和破伤风类毒素两者在富马酸铝中的固定化(CpG1018@富马酸铝)
CpG 1018(硫代磷酸寡核苷酸,22聚体,序列:TGACTGTGAACGTTCGAGATGA,修饰:所有碱基)以粉末形式从Proteogenix获得,并在没有进一步纯化的情况下直接使用。
将1051.83μg CpG 1018溶解在35μL MilliQ H2O中。
直接使用购自Creative BIolabs的2.8mg/mL的破伤风类毒素(TT)溶液。
制备Al2(SO4)3·xH2O(700mg)在10mL milliQ H2O中的原液和富马酸(243mg)/NaOH(256mg)在10mL milliQ H2O中的原液。将136μL的两种原液(铝前体和配体/碱性物质)混合在一起。混合几秒钟后,向反应中加入10μL CpG 1018溶液(30μg/μL)和10μL TT溶液(2.8mg/mL)。将最终混合物在室温下搅拌8小时。产物(CpG1018+TT@富马酸铝)通过离心(10000g,5分钟)回收。
作为对照实验,也进行相同的程序,添加20μL H2O代替CpG和TT溶液(富马酸铝),以及仅添加10μL TT溶液(TT@富马酸铝)。
将最终产物在50℃下干燥8小时,并使用PXRD进行分析,收集上清液以定量溶液中剩余的CpG 1018和TT(未固定)的量。
固定的TT的量通过微BCA蛋白质测定法定量上清液中剩余TT(未吸附)的量来研究。
通过ICP-OES研究CpG的固定化,因为CpG含有P元素。
ICP-OES的矿化程序:在处理之前,将所有样品在50℃下加热8小时。将300μL HCl(37%)添加到所有干燥产品中,然后在80℃的密闭容器中加热16小时。在样品完全矿化后,用milliQ H2O将样品稀释至5mL,用于ICP-OES分析。样品在注射前未过滤。
如图32所示,PXRD图谱显示富马酸铝在CpG 1018和TT同时存在下形成。
通过微BCA蛋白质测定法定量上清液中剩余TT(未吸附)的量,发现CpG1018+TT@富马酸铝中固定的TT的量为>78%的引入的TT。
下表14显示了富马酸铝、TT@富马酸铝和CpG1018+TT@富马酸铝样品以及它们各自的上清液的P含量。
P元素仅在CpG1018+TT@富马酸铝和TT@富马酸铝样品中检测到。TT@富马酸铝样品中检测到的P元素的量与CpG1018+TT@富马酸铝样品中检测到的P元素的量相比是可忽略不计的,表明CpG1018+TT@富马酸铝样品中检测到的P元素主要来源于CpG1018的存在。
这些结果表明,在TT存在下,CpG 1018被富马酸铝固定。
表14
该研究突出了,富马酸铝适用于核酸和蛋白质(特别是CpG1018和破伤风类毒素)的联合固定。
实施例25
粘康酸铝内的生物分子固定化
为了合成BSA@粘康酸铝,将700mg Al2(SO4)3·xH2O(x~18)溶于10mL milliQ H2O中。制备在10mL milliQ H2O中含有297mg粘康酸(反式,反式-1,3-丁二烯-1,4-二羧酸)和256mg NaOH的单独溶液,并将其添加到金属盐溶液中。立即向混合物中加入200μL BSA(0.15mg/μL),并将混合物在室温、大气压下搅拌20小时。
添加20 0μL milliQ H2O代替BSA溶液进行对照实验。
通过离心(20分钟,21200g)回收产物,用水洗涤3次,在100℃下干燥过夜,并使用典型表征技术(PXRD)进行分析,如图33所示。
收集上清液,并通过微BCA蛋白质测定法用于定量溶液中剩余生物分子(未被佐剂吸附)的量。在分析之前,使用带有孔径为0.2μm的PTFE膜的注射器过滤器过滤溶液。
如图33所示,PXRD图谱表明在含有和不含有BSA的情况下形成了晶体结构。
在上清液中检测到的剩余BSA的量低于引入的BSA的45%,表明固定化效率>55%。
该研究表明粘康酸铝适用于固定抗原,特别是BSA。
实施例26
呋喃二羧酸铝MOF的合成
为了合成呋喃二羧酸铝MOF,将2mL H2O添加到324mg Al(OH)(CH3COO)2和312mg 2,5-呋喃二羧酸中。将混合物在室温下搅拌72小时。
通过离心(20分钟,21200g)回收产物,用水洗涤3次,在100℃下干燥过夜,并使用典型表征技术(PXRD)进行分析,如图34所示。
MIL-160(Al)_H2O的PXRD计算图谱是从CCDC获得的;保藏号:1828694,数据库标识符:PIBZOS。
表征与水合MIL-160的形成一致。
实施例27
均苯三甲酸铝MOF内的生物分子固定化
为了合成BSA@均苯三甲酸铝,将700mg Al2(SO4)3·xH2O(x~18)溶于30mL小瓶中的20mL H2O中。然后,向溶液中加入440mg的均苯三甲酸(1,3,5-苯三羧酸)和256mg的NaOH。几分钟后,加入200μL BSA(0.15mg/μL),将混合物在室温、大气压下搅拌24小时。
在不添加BSA的情况下进行对照实验。
通过离心(20分钟,21200g)回收产物,用水洗涤3次,在100℃下干燥过夜,并使用典型表征技术(PXRD)进行分析,如图35所示。
收集上清液,并通过微BCA蛋白质测定法用于定量溶液中剩余生物分子(未被佐剂吸附)的量。在分析之前,使用带有孔径为0.2μm的PTFE膜的注射器过滤器过滤溶液。
从CCDC获得MIL-110和MIL-96的PXRD计算图谱;保藏号:1538658和1558833,数据库标识符:GAWBUE和WEVYEE。
如图35所示,PXRD图谱表明形成了带有MIL-96结构痕迹的MIL-110结构。使用和不使用BSA获得结构。
在上清液中检测到的剩余BSA的量低于引入的BSA的5%,表明固定化效率>95%。
该研究表明,均苯三甲酸铝适用于固定抗原,特别是BSA。
实施例28
均苯四甲酸铝MOF内生物分子的固定化
为了合成BSA@均苯四甲酸铝,将700mg Al2(SO4)3·xH2O(x~18)溶于10mL milliQH2O中。制备含有532mg均苯四甲酸(1,2,4,5-苯四羧酸)和384mg NaOH的10mL milliQ H2O的单独溶液,并将其添加到金属盐溶液中。立即向混合物中加入200μL BSA(0.15mg/μL),并将混合物在室温、大气压下搅拌24小时。
通过离心(20分钟,21200g)回收产物,用水洗涤3次,在100℃下干燥过夜,并使用典型的表征技术(PXRD、FT-IR、TGA)进行分析,如图36所示。
收集上清液以通过微BCA蛋白质测定法定量溶液中剩余生物分子(未被佐剂吸附)的量。
如图36所示,PXRD图谱表明形成具有BSA的半结晶结构。
在上清液中检测到的剩余BSA的量低于引入的BSA的10%,表明固定化效率>90%。
该研究表明,均苯四甲酸铝适用于固定抗原,特别是BSA。
结果
使用富马酸铝和佐剂获得Ig和IgG Ab反应。该反应与所使用的TT和佐剂浓度成比例。
在所有测试浓度下,富马酸铝诱导的Ab反应比统计学上显著更强。
总之,已经表明抗原完全固定在根据本发明的富马酸铝中。
此外,抗原不影响富马酸铝的合成和结构。
而且,根据本发明的富马酸铝比对比的具有更好的固定化能力。使用根据本发明的富马酸铝的固定化也比对比的/>更稳定。
根据本发明的富马酸铝在注射介质(HEPES,20mM pH 7.4)中稳定至少两个月。
根据本发明的富马酸铝在浓缩条件下在体外血清/血浆中部分降解。
根据本发明的富马酸铝从注射部位再吸收。
根据本发明的富马酸铝适合于设计稳定的疫苗制剂,将其免疫原性保持至少9个月。
已表明,含有TT@富马酸铝-表面的制剂是稳定的。
使用Al-MOF固定抗原、特别是TT在富马酸铝中,导致抗原在注射部位的释放比没有MOF时更慢。
已突出了,使用TT@富马酸铝,没有急性毒性,铝在生物体和保存的组织中没有存储。
与本发明相反,基于锌的MOF不适用于固定所有抗原。
根据本发明的富马酸铝适用于固定灭活的细菌,该灭活的细菌保持其形态学特征,特别是灭活的大肠杆菌。
根据本发明的富马酸铝适用于固定灭活的细菌,该灭活的细菌保持其免疫原性潜力,并且与裸的灭活的细菌、甚至与参考佐剂相比,富马酸铝作为佐剂导致增强的免疫反应。
根据本发明的富马酸铝适用于固定灭活的病毒,特别是来自POLIO疫苗的灭活的脊髓灰质炎病毒;适用于固定聚糖,特别是来自/>疫苗的聚糖;适用于固定核酸,特别是CpG 1018;以及适用于一起固定核酸和蛋白质,特别是CpG1018和破伤风类毒素。
根据本发明的粘康酸铝、均苯三甲酸铝和均苯四甲酸铝适用于固定抗原,特别是BSA。

Claims (21)

1.一种免疫原性组合物,其包含至少一种抗原和至少一种佐剂:
-所述佐剂包含至少一种金属-有机框架MOF,所述金属-有机框架包含基于铝的无机部分和基于至少一种多齿配体的有机部分,所述至少一种多齿配体选自富马酸盐、粘康酸盐、中康酸盐、草酸盐、草酰乙酸盐、琥珀酸盐、苹果酸盐、柠檬酸盐、乌头酸盐、间苯二甲酸盐、经取代的间苯二甲酸盐、2,5-噻吩二羧酸盐、2,5-呋喃二羧酸盐、均苯三甲酸盐、偏苯三甲酸盐和均苯四甲酸盐,并且
-所述抗原至少固定在所述金属-有机框架内。
2.根据权利要求1所述的免疫原性组合物,其中,所述至少一种金属-有机框架是结晶的。
3.根据前述权利要求中任一项所述的免疫原性组合物,其中,所述至少一种金属-有机框架是多孔的。
4.根据前述权利要求中任一项所述的免疫原性组合物,其中,所述金属-有机框架的基于多齿配体的有机部分包含至少一种富马酸盐。
5.根据前述权利要求中任一项所述的免疫原性组合物,其包含至少一种选自蛋白质、聚糖苷、脂质、核酸、病毒、细菌、寄生虫及其混合物的抗原,并且特别包含至少一种选自破伤风类毒素、源自SARS-CoV-2病毒的蛋白质、灭活的大肠杆菌、灭活的脊髓灰质炎病毒和脑膜炎球菌多糖、及其混合物的抗原。
6.根据前述权利要求中任一项所述的免疫原性组合物,所述佐剂是再吸收的。
7.根据前述权利要求中任一项所述的免疫原性组合物,其还包含至少一种未固定在所述金属-有机框架内的抗原。
8.一种用于在疫苗佐剂中抗原固定的金属-有机框架,所述金属-有机框架包含基于铝的无机部分和基于多齿配体的有机部分,所述多齿配体选自富马酸盐、粘康酸盐、中康酸盐、草酸盐、草酰乙酸盐、琥珀酸盐、苹果酸盐、柠檬酸盐、乌头酸盐、间苯二甲酸盐、经取代的间苯二甲酸盐、2,5-噻吩二羧酸盐、2,5-呋喃二羧酸盐、均苯三甲酸盐、偏苯三甲酸盐和均苯四甲酸盐,所述抗原至少固定在所述金属-有机框架内。
9.根据前一项权利要求所述的金属-有机框架,所述疫苗佐剂是再吸收的。
10.根据权利要求8或9中任一项所述的金属-有机框架,所述基于多齿配体的有机部分包含至少一种富马酸盐。
11.金属-有机框架在疫苗佐剂中固定抗原的用途,所述金属-有机框架包含基于铝的无机部分和基于多齿配体的有机部分,所述多齿配体选自富马酸盐、粘康酸盐、中康酸盐、草酸盐、草酰乙酸盐、琥珀酸盐、苹果酸盐、柠檬酸盐、乌头酸盐、间苯二甲酸盐、经取代的间苯二甲酸盐、2,5-噻吩二羧酸盐、2,5-呋喃二羧酸盐、均苯三甲酸盐、偏苯三甲酸盐和均苯四甲酸盐,所述抗原至少固定在所述金属-有机框架内。
12.根据前一项权利要求所述的用途,所述疫苗佐剂是再吸收的。
13.根据权利要求11或12中任一项所述的用途,所述基于多齿配体的有机部分包含至少一种富马酸盐。
14.一种制备根据权利要求1至7中任一项所述的免疫原性组合物的方法,所述方法至少包括以下步骤:在至少一种抗原的存在下,使至少一种铝化合物与至少一种多羧酸和/或与至少一种多羧酸盐反应,用于形成固定所述抗原的至少一种多羧酸铝金属-有机框架,所述多羧酸选自富马酸、粘康酸、中康酸、草酸、草酰乙酸、琥珀酸、苹果酸、柠檬酸、乌头酸、间苯二甲酸、经取代的间苯二甲酸、2,5-噻吩二羧酸、2,5-呋喃二羧酸、均苯三甲酸、偏苯三甲酸或均苯四甲酸,所述多羧酸盐选自富马酸盐、粘康酸盐、中康酸盐、草酸盐、草酰乙酸盐、琥珀酸盐、苹果酸盐、柠檬酸盐、乌头酸盐、间苯二甲酸盐、经取代的间苯二甲酸盐、2,5-噻吩二羧酸盐、2,5-呋喃二羧酸盐、均苯三甲酸盐、偏苯三甲酸盐和均苯四甲酸盐。
15.根据权利要求14所述的方法,所述铝化合物为硫酸铝。
16.根据权利要求14或15中任一项所述的方法,其中,所述多羧酸至少为富马酸。
17.根据权利要求14至16中任一项所述的方法,其中,所述反应在水性介质中进行,所述水性介质特别是仅由水组成。
18.根据权利要求14至17中任一项所述的方法,其中,所述反应在碱性物质的存在下进行,优选一种碱金属氢氧化物或多种不同的碱金属氢氧化物的混合物,更优选氢氧化钠。
19.根据权利要求14至18中任一项所述的方法,其中,所述反应在4℃至75℃、优选10℃至45℃的温度下进行。
20.根据权利要求14至19中任一项所述的方法,其中,用于所述反应的铝化合物与多羧酸和/或多羧酸盐的摩尔比为0.001至2.5,优选0.1至1。
21.根据权利要求14至20中任一项所述的方法,还包括在所述反应结束时的离心步骤,然后任选地再分散步骤。
CN202280039897.1A 2021-04-02 2022-04-01 包含抗原和含有Al-MOF的佐剂的免疫原性组合物 Pending CN117500520A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP21305431.5 2021-04-02
EP21305431 2021-04-02
PCT/EP2022/058789 WO2022207922A2 (en) 2021-04-02 2022-04-01 IMMUNOGENIC COMPOSITION CONTAINING AN ANTIGEN AND AN ADJUVANT COMPRISING AL-MOFs

Publications (1)

Publication Number Publication Date
CN117500520A true CN117500520A (zh) 2024-02-02

Family

ID=75690206

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202280039897.1A Pending CN117500520A (zh) 2021-04-02 2022-04-01 包含抗原和含有Al-MOF的佐剂的免疫原性组合物

Country Status (11)

Country Link
US (1) US20240197868A1 (zh)
EP (1) EP4313133A2 (zh)
JP (1) JP2024511882A (zh)
KR (1) KR20240024044A (zh)
CN (1) CN117500520A (zh)
AU (1) AU2022251938A1 (zh)
BR (1) BR112023020237A2 (zh)
CA (1) CA3213978A1 (zh)
IL (1) IL307480A (zh)
MX (1) MX2023011653A (zh)
WO (1) WO2022207922A2 (zh)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2589392B1 (en) 2008-03-05 2016-11-30 Sanofi Pasteur Process for stabilizing an adjuvant containing vaccine composition
CN102271787A (zh) 2009-01-05 2011-12-07 联邦科学及工业研究组织 气体吸附材料
EP2970398B1 (en) 2013-03-13 2024-05-08 The United States of America, as Represented by The Secretary, Department of Health and Human Services Prefusion rsv f proteins and their use
CN112512564A (zh) 2018-04-03 2021-03-16 赛诺菲 铁蛋白蛋白
EP4058190A4 (en) 2019-11-14 2023-12-13 Board of Regents, The University of Texas System COMPOSITIONS AND METHODS FOR THE CONTROLLED DELIVERY AND PROTECTION OF THERAPEUTICS

Also Published As

Publication number Publication date
CA3213978A1 (en) 2022-10-06
BR112023020237A2 (pt) 2023-12-19
KR20240024044A (ko) 2024-02-23
US20240197868A1 (en) 2024-06-20
EP4313133A2 (en) 2024-02-07
WO2022207922A3 (en) 2022-11-10
WO2022207922A2 (en) 2022-10-06
IL307480A (en) 2023-12-01
MX2023011653A (es) 2023-12-11
AU2022251938A1 (en) 2023-11-16
JP2024511882A (ja) 2024-03-15

Similar Documents

Publication Publication Date Title
Menyo et al. Versatile tuning of supramolecular hydrogels through metal complexation of oxidation-resistant catechol-inspired ligands
JP5730574B2 (ja) 食用に適した生体適合性金属有機構造体
Padlan et al. Three-dimensional structure of hemoglobin from the polychaete annelid, Glycera dibranchiata, at 2.5 A resolution
Abbaraju et al. Asymmetric mesoporous silica nanoparticles as potent and safe immunoadjuvants provoke high immune responses
Pavlishchuk et al. Formation of coordination polymers or discrete adducts via reactions of gadolinium (III)–copper (II) 15-metallacrown-5 complexes with polycarboxylates: synthesis, structures and magnetic properties
US20200254089A1 (en) Vaccine composition and adjuvant
Zhang et al. Polymer–covalent organic frameworks composites for glucose and PH dual‐responsive insulin delivery in mice
André et al. Exploring mechanochemistry to turn organic bio-relevant molecules into metal-organic frameworks: a short review
Yang et al. Dendritic mesoporous silica nanoparticle adjuvants modified with binuclear aluminum complex: coordination chemistry dictates adjuvanticity
FI81006B (fi) Foerfarande foer framstaellning av ett terapeutiskt aktivt komplex som bildas av platina, 1,2-diaminocyklohexan och polymerisk l-glutaminsyra.
Chisca et al. MOF-71 as a degradation product in single crystal to single crystal transformation of new three-dimensional Co (ii) 1, 4-benzenedicarboxylate
Steinrauf et al. Crystal structure of valinomycin-sodium picrate. Anion effects on valinomycin-cation complexes
Wang et al. A hydrostable anionic zinc-organic framework carrier with a bcu topology for drug delivery
JP2019163229A (ja) ホウ素同位体を含有するナノシリカ粒子のホウ素中性子捕捉剤
Busse et al. Synthesis and characterisation of bismuth (III) aminoarenesulfonate complexes and their powerful bactericidal activity against Helicobacter pylori
CN117500520A (zh) 包含抗原和含有Al-MOF的佐剂的免疫原性组合物
CA2603850A1 (en) Polymyxin b analogs for lps detoxification
JP5150084B2 (ja) 高水溶性p−ボロノフェニルアラニン含有組成物
Tao et al. ZnII and HgII Complexes with 2, 3-Substituted-5, 6-di (1 H-tetrazol-5-yl) pyrazine Ligands: Roles of Substituting Groups and Synthetic Conditions on the Formation of Complexes
Zhao et al. 4, 4′-Bipyridine and bis (4-pyridyl) propane as bridging ligands in the supramolecular assembly of silver (I) polyhedra containing embedded acetylenediide
Gao et al. Syntheses, spectroscopic analysis, and structural determination of two novel nine-coordinate mononuclear Na 4 [Eu III (Dtpa)(H 2 O)] 2· 11.5 H 2 O and binuclear (NH 4) 4 [Eu III (Dtpa)] 2· 10H 2 O complexes
JP2019516547A (ja) 生物学的環境において改善された性能を有するパラジウム触媒
CN110719783A (zh) 药物组合物
Christodoulou et al. Al-fumarate, a Metal-Organic Framework encapsulating antigen as a potent, versatile and resorbable vaccine adjuvant
JP7453658B2 (ja) ホウ素含有化合物およびそれを含む薬剤

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination