CN117486955A - 一种非经典c-糖苷及其立体专一性合成方法和应用 - Google Patents

一种非经典c-糖苷及其立体专一性合成方法和应用 Download PDF

Info

Publication number
CN117486955A
CN117486955A CN202311347581.1A CN202311347581A CN117486955A CN 117486955 A CN117486955 A CN 117486955A CN 202311347581 A CN202311347581 A CN 202311347581A CN 117486955 A CN117486955 A CN 117486955A
Authority
CN
China
Prior art keywords
classical
glycoside
structural formula
pyran
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311347581.1A
Other languages
English (en)
Inventor
朱峰
程国强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN202311347581.1A priority Critical patent/CN117486955A/zh
Publication of CN117486955A publication Critical patent/CN117486955A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/18Acyclic radicals, substituted by carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H23/00Compounds containing boron, silicon, or a metal, e.g. chelates, vitamin B12
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Abstract

本发明提供了一种非经典C‑糖苷及其立体专一性合成方法和应用,所述合成方法包括:以非经典糖基锡烷为亲核试剂,卤代烃为亲电试剂,进行Stille交叉偶联反应,得到所述非经典C‑糖苷。本发明提供的一种非经典C‑糖苷及其立体专一性合成方法和应用,其合成方法不仅工艺简单,操作方便,收率高,而且官能团耐受性好,立体专一性强,同时糖底物范围广泛,可兼容无保护糖和水相体系;更进一步的是,所得非经典C‑糖苷不仅具有更优的抗菌活性,而且还可作为活性药物原料,推动药物合成工业和医药工业的技术进步。

Description

一种非经典C-糖苷及其立体专一性合成方法和应用
技术领域
本发明属于糖苷合成技术领域,尤其涉及一种非经典C-糖苷及其立体专一性合成方法和应用。
背景技术
C-糖苷广泛存在于多种具有生理活性的天然产物和市售药物中。经典的C-糖苷在糖环C-1位上带有取代基,而非经典C-糖苷在吡喃糖的C-5位或呋喃糖的C-4位上有取代基。由于其独特的糖苷键连接模式,非经典C-糖苷已被证明是有前途的抗癌药、抗生素或糖尿病抑制剂,例如索格列净。然而,非经典C-糖苷的合成方法有限,严重阻碍了对其结构特征和作用方式的更广泛研究。因此,非经典C-糖苷的合成具有重要的理论意义和工业实用价值。
目前,合成非经典C-糖苷的方法有:
方法一:ZnBr2介导的芳基锌试剂与4α-环氧吡喃糖苷的顺式选择性加成反应,合成非经典芳基或杂芳基碳糖苷。
该方法的局限在于:所得非经典C-糖苷仅有顺式选择性,糖底物范围狭窄且官能团耐受性差,不利于工业化生产。
方法二:芳香醛和Danishefsky二烯之间的选择性[4+2]环加成反应,构建非经典芳基C-糖苷的核心结构。
该方法的弊端在于:所得非经典C-糖苷也仅有顺式选择性,二烯原料难合成,且反应模块化差,不利于工业化生产。
方法三:糖醛酸形成的糖基自由基中间体与N-杂芳烃进行Minisci反应,从而构建非经典杂芳基C-糖苷。
该方法的局限在于:需要化学计量的氧化剂和自由基引发剂来促进反应的顺利进行,且糖苷键的立体构型由底物控制,不利于工业化生产。
方法四:α-烷氧酰基碲化物形成的糖基自由基中间体与N-杂芳烃进行Minisci反应,从而构建非经典杂芳基C-糖苷。
该方法的局限同样在于:需要化学计量的氧化剂和自由基引发剂来促进反应的顺利进行,且糖苷键的立体构型由底物控制,不利于工业化生产。
方法五:非经典糖基-DHP试剂与芳基或杂芳基溴化物在光镍协同催化下,形成糖基自由基中间体,继而发生偶联反应,实现非经典芳基C-糖苷的高效合成。
该方法的局限在于:糖和芳香主链都与立体化学过程密切相关,难以同时高度立体专一性获得α和β异构体,不利于分离纯化,不利于工业化生产。
方法六:非经典糖基-DHP试剂在可见光照射下与N-杂芳烃通过Minisci型糖基化非对映选择性合成非经典杂芳基C-糖苷。
该方法的局限在于:难以同时高度立体专一性获得α和β异构体,不利于分离纯化,不利于工业化生产。
方法七:通过非经典糖基-DHP试剂与VBX或VBO通过光氧化还原催化实现非经典糖基自由基与乙烯基的偶联反应,从而合成非经典乙烯基C-糖苷。
该方法的局限同样在于:难以同时高度立体专一性获得α和β异构体,不利于分离纯化,不利于工业化生产。
综上所述,目前尽管合成非经典C-糖苷的方法多种多样,但是仍面临着一系列问题,例如原料获取困难、糖范围窄、官能团耐受性差、立体专一性差等。
发明内容
基于上述技术问题,本发明提供了一种非经典C-糖苷及其立体专一性合成方法和应用,其合成方法不仅工艺简单,操作方便,收率高,而且官能团耐受性好,立体专一性强,同时糖底物范围广泛,可兼容无保护糖和水相体系;更进一步的是,所得非经典C-糖苷不仅具有更优的抗菌活性,而且还可作为活性药物原料,推动药物合成工业和医药工业的技术进步。
本发明提出的一种非经典C-糖苷的立体专一性合成方法,包括:以结构式I所示非经典糖基锡烷为亲核试剂,结构式II所示卤代烃为亲电试剂,进行Stille交叉偶联反应,得到结构式III所示非经典C-糖苷;
其中,R1为氢或烷基,R2为氢、羟基、烷基、烷氧基、烯基、芳基、酯羰基、氨基、NH-酰基、叠氮基、巯基、烷巯基或-OP,R3、R4为氢、羟基、氨基、糖基、NH-酰基、叠氮基、巯基、烷巯基或-OP,R5为氢、烷基或P,P为糖基上羟基保护基,R为烯基或芳基,X为卤素。
优选地,P为Bn、Ac、TBS、TIPS、Piv、Bz、Boc、TBDPS、TMS、TES、TBDMS、PMB、Tr、MMT、DMT、MOM、BOM、MTM、THP、MEM、PMBOM、Cbz或Fmoc;R1为Bu;X为Br或I。
优选地,结构式I所示非经典糖基锡烷或结构式III所示非经典C-糖苷的糖环上C-1位取代基为烷氧基,优选为β或α-甲氧基,C-5位取代基与C-4位取代基为反式或顺式构型。
优选地,所述Stille交叉偶联反应是在钯催化剂、磷配体、亚铜盐和溶剂的反应条件下进行;
优选地,所述钯催化剂为PdCl2、Pd(OAc)2、Pd(TFA)2、Pd2(Dba)3、Pd(PPh3)4、Pd(acac)2、(Ph3P)2PdCl2或烯丙基氯化钯二聚物中的至少一种,优选为Pd2(Dba)3
所述磷配体为PPh3、PCy3、Dppp、Dppb、Dppf、Binap、Jackiephos、Xantphos、Xu-Phos、X-Phos或tBuBrettphos中的至少一种,优选为Jackiephos;
所述亚铜盐为CuI、CuCl、CuBr、CuTc或(CuOTf)2·PhCH3中的至少一种,优选为CuCl;
所述溶剂为1,4-二氧六环、叔丁醇、N,N-二甲基甲酰胺、甲苯、二乙二醇二甲醚或水中的至少一种,优选为体积比1:1的1,4-二氧六环与叔丁醇的混合溶剂;
优选地,所述反应条件还包括银盐;
优选地,所述银盐为AgNO3、Ag2CO3、Ag2O、AgF或Ag2SO4中的至少一种,优选为AgF。
优选地,结构式I所示非经典糖基锡烷与结构式II所示卤代烃的摩尔比为0.5-3:1;优选为2:1;
所述钯催化剂与结构式II所示卤代烃的摩尔比为0.01-0.05:1,优选为0.025:1;
所述磷配体与结构式II所示卤代烃的摩尔比为0.05-0.2:1,优选为0.1:1;
所述亚铜盐与结构式II所示卤代烃的摩尔比为0.5-2:1,优选为1:1;
所述银盐与结构式II所示卤代烃的摩尔比为1-3:1,优选为2:1。
优选地,所述Stille交叉偶联反应温度为50-110℃,优选为70℃,时间为48-72h,优选为48h。
优选地,结构式I所示非经典糖基锡烷的合成方法包括:
以结构式Ⅳ所示糖烯为原料进行烯基氧化反应,得到结构式Ⅴ所示环氧化糖苷;再以结构式Ⅴ所示环氧化糖苷为亲电试剂,结构式Ⅵ所示烷基锡金属试剂为亲核试剂,进行环氧开环反应,之后再进行水解或羟基化保护反应,即得到结构式I所示非经典糖基锡烷;
其中,MX为金属、金属盐或烷基金属。
本发明提出一种非经典C-糖苷,其是上述合成方法合成得到的非经典C-糖苷或该非经典C-糖苷的衍生物。
优选地,所述非经典C-糖苷为如下所述结构所示的化合物:
本发明还提出一种上述非经典C-糖苷在抑菌产品中的应用。
本发明提出的一种非经典C-糖苷的立体专一性合成方法,通过以容易合成的非经典糖基锡烷化合物作为反应底物,与芳基或乙烯基卤代物进行糖基交叉偶联反应,高度立体专一性地合成了非经典C-糖苷;与现有技术中的其他合成方法相比,本发明一方面能够高度立体专一性地控制源自各种糖的两种非经典端基异构体的构型,具有广泛的底物范围、出色的官能团耐受性以及始终如一的高化学选择性和立体特异性,并且与各种非经典糖基锡烷烷、亲电试剂和带有裸露羟基的糖相容;另一方面,整个工艺条件温和、底物范围广泛、产物立体选择性优异、产物收率高、对环境友好,可推广至工业生产,所得非经典C-糖苷可广泛应用于工业和学术界的药物合成、天然产物的全合成中。
附图说明
图1为实施例1所述4-((2R,3R,4S,5R,6R)-4,5-双(苄氧基)-3-羟基-6-甲氧基四氢-2H-吡喃-2-基)苯甲酸甲酯的核磁氢谱图;
图2为实施例1所述4-((2R,3R,4S,5R,6R)-4,5-双(苄氧基)-3-羟基-6-甲氧基四氢-2H-吡喃-2-基)苯甲酸甲酯的核磁碳谱图。
具体实施方式
在本发明中,“非经典糖基锡烷”具有本领域技术人员所通常理解的含义,例如在吡喃糖的C-5位连有锡烷基的化合物。
在本发明中,JackiePhos和三(二亚苄基丙酮)二钯购自上海皓鸿生物医药科技有限公司;氯化亚铜购自默克旗下西格玛-奥德里奇(上海)贸易有限公司;氟化银、碳酸银和4-溴联苯购自上海毕得医药科技股份有限公司;无水1,4-二氧六环、无水叔丁醇购自上海阿达玛斯试剂有限公司;其他所用试剂均商业可购买,所用原料均易于合成及纯化。
1H NMR和13C NMR均采用Bruker Avance 400/500spectrometer仪器进行测定;测试温度为室温,溶剂为氘代氯仿(CDCl3),选取参考:1H NMR:CDCl3为7.26ppm;13C NMR:CHCl3为77.16ppm。
下面,本发明通过具体实施例对所述技术方案进行详细说明,但是应该明确提出这些实施例用于举例说明,但是不解释为限制本发明的范围。
首先,对非经典C-糖苷的合成条件进行优化,确定最佳的催化反应条件,具体以(2R,3R,4S,5R,6R)-2-([1,1'-联苯]-4-基)-3,4,5-三(苄氧基)-6-甲氧基四氢-2H-吡喃的合成过程为例,操作如下:
(2R,3R,4S,5R,6R)-2-([1,1'-联苯]-4-基)-3,4,5-三(苄氧基)-6-甲氧基四氢-2H-吡喃的一般合成方法包括:
如上反应式所示,在干燥、氮气反复置换3次的4mL小瓶子中依次加入结构式1所示反应物(0.20mmol)、结构式2所示反应物(0.10mmol)、三(二亚苄基丙酮)二钯(5mol%)、配体(20mol%)、铜盐(1.0当量)和银盐(1.0或2.0当量)以及溶剂,升温搅拌反应后,冷却至室温,用硅藻土过滤,浓缩后得到粗品,进一步使用柱层析分离纯化,洗脱剂选用石油醚和乙酸乙酯=3:1,得到结构式3所示目标产物以及结构式4所示副产物。
按照上述方法,设置29组平行试验组,分别采用不同的配体、铜盐、银盐、溶剂以及结构式1、2所示反应物不同的摩尔当量,同时改变反应温度、时间,由此得到的结构式3所示目标产物和结构式4所示副产物的核磁产率如下表1所示:
表1不同反应条件下目标产物的产率对照表a
[a]一般反应条件:1(0.20mmol),2(0.10mmol),三(二亚苄基丙酮)二钯(5mol%),配体(20mol%),铜盐(1.0当量),银盐(1.0或2.0当量),溶剂(2.00mL);通过对粗反应混合物进行1H NMR分析确定立体化学结果;[b]使用内标(CHBr3)确定NMR产率;[c]NMR产率基于化合物1;[d]氯化亚铜(3.0当量),氟化钾(2.0当量);[e]三(二亚苄基丙酮)二钯(2.5mol%),配体L1(10mol%);[f]核磁产率97%,分离产率93%;[g]使用4-氯联苯作为亲电试剂;[h]使用4-碘联苯作为亲电试剂;[i]使用三氟甲磺酸4-联苯基酯作为亲电试剂。
由上表1可知,直接采用传统用于经典芳基C-糖苷合成所用的三(二亚苄基丙酮)二钯/Jackiephos L1作为催化体系时,目标产物的核磁产率仅为68%,而副产物的核磁产率却高达98%(表1,No.1);令人惊奇的是,省略加入氟化钾而添加碳酸银,目标产物的产率可提高至80%,并且副产物的产率降低至仅为9%(表1,No.2),可见银盐对于解决糖基中C-4位氧基基团的竞争性消除,并降低副产物的产率具有重要贡献;此时改变结构式1、2所示反应物的摩尔当量比,发现其对结目标产物的产率影响不大(表1,No.3);进一步地,降低反应温度,可明显发现副产物几乎被完全抑制(表1,No.4),可见降低反应温度对解决糖基中C-4位的氧基基团的竞争性消除同样有益;采用甲苯、N,N-二甲基甲酰胺、乙腈分别代替1,4-二氧六环作为溶剂时,目标产物的产率明显降低(表1,No.5-7),但是采用叔丁醇作为溶剂时,产率则稍有提高(表1,No.8),最终选定1,4-二氧六环/叔丁醇=1:1作为溶剂后,目标产物的产率可以进一步被提高(表1,No.9),可见1,4-二氧六环/叔丁醇=1:1作为溶剂,反应效果最佳;缩短反应时间以及改变结构式1和结构式2所示反应物的摩尔当量比对目标产物的产率都影响不大(表1,No.10-12),可见反应时间的延长对目标产物产率没有贡献;采用L2、L3、L4替代L1作为配体后,却会不同程度地降低目标产物的产率,提高了副产物的产率(表1,No.13-15),可见jackiphs L1优于其他测试配体;采用溴化亚铜和碘化亚铜替代氯化亚铜后,会不同程度地降低目标产物的产率(表1,No.16-17),可见铜盐及其阴离子显著影响了反应结果;但是省略加入氯化亚铜后,目标产物几乎检测不到(表1,No.20),可见亚铜盐是反应的必须添加剂;采用氧化银代替碳酸银作为添加剂后,目标产物产率会略有上升,而采用氟化银代替碳酸银后,目标产物产率虽然有所提高,但是副产物的产率却随之增加(表1,No.18-19),当然在省略加入碳酸银的情况下,目标产物的产率也随之降低(表1,No.21);但是令人意外的是,采用氟化银代替碳酸银,并逐渐降低反应温度后,目标产物的产率可以逐渐得以提升,副产物的产率也随之下降,但是反应温度太低,目标产物的产率也随之降低(表1,No.22-23);最终在降低三(二亚苄基丙酮)二钯和配体L1的用量,并采用氟化银代替碳酸银作为添加剂的条件下,目标产物的产率可提升至97%(表1,No.24),由此确定了最佳反应条件;分别采用4-氯联苯、4-碘联苯以及三氟甲磺酸4-联苯基酯等常见芳基亲电试剂作为亲电试剂时,只有采用4-碘联苯作为亲电试剂其目标产物的产率最高(表1,No.25-27);令人惊讶的是,反应也可以在1,4-二氧六环/水=1:1的溶剂中进行,目标产物的产率亦可以保持较高水平(表1,No.28-29),此处为水溶性生物大分子的后期糖多样化提供了潜力。
通过上述确定的最佳催化反应条件,本发明再对反应所适配的底物范围进行扩展,具体如下所示:
实施例1
4-((2R,3R,4S,5R,6R)-4,5-双(苄氧基)-3-羟基-6-甲氧基四氢-2H-吡喃-2-基)苯甲酸甲酯的合成
室温下,在干燥、氮气反复置换3次的4mL小瓶子中依次加入(2R,3S,4S,5R,6R)-4,5-双(苄氧基)-6-甲氧基-2-(三丁基甲锡烷基)四氢-2H-吡喃-3-醇(126.7mg,0.200mmol),对溴苯甲酸甲酯(21.5mg,0.100mmol)、三(二亚苄基丙酮)二钯(2.30mg,0.0025mmol)、JackiePhos(8.00mg,0.010mmol)、氯化亚铜(9.90mg,0.100mmol)、氟化银(25.4mg,0.200mmol)以及1,4-二氧六环(1.0mL)和叔丁醇(1.0mL),在70℃下搅拌48h;反应结束后,冷却至室温,用硅藻土过滤,浓缩后得到粗品,并进一步使用柱层析分离纯化,洗脱剂选用石油醚和乙酸乙酯=3:1,得到目标产物47.6mg,产率为99%。
目标产物4-((2R,3R,4S,5R,6R)-4,5-双(苄氧基)-3-羟基-6-甲氧基四氢-2H-吡喃-2-基)苯甲酸甲酯的表征数据: 1H NMR(400MHz,CDCl3)δ8.04(d,J=8.4Hz,2H),7.51(d,J=8.4Hz,2H),7.42–7.29(m,10H),5.00–4.96(m,2H),4.78–4.75(m,2H),4.50(d,J=7.3Hz,1H),4.25(d,J=9.0Hz,1H),3.91(s,3H),3.63–3.53(m,6H),2.15(s,1H);13C NMR(101MHz,CDCl3)δ166.9,143.3,138.6,138.5,130.1,129.7,128.7,128.5,128.3,128.0(2),127.9,127.4,105.2,84.0,82.1,77.2,75.5,75.0,74.8,57.4,52.2;HRMS(ESI)m/z calcd for C28H30O7Na[M+Na]+501.1884,found 501.1891.
实施例2
4-((2S,3S,4S,5R,6S)-4,5-双(苄氧基)-3-羟基-6-甲氧基四氢-2H-吡喃-2-基)苯甲酸甲酯的合成
参照实施例1所述方法,除了采用(2S,3R,4S,5R,6S)-4,5-双(苄氧基)-6-甲氧基-2-(三丁基甲锡烷基)四氢-2H-吡喃-3-醇(126.7mg,0.200mmol)为底物,得到目标产物33.9mg,产率为71%。
目标产物4-((2S,3S,4S,5R,6S)-4,5-双(苄氧基)-3-羟基-6-甲氧基四氢-2H-吡喃-2-基)苯甲酸甲酯的表征数据: 1H NMR(400MHz,CDCl3)δ8.03(d,J=8.6Hz,2H),7.57(d,J=8.1Hz,2H),7.40–7.31(m,8H),7.25–7.23(m,2H),4.94(d,J=12.5Hz,1H),4.83(d,J=1.2Hz,1H),4.63(d,J=12.6Hz,1H),4.56(d,J=4.4Hz,1H),4.54(d,J=2.6Hz,1H),4.43(d,J=11.6Hz,1H),3.92–3.89(m,4H),3.79(t,J=3.5Hz,1H),3.76(dd,J=3.7,1.2Hz,1H),3.53(s,3H),2.05(s,1H);13C NMR(101MHz,CDCl3)δ167.1,144.4,138.3,137.5,129.8,129.6,128.8,128.6,128.4,128.2,128.1,128.0,127.7,100.9,77.9,76.6,74.0,73.9,73.3,69.6,57.5,52.2;HRMS(ESI)m/z calcd forC28H30O7Na[M+Na]+501.1884,found 501.1893.
实施例3
4-((2R,3R,4S,5R,6S)-4,5-双(苄氧基)-3-羟基-6-甲氧基四氢-2H-吡喃-2-基)苯甲酸甲酯的合成
参照实施例1所述方法,除了采用(2R,3S,4S,5R,6S)-4,5-双(苄氧基)-6-甲氧基-2-(三丁基甲锡烷基)四氢-2H-吡喃-3-醇(126.7mg,0.200mmol)为底物,得到目标产物40.3mg,产率为84%。
目标产物4-((2R,3R,4S,5R,6S)-4,5-双(苄氧基)-3-羟基-6-甲氧基四氢-2H-吡喃-2-基)苯甲酸甲酯的表征数据: 1H NMR(400MHz,CDCl3)δ8.02(d,J=8.4Hz,2H),7.46(d,J=8.4Hz,2H),7.43–7.28(m,10H),5.04(d,J=11.4Hz,1H),4.84(d,J=12.0Hz,1H),4.79–4.71(m,3H),4.56(d,J=9.7Hz,1H),3.96–3.89(m,4H),3.68(dd,J=9.6,3.6Hz,1H),3.53(t,J=9.3Hz,1H),3.42(s,3H),2.17(s,1H);13C NMR(101MHz,CDCl3)δ166.9,143.6,138.7,138.1,130.1,129.7,128.7,128.6,128.2,128.1,128.0(2),127.6,98.7,81.4,79.8,75.6,75.0,73.4,72.8,55.7,52.2;HRMS(ESI)m/zcalcd for C28H30O7Na[M+Na]+501.1884,found 501.1896.
实施例4
4-((2R,3R,4S,5S,6S)-4,5-双(苄氧基)-3-羟基-6-甲氧基四氢-2H-吡喃-2-基)苯甲酸甲酯的合成
参照实施例1所述方法,除了采用(2R,3S,4S,5S,6S)-4,5-双(苄氧基)-6-甲氧基-2-(三丁基甲锡烷基)四氢-2H-吡喃-3-醇(126.7mg,0.200mmol)为底物,得到目标产物30.8mg,产率为64%。
目标产物4-((2R,3R,4S,5S,6S)-4,5-双(苄氧基)-3-羟基-6-甲氧基四氢-2H-吡喃-2-基)苯甲酸甲酯的表征数据: 1H NMR(400MHz,CDCl3)δ8.05(d,J=8.4Hz,2H),7.57(d,J=8.4Hz,2H),7.42–7.28(m,10H),4.88(d,J=1.8Hz,1H),4.77–4.70(m,2H),4.63(d,J=11.7Hz,1H),4.55–4.51(m,2H),4.10(t,J=9.5Hz,1H),3.91(s,3H),3.89(dd,J=3.2,1.8Hz,1H),3.85(dd,J=9.4,3.1Hz,1H),3.38(s,3H),2.23(d,J=2.6Hz,1H);13C NMR(101MHz,CDCl3)δ167.0,144.1,138.3,138.2,130.1,129.7,128.6,128.5,128.0,127.9(3),127.8,99.8,79.6,74.4,74.2,72.8,71.9,71.2,55.3,52.2;HRMS(ESI)m/z calcd for C28H30O7Na[M+Na]+501.1884,found 501.1889.
实施例5
4-((2S,3R,5R,6S)-5-(苄氧基)-3-羟基-6-甲氧基四氢-2H-吡喃-2-基)苯甲酸甲酯的合成
参照实施例1所述方法,除了采用(2S,3R,5R,6S)-5-(苄氧基)-6-甲氧基-2-(三丁基甲锡烷基)四氢-2H-吡喃-3-醇(105.5mg,0.200mmol)为底物,得到目标产物22.3mg,产率为60%。
目标产物4-((2S,3R,5R,6S)-5-(苄氧基)-3-羟基-6-甲氧基四氢-2H-吡喃-2-基)苯甲酸甲酯的表征数据: 1H NMR(400MHz,CDCl3)δ8.03(d,J=8.2Hz,2H),7.58(d,J=8.3Hz,2H),7.42–7.28(m,5H),4.87(d,J=12.7Hz,1H),4.70(d,J=12.6Hz,1H),4.55(s,1H),4.22(d,J=9.2Hz,1H),3.96–3.90(m,4H),3.79–3.77(m,1H),3.53(s,3H),2.38–2.33(m,1H),1.70–1.61(m,2H);13C NMR(101MHz,CDCl3)δ167.0,144.0,138.8,130.1,129.8,128.4,127.8,127.7,127.6,103.9,82.4,73.8,72.6,67.8,57.4,52.3,36.1;HRMS(ESI)m/z calcd for C21H24O6Na[M+Na]+395.1465,found 395.1469.
实施例6
4-((2R,3S,4R,6R)-4-(苄氧基)-3-羟基-6-甲氧基四氢-2H-吡喃-2-基)苯甲酸甲酯的合成
参照实施例1所述方法,除了采用(2R,3S,4R,6R)-4-(苄氧基)-6-甲氧基-2-(三丁基甲锡烷基)四氢-2H-吡喃-3-醇(105.5mg,0.200mmol)为底物,得到目标产物24.1mg,产率为65%。
目标产物4-((2R,3S,4R,6R)-4-(苄氧基)-3-羟基-6-甲氧基四氢-2H-吡喃-2-基)苯甲酸甲酯的表征数据: 1H NMR(500MHz,CDCl3)δ8.04(d,J=8.2Hz,2H),7.53(d,J=8.4Hz,2H),7.38–7.29(m,5H),4.73(d,J=11.7Hz,1H),4.58(d,J=11.7Hz,1H),4.54(dd,J=9.8,2.1Hz,1H),4.20(d,J=9.2Hz,1H),3.91(s,3H),3.64–3.58(m,1H),3.54–3.52(m,1H),3.49(s,3H),2.42(ddd,J=12.5,4.7,2.1Hz,1H),2.35(s,1H),1.75–1.69(m,1H);13C NMR(126MHz,CDCl3)δ167.0,143.7,138.1,130.1,129.7,128.7,128.1,127.9,127.6,101.4,78.6,77.6,75.4,71.4,56.9,52.3,36.2;HRMS(ESI)m/z calcdfor C21H24O6Na[M+Na]+395.1465,found395.1472.
实施例7
4-((2S,3S,4S,5R,6R)-5-(苄氧基)-3,4-二羟基-6-甲氧基四氢-2H-吡喃-2-基)苯甲酸甲酯的合成
参照实施例1所述方法,除了采用(2S,3S,4S,5R,6R)-4,5-双(苄氧基)-6-甲氧基-2-(三丁基甲锡烷基)四氢-2H-吡喃-3-醇(126.7mg,0.200mmol)为底物,得到目标产物30.3mg,产率为63%。
目标产物4-((2S,3S,4S,5R,6R)-5-(苄氧基)-3,4-二羟基-6-甲氧基四氢-2H-吡喃-2-基)苯甲酸甲酯的表征数据: 1H NMR(500MHz,CDCl3)δ8.02(d,J=8.5Hz,2H),7.47(d,J=8.4Hz,2H),7.40–7.31(m,8H),7.29–7.27(m,2H),5.23(s,1H),4.95(s,1H),4.71(d,J=12.5Hz,1H),4.62–4.54(m,3H),3.91–3.88(m,4H),3.79(dd,J=11.4,3.4Hz,1H),3.63–3.62(m,1H),3.43(s,3H),3.22(d,J=11.4Hz,1H);13C NMR(126MHz,CDCl3)δ167.2,144.4,138.0,136.9,129.5,129.2,128.7(2),128.4,128.1(2),128.0,126.7,100.7,74.0,73.3,72.6,72.2,69.8,68.2,55.9,52.2;HRMS(ESI)m/z calcdfor C28H30O7Na[M+Na]+501.1884,found501.1896.
实施例8
4-((2R,3R,4R,5R,6R)-4-(苄氧基)-5-(二苄氨基)-3-羟基-6-甲氧基四氢-2H-吡喃-2-基)苯甲酸甲酯的合成
参照实施例1所述方法,除了采用(2R,3S,4R,5R,6R)-4-(苄氧基)-5-(二苄氨基)-6-甲氧基-2-(三丁基甲锡烷基)四氢-2H-吡喃-3-醇(144.5mg,0.200mmol)为底物,得到目标产物46.6mg,产率为82%。
目标产物4-((2R,3R,4R,5R,6R)-4-(苄氧基)-5-(二苄氨基)-3-羟基-6-甲氧基四氢-2H-吡喃-2-基)苯甲酸甲酯的表征数据: 1H NMR(500MHz,CDCl3)δ8.01(d,J=8.4Hz,2H),7.48–7.47(m,6H),7.41–7.37(m,4H),7.34–7.23(m,7H),5.01(d,J=11.3Hz,1H),4.80(d,J=11.1Hz,1H),4.65(d,J=8.4Hz,1H),4.17(d,J=9.6Hz,1H),4.09(d,J=13.7Hz,2H),3.95(d,J=13.7Hz,2H),3.90(s,3H),3.77(t,J=9.4Hz,1H),3.57–3.53(m,4H),3.07(t,J=9.3Hz,1H),2.10(s,1H);13C NMR(126MHz,CDCl3)δ167.0,143.5,139.9,138.9,130.0,129.7,129.1,128.6,128.3,127.8,127.5,127.0,104.1,80.9,77.3,76.0,74.0,63.1,56.6,55.2,52.2;HRMS(ESI)m/z calcd forC35H37O6NNa[M+Na]+590.2513,found 590.2520.
实施例9
4-((2R,3R,4S,5R,6R)-5-(苄氧基)-3-羟基-6-甲氧基-4-((三异丙基甲硅烷基)氧基)四氢-2H-吡喃-2-基)苯甲酸甲酯的合成
参照实施例1所述方法,除了采用(2R,3S,4S,5R,6R)-5-(苄氧基)-6-甲氧基-2-(三丁基甲锡基)-4-((三异丙基甲硅烷基)氧基)四氢-2H-吡喃-3-醇(139.90mg,0.200mmol)为底物,得到目标产物41.1mg,产率为75%。
目标产物4-((2R,3R,4S,5R,6R)-5-(苄氧基)-3-羟基-6-甲氧基-4-((三异丙基甲硅烷基)氧基)四氢-2H-吡喃-2-基)苯甲酸甲酯的表征数据: 1H NMR(500MHz,CDCl3)δ8.05(d,J=8.4Hz,2H),7.54(d,J=8.4Hz,2H),7.36–7.27(m,5H),5.04(d,J=11.3Hz,1H),4.64(d,J=11.1Hz,1H),4.45(d,J=7.6Hz,1H),4.26(d,J=9.6Hz,1H),3.91(s,3H),3.88(t,J=8.7Hz,1H),3.51–3.47(m,4H),3.39(dd,J=8.9,7.8Hz,1H),2.11(d,J=3.1Hz,1H),1.15–1.02(m,21H);13C NMR(126MHz,CDCl3)δ167.0,143.6,139.2,130.1,129.8,128.2,127.5,127.4(2),105.6,82.6,77.8,77.0,76.6,74.2,57.3,52.3,18.4,18.3,13.0;HRMS(ESI)m/z calcd forC30H44O7SiNa[M+Na]+567.2749,found 567.2759.
实施例10
4-((2R,3R,4S,5R,6R)-5-(苄氧基)-6-甲氧基-3,4-双(萘-2-基甲氧基)四氢-2H-吡喃-2-基)苯甲酸甲酯的合成
参照实施例1所述方法,除了采用((2R,3S,4R,5R,6R)-5-(苄氧基)-6-甲氧基-3,4-双(萘-2-基甲氧基)四氢-2H-吡喃-2-基)三丁基锡烷(164.7mg,0.200mmol)为底物,得到目标产物59.6mg,产率为89%。
目标产物4-((2R,3R,4S,5R,6R)-5-(苄氧基)-6-甲氧基-3,4-双(萘-2-基甲氧基)四氢-2H-吡喃-2-基)苯甲酸甲酯的表征数据: 1H NMR(500MHz,CDCl3)δ8.06(d,J=8.2Hz,2H),7.86–7.74(m,5H),7.65–7.58(m,4H),7.51–7.43(m,7H),7.37–7.31(m,4H),7.03(d,J=8.4Hz,1H),5.17(d,J=11.3Hz,1H),5.07–5.03(m,2H),4.85(d,J=11.0Hz,1H),4.64(d,J=10.7Hz,1H),4.55(d,J=7.8Hz,1H),4.39(d,J=9.5Hz,1H),4.09(d,J=10.7Hz,1H),3.96(s,3H),3.89(t,J=9.1Hz,1H),3.68(t,J=8.5Hz,1H),3.64–3.60(m,4H);13C NMR(126MHz,CDCl3)δ166.9,143.8,138.6,136.1,135.0,133.4,133.2,133.1,133.0,130.1,129.7,128.5,128.2(2),128.1,128.0(2),127.8(2),127.7(2),127.1,126.6,126.1(3),126.0(2),125.9,105.1,84.4,83.6,82.4,77.0,76.0,75.2,75.0,57.5,52.2;HRMS(ESI)m/z calcd for C43H40O7Na[M+Na]+691.2666,found691.2668.
实施例11
4-((2R,3S,4S,5R,6R)-5-(苄氧基)-3,4-二羟基-6-甲氧基四氢-2H-吡喃-2-基)苯甲酸甲酯的合成
参照实施例1所述方法,除了采用(2R,3S,4S,5R,6R)-5-(苄氧基)-6-甲氧基-2-(三丁基甲锡烷基)四氢-2H-吡喃-3,4-二醇(108.7mg,0.200mmol)为底物,得到目标产物20.8mg,产率为54%。
目标产物4-((2R,3S,4S,5R,6R)-5-(苄氧基)-3,4-二羟基-6-甲氧基四氢-2H-吡喃-2-基)苯甲酸甲酯的表征数据: 1H NMR(500MHz,CDCl3)δ8.04(d,J=8.4Hz,2H),7.50(d,J=8.4Hz,2H),7.39–7.30(m,5H),4.98(d,J=11.4Hz,1H),4.69(d,J=11.4Hz,1H),4.47(d,J=7.8Hz,1H),4.25(d,J=9.5Hz,1H),3.91(s,3H),3.67(t,J=9.2Hz,1H),3.55(s,3H),3.48(t,J=9.2Hz,1H),3.36(t,J=8.5Hz,1H),2.79(s,1H),2.48(s,1H);13C NMR(126MHz,CDCl3)δ167.0,143.1,138.4,130.2,129.8,128.7,128.3,128.1,127.5,104.9,81.1,77.3,76.0,74.9,74.5,57.4,52.3;HRMS(ESI)m/z calcdfor C21H24O7Na[M+Na]+411.1414,found 411.1418.
实施例12
甲基4-((2R,3R,4S,5R,6R)-4,5-双(苄氧基)-3-(((2R,3S,4R,5R,6R)-4,5-双(苄氧基)-6-((苄氧基)甲基)-3-羟基四氢-2H-吡喃-2-基)氧基)-6-甲氧基四氢-2H-吡喃-2-基)苯甲酸酯的合成
参照实施例1所述方法,除了采用(2R,3S,4R,5R,6R)-4,5-双(苄氧基)-6-((苄氧基)甲基)-2-(((2R,3S,4R,5R,6R)-4,5-双(苄氧基)-6-甲氧基-2-(三丁基甲锡烷基)四氢-2H-吡喃-3-基)氧基)四氢-2H-吡喃-3-醇(213.2mg,0.200mmol)为底物,得到目标产物46.6mg,产率为51%。
目标产物甲基4-((2R,3R,4S,5R,6R)-4,5-双(苄氧基)-3-(((2R,3S,4R,5R,6R)-4,5-双(苄氧基)-6-((苄氧基)甲基)-3-羟基四氢-2H-吡喃-2-基)氧基)-6-甲氧基四氢-2H-吡喃-2-基)苯甲酸酯的表征数据: 1H NMR(500MHz,CDCl3)δ7.99(d,J=8.2Hz,2H),7.44(d,J=8.2Hz,2H),7.39–7.22(m,23H),7.09(d,J=7.3Hz,2H),5.37(s,1H),4.99–4.97(m,2H),4.75(d,J=10.8Hz,1H),4.69–4.64(m,2H),4.60(s,2H),4.51–4.47(m,2H),4.33(d,J=11.4Hz,1H),4.24(d,J=12.2Hz,1H),4.20(d,J=9.5Hz,1H),3.85–3.82(m,4H),3.75–3.68(m,3H),3.60(t,J=8.5Hz,1H),3.55(s,3H),3.46(dd,J=9.3,3.4Hz,1H),3.07(dd,J=11.0,3.1Hz,1H),2.78(d,J=10.7Hz,1H),1.97(br s,1H),1.84(d,J=9.8Hz,1H);13C NMR(126MHz,CDCl3)δ166.6,143.5,139.0,138.4,138.2(2),138.0,130.3,129.9,128.6(2),128.5,128.4,128.3(2),128.2,128.0,127.9(3),127.5,127.3(2),105.2,99.9,84.7,82.7,79.3,77.8,77.1,75.7,74.9,74.5,73.5(2),71.9,71.1,68.7,68.0,57.4,52.2;HRMS(ESI)m/z calcd for C55H58O12Na[M+Na]+933.3820,found933.3837.
实施例13
(2R,3R,4S,5S,6R)-2-(乙酰氧基甲基)-6-(((2R,3R,4S,5R,6R)-4,5-双(苄氧基)-6-甲氧基-2-(4-(甲氧基羰基)苯基)四氢-2H-吡喃-3-基)氧基)四氢-2H-吡喃-3,4,5-三乙酸三酯的合成
参照实施例1所述方法,除了采用(2R,3R,4S,5S,6R)-2-(乙酰氧基甲基)-6-(((2R,3S,4R,5R,6R)-4,5-双(苄氧基)-6-甲氧基-2-(三丁基甲锡烷基)四氢-2H-吡喃-3-基)氧基)四氢-2H-吡喃-3,4,5-三乙酸三酯(192.7mg,0.200mmol)为底物,得到目标产物72.4mg,产率为90%。
目标产物(2R,3R,4S,5S,6R)-2-(乙酰氧基甲基)-6-(((2R,3R,4S,5R,6R)-4,5-双(苄氧基)-6-甲氧基-2-(4-(甲氧基羰基)苯基)四氢-2H-吡喃-3-基)氧基)四氢-2H-吡喃-3,4,5-三乙酸三酯的表征数据: 1H NMR(500MHz,CDCl3)δ8.07(d,J=8.4Hz,2H),7.55(d,J=8.4Hz,2H),7.36–7.27(m,5H),7.25–7.23(m,3H),7.17–7.15(m,2H),5.34(d,J=1.8Hz,1H),5.19(dd,J=3.1,1.8Hz,1H),5.01–4.90(m,4H),4.73(d,J=11.0Hz,1H),4.59(d,J=11.0Hz,1H),4.50(d,J=7.8Hz,1H),4.32(d,J=9.5Hz,1H),3.90(s,3H),3.80(t,J=9.0Hz,1H),3.71(t,J=9.2Hz,1H),3.61–3.54(m,5H),3.33(dd,J=12.4,2.5Hz,1H),2.01(s,3H),1.95(s,3H),1.94(s,3H),1.93(s,3H),1.66–1.63(m,1H);13C NMR(126MHz,CDCl3)δ170.5,170.2,169.8,169.6,166.6,143.8,138.2,137.9,130.4,130.1,128.6,128.4,128.2,127.9(2),127.7,105.2,97.0,84.8,82.5,76.5,76.4,75.5,74.8,69.1,68.8,67.9,65.0,61.7,57.5,52.3,20.8(3),20.4;HRMS(ESI)m/zcalcdfor C42H48O16Na[M+Na]+831.2835,found 831.2848.
实施例14
(2R,3R,4S,5R,6R)-3,4,5-三(苄氧基)-2-甲氧基-6-(4-甲氧基苯基)四氢-2H-吡喃的合成
参照实施例1所述方法,除了采用三丁基((2R,3S,4R,5R,6R)-3,4,5-三(苄氧基)-6-甲氧基四氢-2H-吡喃-2-基)锡烷(145mg,0.200mmol),4-溴苯甲醚(18.7mg,0.100mmol)为底物,得到目标产物50.3mg,产率为93%。
目标产物(2R,3R,4S,5R,6R)-3,4,5-三(苄氧基)-2-甲氧基-6-(4-甲氧基苯基)四氢-2H-吡喃的表征数据: 1H NMR(400MHz,CDCl3)δ7.44–7.30(m,12H),7.26–7.23(m,3H),7.00–6.95(m,4H),5.00(d,J=11.1Hz,1H),4.96(d,J=10.8Hz,1H),4.88(d,J=10.8Hz,1H),4.81(d,J=11.0Hz,1H),4.49(d,J=7.8Hz,1H),4.44(d,J=10.2Hz,1H),4.25(d,J=9.6Hz,1H),3.89–3.86(m,4H),3.77(t,J=9.1Hz,1H),3.62–3.58(m,4H),3.53(t,J=9.3Hz,1H);13C NMR(101MHz,CDCl3)δ159.7,138.8,138.7,137.8,130.9,128.9,128.5(2),128.3(2),128.2,128.0,127.8(2),127.7,113.8,105.0,84.3,84.1,82.5,77.2,76.0,75.1,75.0,57.4,55.4;HRMS(ESI)m/z calcd for C34H36O6Na[M+Na]+563.2404,found 563.2411.
实施例15
4-((2R,3R,4S,5R,6R)-3,4,5-三(苄氧基)-6-甲氧基四氢-2H-吡喃-2-基)苯甲酸甲酯的合成
参照实施例1所述方法,除了采用三丁基((2R,3S,4R,5R,6R)-3,4,5-三(苄氧基)-6-甲氧基四氢-2H-吡喃-2-基)锡烷(145mg,0.200mmol)为底物,得到目标产物55.7mg,产率为98%。
目标产物4-((2R,3R,4S,5R,6R)-3,4,5-三(苄氧基)-6-甲氧基四氢-2H-吡喃-2-基)苯甲酸甲酯的表征数据: 1H NMR(400MHz,CDCl3)δ8.08(d,J=8.2Hz,2H),7.57(d,J=8.1Hz,2H),7.42–7.30(m,10H),7.24–7.19(m,3H),6.95–6.93(m,2H),5.00–4.95(m,2H),4.87(d,J=10.9Hz,1H),4.79(d,J=11.0Hz,1H),4.49(d,J=7.8Hz,1H),4.46(d,J=10.3Hz,1H),4.34(d,J=9.5Hz,1H),3.96(s,3H),3.83(d,J=10.3Hz,1H),3.78(t,J=9.0Hz,1H),3.62–3.57(m,4H),3.50(t,J=9.3Hz,1H);13C NMR(101MHz,CDCl3)δ167.0,143.8,138.6,138.5,137.4,130.1,129.7,128.5,128.4,128.3,128.2,128.0,127.9,127.8(2),127.7,105.1,84.4,83.6,82.4,76.9,76.0,75.2,75.0,57.5,52.3;HRMS(ESI)m/z calcd for C35H36O7Na[M+Na]+591.2353,found 591.2364.
实施例16
(4-((2R,3R,4S,5R,6R)-3,4,5-三(苄氧基)-6-甲氧基四氢-2H-吡喃-2-基)苯基)甲醇的合成
参照实施例1所述方法,除了采用三丁基((2R,3S,4R,5R,6R)-3,4,5-三(苄氧基)-6-甲氧基四氢-2H-吡喃-2-基)锡烷(145mg,0.200mmol),4-溴苄醇(18.7mg,0.100mmol)为底物,得到目标产物49.6mg,产率为92%。
目标产物(4-((2R,3R,4S,5R,6R)-3,4,5-三(苄氧基)-6-甲氧基四氢-2H-吡喃-2-基)苯基)甲醇的表征数据: 1H NMR(400MHz,CDCl3)δ7.48(d,J=8.1Hz,2H),7.39–7.29(m,12H),7.22–7.18(m,3H),6.95–6.92(m,2H),4.96(d,J=11.0Hz,1H),4.92(d,J=10.9Hz,1H),4.83(d,J=10.9Hz,1H),4.77(d,J=11.0Hz,1H),4.73(s,2H),4.46(d,J=7.7Hz,1H),4.41(d,J=10.4Hz,1H),4.26(d,J=9.5Hz,1H),3.83(d,J=10.4Hz,1H),3.74(t,J=9.1Hz,1H),3.59–3.54(m,4H),3.51(t,J=9.3Hz,1H);13CNMR(101MHz,CDCl3)δ141.2,138.7,138.6,138.1,137.7,128.5(2),128.3(2),128.2,128.0,127.9,127.8,127.7,126.9,105.0,84.3,83.9,82.5,77.2,76.0,75.0(2),65.0,57.4;HRMS(ESI)m/z calcd for C34H36O6Na[M+Na]+563.2404,found563.2407.
实施例17
(2R,3R,4S,5R,6R)-3,4,5-三(苄氧基)-2-甲氧基-6-(邻甲苯基)四氢-2H-吡喃的合成
参照实施例1所述方法,除了采用三丁基((2R,3S,4R,5R,6R)-3,4,5-三(苄氧基)-6-甲氧基四氢-2H-吡喃-2-基)锡烷(145mg,0.200mmol),2-溴甲苯(17.1mg,0.100mmol)为底物,得到目标产物41.8mg,产率为80%。
目标产物(2R,3R,4S,5R,6R)-3,4,5-三(苄氧基)-2-甲氧基-6-(邻甲苯基)四氢-2H-吡喃的表征数据: 1H NMR(400MHz,CDCl3)δ7.53–7.50(m,1H),7.39–7.29(m,10H),7.25–7.23(m,2H),7.20–7.16(m,4H),6.91–6.88(m,2H),4.97(d,J=11.1Hz,1H),4.92(d,J=10.8Hz,1H),4.85(d,J=10.9Hz,1H),4.78(d,J=11.1Hz,1H),4.57(d,J=9.5Hz,1H),4.47(d,J=7.7Hz,1H),4.38(d,J=10.4Hz,1H),3.81(d,J=10.4Hz,1H),3.75(t,J=9.1Hz,1H),3.62(t,J=9.2Hz,1H),3.59–3.56(m,4H),2.39(s,3H);13C NMR(101MHz,CDCl3)δ138.9,138.8,138.0,137.4,136.7,130.4,128.5,128.3(2),128.2,128.1,128.0,127.7(2),127.4,126.4,105.3,84.6(2),82.7,76.0,75.1,74.9,73.6,57.4,20.0;HRMS(ESI)m/z calcd for C34H36O5Na[M+Na]+547.2455,found 547.2457.
实施例18
(2R,3R,4S,5R,6R)-4,5-双(苄氧基)-2-(1H-茚-2-基)-6-甲氧基四氢-2H-吡喃-3-醇的合成
参照实施例1所述方法,除了采用2-溴化茚(19.5mg,0.100mmol)为底物,得到目标产物22.7mg,产率为50%。
目标产物(2R,3R,4S,5R,6R)-4,5-双(苄氧基)-2-(1H-茚-2-基)-6-甲氧基四氢-2H-吡喃-3-醇的表征数据: 1H NMR(400MHz,CDCl3)δ7.46–7.27(m,13H),7.21–7.17(m,1H),6.92(s,1H),5.00–4.97(m,2H),4.77(d,J=11.5Hz,2H),4.47(d,J=7.3Hz,1H),4.21(d,J=9.2Hz,1H),3.65–3.47(m,8H),2.15(d,J=2.3Hz,1H);13C NMR(101MHz,CDCl3)δ145.0,144.2,143.5,138.6(2),130.5,128.7,128.5,128.3,128.1,128.0,127.9,126.5,125.0,123.9,121.3,105.0,84.1,82.1,75.5,74.8,74.5,73.5,57.3,38.2;HRMS(ESI)m/z calcd for C29H30O5Na[M+Na]+481.1985,found 481.1991.
实施例19
甲基((S)-2-((叔丁氧基羰基)氨基)-3-(4-((2R,3R,4S,5R,6R)-3,4,5-三(苄氧基)-6-甲氧基四氢-2H-吡喃-2-基)苯基)丙酰基)-L-苯丙氨酸酯的合成
参照实施例1所述方法,除了采用三丁基((2R,3S,4R,5R,6R)-3,4,5-三(苄氧基)-6-甲氧基四氢-2H-吡喃-2-基)锡烷(145mg,0.200mmol),((S)-3-(4-溴苯基)-2-((叔丁氧基羰基)氨基)丙酰基)-L-苯丙氨酸甲酯(50.5mg,0.100mmol)为底物,得到目标产物76.3mg,产率为89%。
目标产物甲基((S)-2-((叔丁氧基羰基)氨基)-3-(4-((2R,3R,4S,5R,6R)-3,4,5-三(苄氧基)-6-甲氧基四氢-2H-吡喃-2-基)苯基)丙酰基)-L-苯丙氨酸酯的表征数据: 1H NMR(400MHz,CDCl3)δ7.43–7.27(m,14H),7.25–7.20(m,6H),7.03–7.01(m,2H),6.96–6.93(m,2H),6.41(d,J=7.6Hz,1H),4.99–4.92(m,3H),4.87–4.77(m,3H),4.46(d,J=7.8Hz,1H),4.41–4.38(m,2H),4.25(d,J=9.5Hz,1H),3.82–3.73(m,2H),3.69(s,3H),3.59–3.47(m,5H),3.17–3.00(m,4H),1.39(s,9H);13C NMR(101MHz,CDCl3)δ171.5,170.8,155.4,138.7,138.6,137.7,137.5,136.7,135.7,129.4,129.3,128.7,128.5,128.4,128.3(2),128.2,128.0(2),127.8(2),127.7,127.2,105.0,84.3,83.9,82.5,80.3,77.2,76.0,75.0,74.9,57.3,55.6,53.4,52.4,38.0,37.9,28.3;HRMS(ESI)m/z calcd for C51H58O10N2Na[M+Na]+881.3984,found 881.3982.
实施例20
甲基2-(5-甲氧基-2-甲基-1-(4-((2R,3R,4S,5R,6R)-3,4,5-三(苄氧基)-6-甲氧基四氢-2H-吡喃-2)-基)苯甲酰基)-1H-吲哚-3-基)乙酸酯的合成
参照实施例1所述方法,除了采用三丁基((2R,3S,4R,5R,6R)-3,4,5-三(苄氧基)-6-甲氧基四氢-2H-吡喃-2-基)锡烷(145mg,0.200mmol),2-(1-(4-溴苯甲酰基)-5-甲氧基-2-甲基-1H-吲哚-3-基)乙酸甲酯(41.6mg,0.100mmol)为底物,得到目标产物72.1mg,产率为94%。
目标产物甲基2-(5-甲氧基-2-甲基-1-(4-((2R,3R,4S,5R,6R)-3,4,5-三(苄氧基)-6-甲氧基四氢-2H-吡喃-2)-基)苯甲酰基)-1H-吲哚-3-基)乙酸酯的表征数据: 1H NMR(400MHz,CDCl3)δ7.76(d,J=8.3Hz,2H),7.64(d,J=8.3Hz,2H),7.42–7.30(m,10H),7.25–7.23(m,3H),7.03–6.98(m,3H),6.91(d,J=9.0Hz,1H),6.54(dd,J=9.0,2.6Hz,1H),5.01–4.96(m,2H),4.87(d,J=11.0Hz,1H),4.80(d,J=11.1Hz,1H),4.56–4.52(m,2H),4.39(d,J=9.5Hz,1H),3.97(d,J=10.4Hz,1H),3.83–3.79(m,4H),3.73(s,3H),3.69(s,2H),3.64–3.60(m,4H),3.54(t,J=9.2Hz,1H),2.41(s,3H);13C NMR(101MHz,CDCl3)δ171.5,169.2,156.0,143.9,138.6(2),137.5,136.1,135.6,131.1,130.7,129.8,128.5(2),128.2,128.1,128.0,127.9,127.8,127.7,115.1,112.3,111.5,105.1,101.5,84.4,83.6,82.4,76.8,76.0,75.2,75.0,57.5,55.8,52.2,30.3,13.4;HRMS(ESI)m/z calcd for C47H47O9NNa[M+Na]+792.3143,found 792.3143.
对实施例1-20中底物、目标产物以及产率进行表格列举,具体如下表2所示:
表2实施例1-20目标产物以及产率对照表
/>
/>
由上表2可知,以商业可购买的三(二亚苄基丙酮)二钯为钯催化剂,Jackiephos为配体,氯化亚铜和氟化银为添加剂,将各类非经典糖基锡烷为底物与芳基或烯基卤代物发生Stille偶联反应,即可以立体专一性地合成得到各类非经典C-糖苷。该合成方法具有广泛的底物范围、出色的官能团耐受性以及始终如一的高化学选择性和立体特异性,并且与各种糖型的非经典糖基锡烷烷、带有裸露羟基的非经典糖基烷烷、芳基或烯基卤代物以及生物活性分子卤代物相容,是一种条件温和、操作简单的非经典芳基或烯基C-糖苷的通用合成方法。
针对实施例1-20中4,5-反式构型的非经典糖基锡烷,通用合成方法包括:
将4-脱氧戊烯苷(1.0当量)溶解在由二氯甲烷、丙酮和饱和碳酸氢钠组成的混合溶液中,冰浴下剧烈搅拌混合均匀,在15min内向体系中逐滴加入溶有过氧单磺酸钾(4.0当量)的水溶液,将所得反应混合物在0℃下搅拌反应0.5h后,再在室温下搅拌反应2h,使用二氯甲烷萃取,收集有机相,干燥,抽滤,浓缩,得到环氧化合物;将所得环氧化合物不经分离,溶解于无水且脱气的四氢呋喃中,冷却至-15℃,随后向体系中加入溶有三正丁基锡甲基镁(1.5当量)的四氢呋喃溶液,将所得反应混合物在-15℃下搅拌1.5h后,升温至-10℃并继续搅拌反应1h;向反应体系中加入水淬灭反应,抽滤,使用二氯甲烷萃取,收集有机相,干燥,抽滤,浓缩,经硅胶柱层析,即得到所述非经典糖基锡烷。
下面列举(2R,3S,4S,5R,6R)-4,5-双(苄氧基)-6-甲氧基-2-(三丁基甲锡烷基)四氢-2H-吡喃-3-醇非经典糖基锡烷的具体合成方法:
(2R,3S,4S,5R,6R)-4,5-双(苄氧基)-6-甲氧基-2-(三丁基甲锡烷基)四氢-2H-吡喃-3-醇的合成
室温下,向1L的圆底烧瓶中加入(2R,3R,4S)-3,4-双(苄氧基)-2-甲氧基-3,4-二氢-2H-吡喃(5.03g,15.4mmol),二氯甲烷(128mL),饱和碳酸氢钠溶液(214mL),丙酮(26mL),冰浴下剧烈搅拌混合均匀,再将过氧单磺酸钾(37.9g,61.7mmol)溶解于水(150mL)中,将所得水溶液在15min内逐滴加入前述反应体系中,将所得反应混合物在0℃下搅拌反应0.5h,然后在室温下搅拌反应2h,结束后使用二氯甲烷萃取(2×50mL),收集有机相,使用无水硫酸钠干燥,抽滤,浓缩,得到环氧化合物;将所得环氧化合物不经分离,溶解于无水且脱气的四氢呋喃(30mL)中,冷却至-15℃,随后向所得反应体系中加入溶有三正丁基锡甲基镁(7.62g,23.1mmol)的四氢呋喃溶液,将所得反应混合物在-15℃下搅拌1.5h后,升温至-10℃并继续搅拌反应1h,结束后向反应体系中加入水(30mL)淬灭反应,抽滤,使用二氯甲烷(3×30mL)萃取,收集有机相,使用无水硫酸钠干燥,抽滤,浓缩得到粗品,并进一步使用柱层析分离纯化,洗脱剂选用石油醚和乙酸乙酯=15:1,得到产物2.61g,产率为27%。
产物(2R,3S,4S,5R,6R)-4,5-双(苄氧基)-6-甲氧基-2-(三丁基甲锡烷基)四氢-2H-吡喃-3-醇的表征数据: 1H NMR(400MHz,CDCl3)δ7.39–7.27(m,10H),4.99–4.93(m,2H),4.71–4.64(m,2H),4.15(d,J=7.3Hz,1H),3.70(ddd,J=11.0,8.2,2.8Hz,1H),3.54(s,3H),3.43–3.30(m,3H),2.15(d,J=2.8Hz,1H),1.56–1.44(m,6H),1.36–1.26(m,6H),1.04–0.87(m,15H);13C NMR(101MHz,CDCl3)δ138.8,138.7,128.7,128.5,128.3,128.2,128.0,127.8,108.2,86.4,82.6,75.5,74.7,73.5,69.9,57.0,29.2,27.6,13.9,9.0;HRMS(ESI)m/zcalcd for C32H50O5SnNa[M+Na]+657.2572,found657.2582.
针对实施例1-20中4,5-顺式构型的非经典糖基锡烷,通用合成方法是在环氧开环步骤中使用溴化锌和三正丁基锡甲基锂代替三正丁基锡甲基镁作为反应物。
下面列举(2S,3S,4S,5R,6R)-4,5-双(苄氧基)-6-甲氧基-2-(三丁基甲锡烷基)四氢-2H-吡喃-3-醇非经典糖基锡烷的具体合成方法:
室温下,向250mL的圆底烧瓶中加入(2R,3R,4S)-3,4-双(苄氧基)-2-甲氧基-3,4-二氢-2H-吡喃(1.41g,4.33mmol),二氯甲烷(36mL),饱和碳酸氢钠溶液(60mL),丙酮(7.2mL),冰浴下剧烈搅拌混合均匀,再将过氧单磺酸钾(10.6g,17.2mmol)溶解于水(42mL)中,将所得水溶液在15min内逐滴加入前述反应体系中,将所得反应混合物在0℃下搅拌反应0.5h,然后在室温下搅拌反应2h,结束后使用二氯甲烷萃取(2×30mL),收集有机相,使用无水硫酸钠干燥,抽滤,浓缩,得到环氧化合物;在氮气保护下,向火焰干燥的100mL圆底烧瓶中加入溴化锌(6.83g,30.3mmol)和无水四氢呋喃(21mL),冷却至-78℃,随后向所得反应体系中加入溶有三正丁基锡甲基锂(7.72g,26.0mmol)的四氢呋喃溶液,将反应体系升温至0℃并在0℃下搅拌30min,然后再次冷却至-78℃,将溶有上述环氧化合物的无水四氢呋喃溶液(11mL)在-78℃下逐滴滴加到上述反应体系中,缓慢升温至-30℃,然后在-30℃下搅拌反应16h,结束后向反应体系中加入水(10mL)淬灭反应,抽滤,使用二氯甲烷(3×30mL)萃取,收集有机相,使用无水硫酸钠干燥,抽滤,浓缩得到粗品,并进一步使用柱层析分离纯化,洗脱剂选用石油醚和乙酸乙酯=12:1,得到产物274.3mg,产率为10%。
产物(2S,3S,4S,5R,6R)-4,5-双(苄氧基)-6-甲氧基-2-(三丁基甲锡烷基)四氢-2H-吡喃-3-醇的表征数据: 1H NMR(500MHz,CDCl3)δ7.36–7.27(m,10H),4.72(d,J=12.2Hz,1H),4.62–4.53(m,5H),3.63–3.55(m,2H),3.47–3.45(m,1H),3.41(s,3H),3.04(d,J=8.9Hz,1H),1.58–1.46(m,6H),1.35–1.28(m,6H),0.97–0.88(m,15H);13C NMR(126MHz,CDCl3)δ138.5,137.8,128.6(2),128.0,127.9(2),101.3,76.6,76.1,72.9,72.8,71.7,67.2,55.7,29.3,27.6,13.9,9.7;HRMS(ESI)m/z calcd forC32H50O5SnNa[M+Na]+657.2572,found657.2577.
针对上述实施例方法合成得到的非经典C-糖苷——甘露糖基-吲哚美辛衍生物进行生物学评估,具体过程如下:
(1)非经典甘露糖基-吲哚美辛衍生物2-(5-甲氧基-2-甲基-1-(4-((2R,3S,4S,5S,6S)-3,4,5-三羟基-6-甲氧基四氢-2H-吡喃-2-基)苯甲酰基)-1H-吲哚-3-基)乙酸的合成:
室温下,在干燥、氮气反复置换3次的4mL小瓶子中依次加入(2R,3S,4S,5R,6R)-4,5-双(苄氧基)-6-甲氧基-2-(三丁基甲锡烷基)四氢-2H-吡喃-3-醇(126.7mg,0.200mmol),1-(4-溴苯甲酰基)-5-甲氧基-2-甲基-1H-吲哚-3-乙酸甲酯(41.6mg,0.100mmol)、三(二亚苄基丙酮)二钯(2.30mg,0.0025mmol)、JackiePhos(8.00mg,0.010mmol)、氯化亚铜(9.90mg,0.100mmol)、氟化银(25.4mg,0.200mmol)以及1,4-二氧六环(1.0mL)和叔丁醇(1.0mL),在70℃下搅拌反应48h;反应结束后,冷却至室温,用硅藻土过滤,浓缩后得到粗品,并进一步使用柱层析分离纯化,洗脱剂选用石油醚和乙酸乙酯=3:1,得到非经典C-糖苷的中间体A36.7mg,产率为54%;
将上述非经典C-糖苷的中间体A(83.1mg,0.122mmol)溶解于四氢呋喃/异丙醇(3:1,2.4mL)中,向所得溶液中加入10% Pd/C(39.0mg,0.037mmol)和10% Pd(OH)2/C(25.8mg,0.037mmol),在50℃下搅拌反应13h,以脱去苄基保护基,反应结束后,冷却至室温,用硅藻土过滤,浓缩后得到粗品,并进一步使用柱层析分离纯化,洗脱剂选用二氯甲烷和乙酸乙酯=1:3,得到非经典C-糖苷的中间体化合物B 52.9mg,产率为87%;
在氮气下,向Schlenk管中加入上述非经典C-糖苷的中间体B(26.5mg,0.0530mmol),1,2-二氯乙烷(1.1mL)和三甲基氢氧化锡(28.8mg,0.159mmol),在80℃下加热反应4h,以实现酯基还原成羧基,反应结束后,冷却至室温,用硅藻土过滤,浓缩后得到粗品,并进一步使用柱层析分离纯化,洗脱剂选用二氯甲烷和甲醇=8:1,得到非经典甘露糖基-吲哚美辛衍生物的目标产物21.0mg,产率为82%。
目标产物非经典甘露糖基-吲哚美辛衍生物即2-(5-甲氧基-2-甲基-1-(4-((2R,3S,4S,5S,6S)-3,4,5-三羟基-6-甲氧基四氢-2H-吡喃-2-基)苯甲酰基)-1H-吲哚-3-基)乙酸的表征数据: 1H NMR(500MHz,CD3OD)δ7.67–7.64(m,4H),7.00(d,J=2.9Hz,1H),6.92(d,J=9.0Hz,1H),6.62(dd,J=9.0,2.7Hz,1H),4.77(s,1H),4.49(d,J=9.5Hz,1H),3.93(dd,J=3.4,1.5Hz,1H),3.83(dd,J=9.5,3.5Hz,1H),3.79(s,3H),3.75(t,J=9.5Hz,1H),3.66(s,2H),3.40(s,3H),2.30(s,3H);13C NMR(126MHz,CD3OD)δ171.0,157.4,146.2,136.8,136.5,132.4,132.2,130.4,129.6,115.9,112.5,103.3,102.4,75.8,73.1,72.6,72.1,56.1,55.5,49.9,31.2,13.5;HRMS(ESI)m/z calcd forC25H27O9NNa[M+Na]+508.1578,found 508.1587.
(2)经典甘露糖基-吲哚美辛衍生物2-(5-甲氧基-2-甲基-1-(4-((2R,3S,4R,5S,6R)-3,4,5-三羟基-6-(羟甲基)四氢-2H-吡喃-2-基)苯甲酰基)-1H-吲哚-3-基)乙酸的合成:
室温下,在干燥、氮气反复置换3次的4mL小瓶子中加入2,3,4,6-四-O-乙酰基-α-D-吡喃甘露糖基溴(123mg,0.300mmol),1-(4-溴苯甲酰基)-5-甲氧基-2-甲基-1H-吲哚-3-乙酸甲酯(41.6mg,0.100mmol),Hantzsch酯(76.0mg,0.300mmol)和MgCl2(19.0mg,0.200mmol);在另一个4mL小瓶子中加入NiBr2·DME(3.1mg,0.010mmol),dtbbpy(4.00mg,0.0150mmol),乙腈(2.0mL),将所得混合溶液转移至前一小瓶中,加入DIPEA(77.5mg,
0.600mmol),并用氮气吹扫所得混合物,在18W紫色LED灯照射下,在28℃下搅拌反应16h,反应结束后,用硅藻土过滤,浓缩后得到粗品,并进一步使用柱层析分离纯化,洗脱剂选用石油醚和乙酸乙酯=4:3,得到经典C-糖苷的中间体C 46.1mg,产率为69%;
在氮气下,向Schlenk管中加入上述经典C-糖苷的中间体C(148.9mg,0.223mmol),1,2-二氯乙烷(4.5mL)和三甲基氢氧化锡(604.9mg,3.35mmol),在80℃加热反应17h,反应结束后,冷却至室温,用硅藻土过滤,浓缩后得到粗品,并进一步使用柱层析分离纯化,洗脱剂选用二氯甲烷和甲醇=5:1,得到经典甘露糖基-吲哚美辛衍生物的目标产物43.1mg,产率为40%。
目标产物经典甘露糖基-吲哚美辛衍生物即2-(5-甲氧基-2-甲基-1-(4-((2R,3S,4R,5S,6R)-3,4,5-三羟基-6-(羟甲基)四氢-2H-吡喃-2-基)苯甲酰基)-1H-吲哚-3-基)乙酸的表征数据:=+29.4(c=0.50,MeOH);1H NMR(500MHz,CD3OD)δ7.70–7.65(m,4H),7.01(d,J=2.6Hz,1H),6.92(d,J=9.0Hz,1H),6.62(dd,J=9.0,2.4Hz,1H),5.04(d,J=4.6Hz,1H),4.39(dd,J=4.5,3.1Hz,1H),3.92(dd,J=11.9,6.9Hz,1H),3.85–3.80(m,2H),3.79(s,3H),3.64(dd,J=7.4,3.1Hz,1H),3.62(s,2H),3.60–3.56(m,1H),2.27(s,3H);13CNMR(126MHz,CD3OD)δ170.9,157.4,145.3,136.5,136.3,132.4(2),130.8,128.4,115.9,115.6,112.4,102.5,78.5,77.5,72.7,71.6,69.8,62.6,56.1,32.0,13.6;HRMS(ESI)m/zcalcd for C25H27O9NNa[M+Na]+508.1578,found508.1588.
(3)将上述合成的非经典甘露糖基-吲哚美辛衍生物与经典甘露糖基-吲哚美辛衍生物针对耻垢分枝杆菌wild type M.smegmatis MC2155的抗菌活性进行测试,将非经典和经典甘露糖基-吲哚美辛衍生物针对耻垢分枝杆菌最小抑菌浓度测试的具体实验步骤包括:
基于肉汤微量稀释测定法,通过测量最小抑菌浓度(MIC)对化合物进行抗菌活性测定;每孔加入100μL 7H9培养基(BD Biosciences),起始细胞密度为1-5×105CFU/ml耻垢分枝杆菌wild type M.smegmatis MC2155(Msm),然后加入20μL 0.1mg/ml刃天青溶液于96孔板中(YB-96U,悦益生物技术),然后加入100μL含有一系列稀释的最终浓度分别为0,1,2,4,8,16,32,64和128μg/ml受试化合物非经典甘露糖基-吲哚美辛衍生物、经典甘露糖基-吲哚美辛衍生物以及吲哚美辛的7H9培养基,利福平作为阳性对照,加入阴性对照、刃天青对照以及DMSO对照;在37℃恒温培养两天后,观察96孔板的变色,对MIC进行量化分析,刃天青的颜色从氧化状态的蓝色变为还原状态的粉红色,表明细菌生长,具体抗菌效果如下表3所示:
表3非经典和经典甘露糖基-吲哚美辛衍生物的抗菌活性对比
由上表3可知,通过对非经典甘露糖基-吲哚美辛衍生物和经典甘露糖基-吲哚美辛衍生物针对耻垢分枝杆菌株(M.smegmatis MC2 155)的抗菌活性进行了系统评估,可以确定不同取代位点糖修饰对吲哚美辛衍生物的生物活性影响。通过表1观察到,相比于C-1-糖修饰的经典甘露糖基-吲哚美辛衍生物在128μg/ml的浓度下未显示出可察觉的活性,C-5-糖修饰的非经典甘露糖基-吲哚美辛衍生物表现出显著的抗分枝杆菌活性,MIC(最小抑制浓度)为16μg/ml,与吲哚美辛活性相当(16μg/ml),这一结果表明非经典糖基化修饰在药物研发领域具有广阔的潜力,会是一个备受关注的新兴领域。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (10)

1.一种非经典C-糖苷的立体专一性合成方法,其特征在于,包括:以结构式I所示非经典糖基锡烷为亲核试剂,结构式II所示卤代烃为亲电试剂,进行Stille交叉偶联反应,得到结构式III所示非经典C-糖苷;
其中,R1为氢或烷基,R2为氢、羟基、烷基、烷氧基、烯基、芳基、酯羰基、氨基、NH-酰基、叠氮基、巯基、烷巯基或-OP,R3、R4为氢、羟基、氨基、糖基、NH-酰基、叠氮基、巯基、烷巯基或-OP,R5为氢、烷基或P,P为糖基上羟基保护基,R为烯基或芳基,X为卤素。
2.根据权利要求1所述非经典C-糖苷的立体专一性合成方法,其特征在于,P为Bn、Ac、TBS、TIPS、Piv、Bz、Boc、TBDPS、TMS、TES、TBDMS、PMB、Tr、MMT、DMT、MOM、BOM、MTM、THP、MEM、PMBOM、Cbz或Fmoc;R1为Bu;X为Br或I。
3.根据权利要求1或2所述非经典C-糖苷的立体专一性合成方法,其特征在于,结构式I所示非经典糖基锡烷或结构式III所示非经典C-糖苷的糖环上C-1位取代基为烷氧基,优选为β或α-甲氧基,C-5位取代基与C-4位取代基为反式或顺式构型。
4.根据权利要求1-3任一项所述非经典C-糖苷的立体专一性合成方法,其特征在于,所述Stille交叉偶联反应是在钯催化剂、磷配体、亚铜盐和溶剂的反应条件下进行;
优选地,所述钯催化剂为PdCl2、Pd(OAc)2、Pd(TFA)2、Pd2(Dba)3、Pd(PPh3)4、Pd(acac)2、(Ph3P)2PdCl2或烯丙基氯化钯二聚物中的至少一种,优选为Pd2(Dba)3
所述磷配体为PPh3、PCy3、Dppp、Dppb、Dppf、Binap、Jackiephos、Xantphos、Xu-Phos、X-Phos或tBuBrettphos中的至少一种,优选为Jackiephos;
所述亚铜盐为CuI、CuCl、CuBr、CuTc或(CuOTf)2·PhCH3中的至少一种,优选为CuCl;
所述溶剂为1,4-二氧六环、叔丁醇、N,N-二甲基甲酰胺、甲苯、二乙二醇二甲醚或水中的至少一种,优选为体积比1:1的1,4-二氧六环与叔丁醇的混合溶剂;
优选地,所述反应条件还包括银盐;
优选地,所述银盐为AgNO3、Ag2CO3、Ag2O、AgF或Ag2SO4中的至少一种,优选为AgF。
5.根据权利要求4所述非经典C-糖苷的立体专一性合成方法,其特征在于,结构式I所示非经典糖基锡烷与结构式II所示卤代烃的摩尔比为0.5-3:1;优选为2:1;
所述钯催化剂与结构式II所示卤代烃的摩尔比为0.01-0.05:1,优选为0.025:1;
所述磷配体与结构式II所示卤代烃的摩尔比为0.05-0.2:1,优选为0.1:1;
所述亚铜盐与结构式II所示卤代烃的摩尔比为0.5-2:1,优选为1:1;
所述银盐与结构式II所示卤代烃的摩尔比为1-3:1,优选为2:1。
6.根据权利要求1-5任一项所述非经典C-糖苷的立体专一性合成方法,其特征在于,所述Stille交叉偶联反应的温度为50-110℃,优选为70℃,时间为48-72h,优选为48h。
7.根据权利要求1-6任一项所述非经典C-糖苷的立体专一性合成方法,其特征在于,结构式I所示非经典糖基锡烷的合成方法包括:
以结构式Ⅳ所示糖烯为原料进行烯基氧化反应,得到结构式Ⅴ所示环氧化糖苷;再以结构式Ⅴ所示环氧化糖苷为亲电试剂,结构式Ⅵ所示烷基锡金属试剂为亲核试剂,进行环氧开环反应,之后再进行水解或羟基化保护反应,即得到结构式I所示非经典糖基锡烷;
其中,MX为金属、金属盐或烷基金属。
8.一种非经典C-糖苷,其特征在于,其是权利要求1-7任一项所述合成方法合成得到的非经典C-糖苷或该非经典C-糖苷的衍生物。
9.根据权利要求8所述的非经典C-糖苷,其特征在于,其为如下结构式所示非经典C-糖苷:
10.一种权利要求8或9所述的非经典C-糖苷在抑菌产品中的应用。
CN202311347581.1A 2023-10-17 2023-10-17 一种非经典c-糖苷及其立体专一性合成方法和应用 Pending CN117486955A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311347581.1A CN117486955A (zh) 2023-10-17 2023-10-17 一种非经典c-糖苷及其立体专一性合成方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311347581.1A CN117486955A (zh) 2023-10-17 2023-10-17 一种非经典c-糖苷及其立体专一性合成方法和应用

Publications (1)

Publication Number Publication Date
CN117486955A true CN117486955A (zh) 2024-02-02

Family

ID=89679127

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311347581.1A Pending CN117486955A (zh) 2023-10-17 2023-10-17 一种非经典c-糖苷及其立体专一性合成方法和应用

Country Status (1)

Country Link
CN (1) CN117486955A (zh)

Similar Documents

Publication Publication Date Title
WO2010078396A2 (en) Compounds, intermediates, and methods of preparing the same
CN113549042A (zh) 达格列净的制备方法
EP0401800A2 (en) Acylated derivatives of etoposide
KR840000678B1 (ko) 당유도체의 제조방법
IE841665L (en) Homoerythromycin a derivatives. sterile surgical needle having dark non-reflective surface.
Barros et al. Fast galloylation of a sugar moiety: preparation of three monogalloylsucroses as references for antioxidant activity. A method for the selective deprotection of tert-butyldiphenylsilyl ethers
CN117486955A (zh) 一种非经典c-糖苷及其立体专一性合成方法和应用
EP0304086B1 (en) 4'-deshydroxyepipodophyllotoxin glucosides and their use
Martinez et al. Carbohydrate derived bicyclic azetidin-3-ones as scaffolds for highly functionalized azetidines
EP0297594A2 (en) Novel 3',4'-dinitrogen substituted epipodophyllotoxin glucoside derivatives
Sarabia-García et al. Unstabilized diazo derivatives from carbohydrates. Application to the synthesis of 2-deamino-tunicamine and products related to C-disaccharides
KR100211417B1 (ko) L-탈로피라노시드 유도체 및 그의 제조방법
Angyal et al. 978. Cyclitols. Part XVI. Toluene-p-sulphonyl derivatives of myoinositol. Acetyl migration in anhydrous pyridine solution
EP0721456B1 (en) Anthracycline disaccharides, process for their preparation, and pharmaceutical compositions containing them
KR102486535B1 (ko) 화학적 합성에 의한 카나마이신 a로부터 카나마이신 x의 제조방법
JPH039919B2 (zh)
JP2007238502A (ja) トレハロース誘導体とその製造法
FR2699535A1 (fr) Dérivés de l'étoposide, leur procédé de préparation, leur utilisation à titre de médicament et leur utilisation pour la préparation d'un médicament destiné au traitement anticancéreux.
CA2319833A1 (en) Glycosidation of 4,5-epoxymorphinan-6-ols
CN116041407A (zh) 3-O-喹哪啶酸酯烯糖供体立体选择性地合成α-氧苷的方法
Kumar et al. Protecting group enabled stereocontrolled approach for rare-sugars talose/gulose via dual-ruthenium catalysis
JPH02122000A (ja) エライオフイリンおよびエライオフイリン誘導体の塩基性開裂生成物
JPS6152839B2 (zh)
Aslam et al. Chromatography Free Synthesis of Reversed N-Triazole Nucleosides Starting from α-D-Galactopyranose using 1, 3-Dipolar Cycloaddition Reactions.
CN117720610A (zh) 齐墩果酸甘露糖苷化合物及其在制备治疗抗糖尿病药物中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination