CN117490584A - 一种列车车轮径向跳动的检测方法 - Google Patents

一种列车车轮径向跳动的检测方法 Download PDF

Info

Publication number
CN117490584A
CN117490584A CN202311419617.2A CN202311419617A CN117490584A CN 117490584 A CN117490584 A CN 117490584A CN 202311419617 A CN202311419617 A CN 202311419617A CN 117490584 A CN117490584 A CN 117490584A
Authority
CN
China
Prior art keywords
laser
wheel
laser interferometer
train
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311419617.2A
Other languages
English (en)
Inventor
金强
沈宗仁
王东
刘韬
贾欣蔚
杜晓雷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TANGSHAN BAICHUAN INTELLIGENT MACHINE CO Ltd
Original Assignee
TANGSHAN BAICHUAN INTELLIGENT MACHINE CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TANGSHAN BAICHUAN INTELLIGENT MACHINE CO Ltd filed Critical TANGSHAN BAICHUAN INTELLIGENT MACHINE CO Ltd
Priority to CN202311419617.2A priority Critical patent/CN117490584A/zh
Publication of CN117490584A publication Critical patent/CN117490584A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61KAUXILIARY EQUIPMENT SPECIALLY ADAPTED FOR RAILWAYS, NOT OTHERWISE PROVIDED FOR
    • B61K9/00Railway vehicle profile gauges; Detecting or indicating overheating of components; Apparatus on locomotives or cars to indicate bad track sections; General design of track recording vehicles
    • B61K9/12Measuring or surveying wheel-rims
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/08Measuring arrangements characterised by the use of optical techniques for measuring diameters
    • G01B11/10Measuring arrangements characterised by the use of optical techniques for measuring diameters of objects while moving
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/14Measuring arrangements characterised by the use of optical techniques for measuring distance or clearance between spaced objects or spaced apertures

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本发明公开了一种列车车轮径向跳动的检测方法,首先在列车车轮滚动测量的起始时刻和终了时刻,车轮轴线沿某一方向平移所成平面与车轮踏面相交的部位分别为起始部位和终了部位,利用第一激光测量车轮轴线在起始时刻和终了时刻之间的轴线位移,利用第二激光测量终了部位和起始部位之间的踏面位移;然后计算轴线位移与踏面位移的差值,即为初始半径至终了半径的径向跳动量,所述初始半径为初始部位至车轮圆心的半径,所述终了半径为终了部位到车轮圆心的半径。该方法可在线精确获取车轮径向跳动量以用于车轮多边形分析,方法简单直接,便于推广实施。

Description

一种列车车轮径向跳动的检测方法
技术领域
本发明涉及列车检测领域,具体涉及一种列车车轮径向跳动的检测方法。
背景技术
高速列车在运营一定里程后,车轮圆周踏面产生不规则磨损,导致车轮半径产生径向跳动而使车轮呈现多边形。车轮多边形会加剧轮轨动态作用,产生高频轮轨冲击振动,对轨道和车辆部件产生破坏,并恶化乘车舒适性,影响乘客乘车体验。因此,需要定期对车轮多边形情况进行检测及镟修。而按照目前的镟修标准,车轮径向跳动量的检测要达到微米级别才能判断是否需要镟修。
目前常用的检测车轮径向跳动的方法,首先将车辆停止,然后利用千斤顶支起单个轮对,再将微动探针传感器固定在铁轨上,最后手工转动车轮采集车轮踏面径向跳动量并计算车轮多边形数值。这种方法虽然具有较高的准确度,但是操作繁琐,费时费力。现有的接触式擦伤装置可检测车轮擦撞状态以获取车轮的不圆度,但是其并不是轴心为基础进行测量,因而无法反映车轮踏面的偏心情况,不能用于车轮径向跳动的精确测量。发明专利CN 108562446 B公开了一种基于轴箱振动时频域特征车轮多边形检测方法及终端设备,通过获取车轮运行速度、在该速度下轴箱振动加速度主频率和加速度最大值,以及理想圆顺车轮作用下轴箱的加速度振动主频率值等数据来判断车轮是否存在多边形化损伤。发明专利申请CN 108734060 A公开了一种高速动车组车轮多边形化的识别方法及装置,采用轨底纵向的应变传感器,通过监测驶经断面的车轮激励对钢轨产生的响应,获取车轮激励下的钢轨响应信号;对车轮激励下的钢轨响应信号进行预处理;在钢轨响应信号预处理的基础上提取信号特征,构造车轮多边形化指标;利用构造的车轮多边形化指标,识别车轮多边形化故障。发明专利CN 109323754B公开了一种列车车轮多边形故障诊断检测方法,首先选取1~4阶车轮多边形故障的轨道振动信号和正常车轮的轨道振动信号,作为训练样本的选择目标;采集训练样本信号,并进行改进的经验模态分解;然后选取分解得到的IMF分量,使用被选取的IMF分量求解对应的时频特征量,并作为训练样本的输入信号;选取该训练样本信号对应的故障特征作为该训练样本的标签值,生成训练样本数据;最后进行改进的BP神经网络训练,得到车轮全局不圆顺的故障识别模型,并进行车轮状态识别。发明专利申请CN114544206 B公开了一种轨道交通机车车辆轮对多边形故障检测方法及装置,包括初始化噪音监测模型的输入变量,输入变量包括轮对的轮径、车辆行驶速度、监测噪音中的一项或者多项,采集噪音数据,并进行预处理,利用短时傅里叶变换提取出预处理后的噪音数据的频谱特征,并对其进行分析,得出不同频率噪音的声压级密度阈值,读取待监测的轮对噪音数据、轮径和车辆行驶速度,根据轮对噪音数据、轮径和车辆行驶速度得到频域数据,根据频域数据和不同频率噪音的声压级密度阈值,计算该频段对应的车轮多边形阶次,根据阶次判断车轮是否异常,根据异常信息生成故障检测结果,并上报故障检测结果。可见,现有的检测车轮多边形的方法主要从车轮多边形对环境产生的影响信号来进行分析处理并做出检测的,需要用到的数学处理复杂,计算量大,实施难度较高。
发明内容
本发明的目的是提供一种列车车轮径向跳动的检测方法,该方法可在线精确获取车轮径向跳动量以用于车轮多边形分析,方法简单直接,便于推广实施。
为了实现上述目的,本发明采取如下技术方案:
一种列车车轮径向跳动的检测方法,其特征在于包括如下步骤:
步骤S1:在列车车轮滚动测量的起始时刻和终了时刻,车轮轴线沿某一方向平移所成平面与车轮踏面相交的部位分别为起始部位和终了部位,利用第一激光测量车轮轴线在起始时刻和终了时刻之间的轴线位移,利用第二激光测量终了部位和起始部位之间的踏面位移;
步骤S2:计算轴线位移与踏面位移的差值,即为初始半径至终了半径的径向跳动量,所述初始半径为初始部位至车轮圆心的半径,所述终了半径为终了部位到车轮圆心的半径。
优选的,所述步骤S1中,列车沿平直轨道前进,在列车车轮前进方向的正前方或正后方设置第一激光干涉仪和第二激光干涉仪,第一激光干涉仪发射所述第一激光,第一激光垂直射向车轮轴线并落在参照物上,所述参照物与车轮轴线具有确定的位置关系,通过第一激光测量参照物位移从而计算所述轴线位移;所述第二激光干涉仪发射第二激光,第二激光正对车轮踏面并测量所述终了部位和所述起始部位之间的踏面位移。
进一步优选的,所述步骤S1中,所述第一激光干涉仪和第二激光干涉仪相对轨道静止并可横向移动,测量时调整车速适配并将第一激光干涉仪和第二激光干涉仪横向移动至列车车轮正前方或正后方;或者所述第一激光干涉仪和第二激光干涉仪设置在可移动小车上并可横向移动,测量时可移动小车与列车速度适配并将第一激光干涉仪和第二激光干涉仪横向移动至列车车轮正前方或正后方。
或者优选的,所述步骤S1中,在云台上设置第一激光干涉仪和第二激光干涉仪,第一激光干涉仪发射所述第一激光,第一激光射向车轮圆心并落在参照物上,并且随着车轮滚动第一激光干涉仪相应转动以使第一激光始终落在参照物上,所述参照物与车轮圆心具有确定的位置关系,第一激光干涉仪测出参照物在第一激光光轴上的参照物位移并计算参照物位移在车轮前进方向的参照物位移分量,根据参照物位移分量计算所述轴线位移;第二激光干涉仪发射所述第二激光,并且随着车轮滚动第二激光干涉仪相应转动以使第二激光落在所述初始部位和终了部位上,第二激光干涉仪测出初始部位到终了部位在第二激光光轴上的踏面光轴位移并计算踏面光轴位移在车轮前进方向的踏面光轴位移分量,踏面光轴位移分量即为所述踏面位移。
进一步优选的,在所述步骤S1中,在列车轨道上设置起点磁钢,当车轮触发起点磁钢时,定位车轮位置,并同时使第一激光对准所述参照物,使第二激光对准所述初始部位,所述第一激光干涉仪和第二激光干涉仪同时复位;通过速度传感器测得的列车实时速度实时调整云台位姿以使第一激光始终落在所述参照物上;通过所述列车实时速度和云台坐标系与轨道坐标系的标定关系,计算第一激光干涉仪和第二激光干涉仪所在云台的运动姿态,使得第二激光落在所述初始部位和终了部位上。
优选的,所述参照物为轴箱。
或者优选的,所述步骤S1中,设置双频激光干涉仪伴随列车移动并将激光干涉仪发出的激光分光成所述第一激光和所述第二激光,使第一激光射向车轮圆心并始终落在参照物,所述参照物与车轮圆心具有确定的位置关系,根据所述参照物相对于所述激光干涉仪在列车前进方向上的距离变化计算所述轴线位移;使第二激光射向车轮踏面并测量所述踏面位移。
优选的,所述步骤S1中,将所述双频激光干涉仪设置在小车上,小车架设在列车轨道旁的辅助轨道上,通过速度传感器检测列车速度并驱动小车同速前进。
进一步的,还包括步骤S3:在计算所述初始时刻和所述终了时刻之间的所述轴线位移和所述踏面位移后,以终了时刻作为新的初始时刻,以终了时刻后的下一时刻作为新的终了时刻,按所述步骤S1和所述步骤S2再次计算新的轴线位移和新的踏面位移,如此循环,直至完成整个车轮一周半径跳动量的测量。
本发明技术方案中,采用激光干涉仪发射的激光能够精准测量车辆轴线和车轮踏面相对于激光干涉仪的位移变化,再将位移变化转换成沿列车前进方向上的位移差值,该位移差值即终了时刻车轮踏面被测量部位(即终了部位)与轴线的半径值减去起始时刻车轮踏面被测量部位(即起始部位)与轴线的半径值所得的差值,即半径跳动量。按此方法可以完成车轮一周的径向跳动量测量,从而可以顺利分析出车轮多边形状况。本发明针对激光干涉仪正对车轮、随车偏转、随车前行等情况给出的具体测量实施例。
附图说明
图1为实施例1中待检测车轮从t1时刻运动至t2时刻的位置关系示意图;
图2为实施例2中云台上的第一激光干涉仪和第二激光干涉仪位置示意图;
图3为第一激光干涉仪和第二激光干涉仪与轴箱和车轮踏面的几何关系示意图;
图4为第一激光干涉仪与轴箱的几何关系示意图;
图5为第二激光干涉仪与车轮踏面的几何关系示意图。
具体实施方式
列车车轮滚动前进,将测量的起始时刻记为t1,终了时刻记为t2,车轮轴线平移所成平面为Q(车轮轴线可以沿任意方向平移而与车轮踏面相交,以下以车轮轴线沿列车前进方向水平向后移动形成的平面与车轮踏面相交为例进行说明),在t1时刻车轮踏面与平面Q相交的部位为车轮踏面的起始部位P1,在t2时刻车轮踏面与平面Q相交的部位为车轮踏面的终了部位P2,此时(即t2时刻)起始部位P1已经转动到空间P1’处,起始部位P1到车轮圆心O的半径为r1,终了部位P2到车轮圆心O的半径为r2,而δr=r2-r1即为起始部位P1到终了部位P2的半径跳动量。本发明通过如下方法对半径跳动量进行测量:
测量从t1时刻到t2时刻车轮轴线平移的距离d1,同时测量车轮踏面起始部位P1所处位置与车轮踏面终了部位P2所处位置之间的距离d2,则d2-d1所得差值即δr。
具体测量时,采用激光干涉仪分别测量距离d1和距离d2。以下分不同实施例进行说明。
实施例1激光正对测量目标的情况
设置两个激光干涉仪S并使其所发射的激光L处于平面Q上,其中第一激光干涉仪发出第一激光垂直射向车轮轴线并且激光点落在轴箱上形成第一目标点,轴箱与车轴轴线具有确定的位置关系,第一激光干涉仪能够测出从t1时刻到t2时刻第一目标点移动的距离,此距离是轴箱移动的距离,因轴箱与车轮轴线具有确定的位置关系,因此也就是轴线平移的距离d1。同时,第二激光干涉仪发出第二激光垂直射向车轮踏面并形成第二目标点,t1时刻第二目标点落在起始部位P1上,t2时刻第二目标点落在终了部位P2上,同理可以测出起始部位P1到终了部位P2之间的距离d2,这样即可以得到d2-d1的差值,从而测得起始部位P1到终了部位P2的半径跳动量。车轮继续转动,可以依法不断测出当前时刻激光点所在的踏面部位相对于下一时刻相应的激光点所在踏面部位的半径跳动量,从而完成这个车轮一周踏面半径跳动量的测量。从实际测量而言,可以特设符合上述测量条件的测量场景,如可以将不同段的列车车厢依次经弯曲轨道转移至一段平直轨道上,并将两台激光干涉仪置于车轮正后方(也可以是正前方)并垂直瞄准车轮踏面和车轮轴线(图1所示情况),弯曲轨道的设置可以避免其他车厢对激光干涉仪的干涉,这样可以测出车厢后轮的半径跳动量。如果将激光干涉仪设置在车轮前方,则可以测出车厢前轮的半径跳动量。特别的,还可以设置横向移动的两台激光干涉仪,需要测量时横向伸入车厢下方并正对车轮和轴箱,同时放缓车辆行进速度,这样测定车厢的前轮、后轮或中间车轮的半径跳动量。或者将可横向移动的激光干涉仪设置在可移动小车上,伴随列车移动并适配速度,激光干涉仪横向伸出至车轮正前方或正后方进行测量。
实施例2激光斜对测量目标的情况
为了避免实施例1中设置弯曲轨道或横向移动的激光干涉仪带来的不便,本实施例将激光干涉仪设置在铁轨旁,并分为(1)激光干涉仪设置在可转动的云台上和(2)激光干涉仪设置在可移动装置上,目的都是使激光干涉仪所发激光点在列车行进过程中始终锚定在车轮踏面的同一目标点以及轴箱的同一目标点,下面分别说明:
(1)激光干涉仪设置在可转动的云台上
在铁轨旁设置两部云台,第一云台7上设第一激光干涉仪3,第二云台6上设第二激光干涉仪4,其中第一激光干涉仪3发射的第一激光对准轴箱1上一确定的点,并且在列车5行进过程中,第一云台7进行转动使第一激光干涉仪3发射的第一激光始终对准轴箱1上的该点,列车5行进时轴箱1上该点沿铁轨前进的距离即为轴线位移d1。具体计算如下:
第一激光干涉仪3安装至铁轨旁一侧,第一激光干涉仪3初始位置与轨道间夹角位置已知确定,下述以第一激光干涉仪3初始位置时第一激光与轨道平行为例进行说明(即夹角为0)。
待检测列车驶入检测区域后,第一激光干涉仪3转动瞄准轴箱目标点,在开始测量的起始时刻t1,第一激光干涉仪相对于初始位置已在高精度电机控制下旋转了角度α1,第一激光干涉仪随列车前进而继续转动并使第一激光始终瞄准轴箱目标点,在终了时刻t2,第一激光干涉仪的旋转角度为α2,则在t1-t2时段,第一激光干涉仪转过的角度Δα=α21,如图4所示。
根据激光干涉仪测量原理,可以得出轴箱沿第一激光光轴方向的位移ΔA,即ΔA=A1-A2,其中A1为t1时刻轴箱目标点的位置X1到第一激光干涉仪的距离,A2为t2时刻轴箱目标点的位置X2到第一激光干涉仪的距离。若以第一激光干涉仪的激光发射点O为圆心,以A2为半径作圆,则此圆与A1相交于Y点,并可算出角X1YX2的角度β1同时可得角X1X2Y的角度γ1=180°-α11(图4)。已知三角形X1X2Y的三个角α1、β1、γ1以及边长ΔA,根据三角形正弦定理(a/sin A=b/sin B=c/sin C),可得出轴箱目标点沿轨道方向的位移/>此亦为轴线位移。
第二激光干涉仪4使第二激光对准车轮2踏面上某点,并且随列车前进第二激光干涉仪4不断转动以使第二激光始终瞄准该点。具体而言,在t1时刻,车轮踏面上被第二激光瞄准的点在以车轮圆心为原点的车轮平面坐标系中,该点对应确定的位置向量,此时具有此位置向量的点即为起始部位Z1(图2、图3),车轮在转动过程中,第二激光始终瞄准该位置向量对应的点(位置向量不变,但是随着转动的进行,车轮踏面上与该位置向量对应的踏面部位在不断变化,亦即第二激光落点对应的车轮部位在不断变化),当车轮转动到t2时刻,第二激光照射在车轮踏面的终了部位Z2处,在铁轨坐标系中,t1时刻起始部位Z1的位置到t2时刻终了部位Z2的位置之间的距离,即为踏面位移d2。可以仿照上述计算轴线位移类似的方法来计算踏面位移,具体如下:
待检测列车驶入检测区域后,第二激光干涉仪转动瞄准踏面目标点,在开始测量的起始时刻t1,第二激光干涉仪相对于初始位置已在高精度电机控制下旋转了角度α3,第二激光干涉仪随列车前进而继续转动并使第二激光始终瞄准踏面目标点,在终了时刻t2,第二激光干涉仪的旋转角度为α4,则在t1-t2时段,第二激光干涉仪转过的角度Δα’=α43,如图5所示。
根据激光干涉仪测量原理,可以得出车轮踏面沿第一激光光轴方向的位移ΔB,即ΔB=B1-B2,其中B1为t1时刻踏面起始部位Z1到第二激光干涉仪发射点O’的距离,B2为t2时刻车轮踏面终了部位Z2到第二激光干涉仪的距离。若以第二激光干涉仪的激光发射点O’为圆心,以B2为半径作圆,则此圆与B1相交于R,并可算出角Z1RZ2的角度β2同时可得角Z1Z2R的角度γ2=180°-α3-β2(图5)。已知三角形Z1Z2R的三个角α3、β2、γ2以及边长ΔB,根据三角形正弦定理(a/sin A=b/sin B=c/sinC),可得出轴箱目标点沿轨道方向的位移/>此亦为踏面位移,由d1-d2的差值即可得起始部位Z1到终了部位Z2的半径跳动量。车轮继续转动,可以依法不断测出当前时刻激光点所在的踏面部位相对于下一时刻相应的激光点所在踏面部位的半径跳动量,从而完成这个车轮一周踏面半径跳动量的测量。
(2)激光干涉仪设置在可移动装置上
将激光干涉仪设置在可移动装置上,如可移动小车,可移动小车跟随列车移动并且激光并不正对车轮而是斜向对准轴箱和车轮踏面,此时仍可利用激光干涉仪得到轴线和踏面在光轴上的相对位移,进而求出在列车前进方向上的位移分量,从而求出半径跳动量,在此不再赘述。
实施例3利用双频激光干涉仪进行测量
在铁轨旁设置平行轨道,其上设置可移动小车,将双频激光干涉仪以及分光镜等设备固定在同一测量小车上,保证相对位置稳定无变化,测量小车可在相应的运动轨道上直线运动。双频激光干涉仪利用分光镜进行多次分光,同时对多个点位进行测量。以单个车轮为例进行说明。双频激光干涉仪发射出激光线,经分光处理后分成AB两束激光线。A激光线指向车轮圆心,并照射至车轮踏面滚动圆上,垂直测量车轮踏面滚动圆位移,B激光线指向车轮轴箱上一标识点,该标识点相对于轮对轴心位置固定无窜动,B激光线通过测量该标识点位置间接测量车轮轴心位置。两束激光相对位置始终保持不变并始终盯紧目标点。
测量开始时,AB两束激光线同时对车轮踏面滚动圆以及轴箱测量,B激光线检测轴箱运动距离L1即为轮对轴心运动距离L(若测量小车相对轮对轴心同步运动,B激光线测量距离L1=L=0),A激光线测得踏面滚动圆前进距离L2。
测量小车运行轨道铺设在轨道列车运行轨旁,保持两轨道平行。运行轨道起始段设置检测传感器,检测轨道列车是否运行至检测区域。
当列车运行至待检测区域时,检测开关检测到待检测轮对,测量小车开始运动。激光干涉仪同时工作,激光束分别照射至轮对轴箱标识点以及轮对踏面滚动圆位置。测量小车根据激光干涉仪测量数据,保持车体与轮对轴心运动速度相同,此时B激光线检测轴箱运动距离L1即为轮对轴心运动距离L相同,即L1=L=0。(上述测量小车内部可装置有速度传感器检测列车运行速度,保证测量小车与列车相对静止,激光干涉仪后动作,仅用于数据测量。通过测速仪测量轮对前进速度L,调整测量小车运行速度,达到与轮对同步前进状态。此时激光干涉仪开机,经分开的两束激光分别测量车轮滚动圆位移L1以及相对轴心静止的车轴位移L2。)
待测量完车轮全周后,测量小车减速停止并返回起始点,等待下一测量列车的通过。
在本方案中,可在测量小车安装磁吸固定装置,当待检测列车运行至检测区域后,磁吸装置将检测小车吸附至待检测列车上,保证检测小车与列车车轮的相对静止,而后激光干涉仪开始对车轮进行测量。测量方式与上述相同,完成后磁吸装置断电,检测小车与列车脱离,返回值初始位置等待下一次检测。

Claims (9)

1.一种列车车轮径向跳动的检测方法,其特征在于包括如下步骤:
步骤S1:在列车车轮滚动测量的起始时刻和终了时刻,车轮轴线沿某一方向平移所成平面与车轮踏面相交的部位分别为起始部位和终了部位,利用第一激光测量车轮轴线在起始时刻和终了时刻之间的轴线位移,利用第二激光测量终了部位和起始部位之间的踏面位移;
步骤S2:计算轴线位移与踏面位移的差值,即为初始半径至终了半径的径向跳动量,所述初始半径为初始部位至车轮圆心的半径,所述终了半径为终了部位到车轮圆心的半径。
2.如权利要求1所述的列车车轮径向跳动的检测方法,其特征在于:
所述步骤S1中,列车沿平直轨道前进,在列车车轮前进方向的正前方或正后方设置第一激光干涉仪和第二激光干涉仪,第一激光干涉仪发射所述第一激光,第一激光垂直射向车轮轴线并落在参照物上,所述参照物与车轮轴线具有确定的位置关系,通过第一激光测量参照物位移从而计算所述轴线位移;所述第二激光干涉仪发射第二激光,第二激光正对车轮踏面并测量所述终了部位和所述起始部位之间的踏面位移。
3.如权利要求2所述的列车车轮径向跳动的检测方法,其特征在于:
所述步骤S1中,所述第一激光干涉仪和第二激光干涉仪相对轨道静止并可横向移动,测量时调整车速适配并将第一激光干涉仪和第二激光干涉仪横向移动至列车车轮正前方或正后方;或者所述第一激光干涉仪和第二激光干涉仪设置在可移动小车上并可横向移动,测量时可移动小车与列车速度适配并将第一激光干涉仪和第二激光干涉仪横向移动至列车车轮正前方或正后方。
4.如权利要求1所述的列车车轮径向跳动的检测方法,其特征在于:
所述步骤S1中,在云台上设置第一激光干涉仪和第二激光干涉仪,第一激光干涉仪发射所述第一激光,第一激光射向车轮圆心并落在参照物上,并且随着车轮滚动第一激光干涉仪相应转动以使第一激光始终落在参照物上,所述参照物与车轮圆心具有确定的位置关系,第一激光干涉仪测出参照物在第一激光光轴上的参照物位移并计算参照物位移在车轮前进方向的参照物位移分量,根据参照物位移分量计算所述轴线位移;第二激光干涉仪发射所述第二激光,并且随着车轮滚动第二激光干涉仪相应转动以使第二激光落在所述初始部位和终了部位上,第二激光干涉仪测出初始部位到终了部位在第二激光光轴上的踏面光轴位移并计算踏面光轴位移在车轮前进方向的踏面光轴位移分量,踏面光轴位移分量即为所述踏面位移。
5.如权利要求4所述的列车车轮径向跳动的检测方法,其特征在于:
在所述步骤S1中,在列车轨道上设置起点磁钢,当车轮触发起点磁钢时,定位车轮位置,并同时使第一激光对准所述参照物,使第二激光对准所述初始部位,所述第一激光干涉仪和第二激光干涉仪同时复位;通过速度传感器测得列车实时速度实时调整云台位姿以使第一激光始终落在所述参照物上;通过所述列车实时速度和云台坐标系与轨道坐标系的标定关系,计算第一激光干涉仪和第二激光干涉仪所在云台的运动姿态,使得第二激光落在所述初始部位和终了部位上。
6.如权利要求2至5任一项所述的列车车轮径向跳动的检测方法,其特征在于:所述参照物为轴箱。
7.如权利要求1所述的列车车轮径向跳动的检测方法,其特征在于:
所述步骤S1中,设置双频激光干涉仪伴随列车移动并将激光干涉仪发出的激光分光成所述第一激光和所述第二激光,使第一激光射向车轮圆心并始终落在参照物,所述参照物与车轮圆心具有确定的位置关系,根据所述参照物相对于所述激光干涉仪在列车前进方向上的距离变化计算所述轴线位移;使第二激光射向车轮踏面并测量所述踏面位移。
8.如权利要求7所述的列车车轮径向跳动的检测方法,其特征在于:
所述步骤S1中,将所述双频激光干涉仪设置在小车上,小车架设在列车轨道旁的辅助轨道上,通过速度传感器检测列车速度并驱动小车同速前进。
9.如权利要求1所述的列车车轮径向跳动的检测方法,其特征在于:
还包括步骤S3:在计算所述初始时刻和所述终了时刻之间的所述轴线位移和所述踏面位移后,以终了时刻作为新的初始时刻,以终了时刻后的下一时刻作为新的终了时刻,按所述步骤S1和所述步骤S2再次计算新的轴线位移和新的踏面位移,如此循环,直至完成整个车轮一周半径跳动量的测量。
CN202311419617.2A 2023-10-30 2023-10-30 一种列车车轮径向跳动的检测方法 Pending CN117490584A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311419617.2A CN117490584A (zh) 2023-10-30 2023-10-30 一种列车车轮径向跳动的检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311419617.2A CN117490584A (zh) 2023-10-30 2023-10-30 一种列车车轮径向跳动的检测方法

Publications (1)

Publication Number Publication Date
CN117490584A true CN117490584A (zh) 2024-02-02

Family

ID=89673640

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311419617.2A Pending CN117490584A (zh) 2023-10-30 2023-10-30 一种列车车轮径向跳动的检测方法

Country Status (1)

Country Link
CN (1) CN117490584A (zh)

Similar Documents

Publication Publication Date Title
CN100449264C (zh) 车辆轮对踏面缺陷在线检测方法及装置
JP7247206B2 (ja) 鉄道車両および軌道区間を検測する方法
JP4857369B2 (ja) 分岐器検査装置
HU220577B1 (hu) Berendezés és eljárás sínhez kötött járművek kerekei gördülési paramétereinek mérésére
CN107697084B (zh) 轨道车及隧道检测车
CN110667643B (zh) 轮轨接触状态与车轮踏面故障的激光检测系统与方法
JP2003207319A (ja) レール断面形状測定装置
CN206266964U (zh) 一种地铁钢轨波磨实时测量打磨装置
CN202216662U (zh) 大功率机车轮对尺寸测量机
KR20220126202A (ko) 자동화된 선로 이상 탐지 방법 및 그 장치
RU2114950C1 (ru) Способ контроля состояния рельсового пути и устройство для его осуществления
CN117490584A (zh) 一种列车车轮径向跳动的检测方法
US6003232A (en) Installation for measuring the wheel offset of railway vehicles
CN109313106B (zh) 用于测量和计算轨道车辆轮对的车轮的几何参数的方法
CN111376930B (zh) 一种轨道系统的检测和维护装置及方法
Li et al. An online wheel size detecting technology based on laser displacement sensors for urban rail vehicles
CN108050977A (zh) 一种便携式铁道车轮踏面不圆度快速测量仪
JP4913498B2 (ja) 鉄道車両車輪計測装置
CN113074655B (zh) 一种动态图像车轮不圆度监测方法
RU2749559C1 (ru) Способ и компоновочная схема идентификации колеса рельсового транспортного средства
CN208505258U (zh) 一种列车轮对三维高精度测量系统
JP6632130B2 (ja) 摩耗度合い情報取得装置、摩耗度合い情報取得方法、車両及びプログラム
JP2015178979A (ja) 電車線設備の位置検出装置
CN116147482A (zh) 一种轨道交通轮对全尺寸在线高精度测量装置及方法
RU2291798C2 (ru) Способ и устройство для измерения деформации кузова автомобиля при дорожно-транспортном происшествии

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination