CN117445436A - 基于磁性颗粒感应加热的碳纤维复合材料快速固化方法 - Google Patents

基于磁性颗粒感应加热的碳纤维复合材料快速固化方法 Download PDF

Info

Publication number
CN117445436A
CN117445436A CN202311390813.1A CN202311390813A CN117445436A CN 117445436 A CN117445436 A CN 117445436A CN 202311390813 A CN202311390813 A CN 202311390813A CN 117445436 A CN117445436 A CN 117445436A
Authority
CN
China
Prior art keywords
carbon fiber
magnetic particle
laminated plate
epoxy resin
plate part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311390813.1A
Other languages
English (en)
Inventor
李毅超
孙澳
郝磊
胡麟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN202311390813.1A priority Critical patent/CN117445436A/zh
Publication of CN117445436A publication Critical patent/CN117445436A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/34Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation
    • B29C70/342Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation using isostatic pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/243Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0811Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using induction
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2463/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/01Magnetic additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Toxicology (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

本发明公开了一种基于磁性颗粒感应加热的碳纤维复合材料快速固化方法,包括以下步骤:S1、制备磁性颗粒增强树脂;S2、制备碳纤维层合板零件;S3、电磁加热碳纤维层合板零件。本发明采用上述一种基于磁性颗粒感应加热的碳纤维复合材料快速固化方法,加热速度快,加热范围仅限制在成型零件本身,对周围环境影响小,同时加热区域精准,可显著降低成型用时间、显著降低耗能。

Description

基于磁性颗粒感应加热的碳纤维复合材料快速固化方法
技术领域
本发明属于碳纤维复合材料成型技术领域,具体涉及一种基于磁性颗粒感应加热的碳纤维复合材料快速固化方法。
背景技术
目前碳纤维复合材料成型的工艺主要有热压罐成型、拉挤成型、真空袋烘箱成型。虽然以上三种成型方法具有广泛的适用性,但均存在一定局限性和缺陷。
1)热压罐成型
优点:热压罐固化工艺对固化零件的外型没有过多要求,大型零件与小型零件均可使用,温度以及外部压力等参数调控方式简单,生产的成品质量稳定。
缺陷:在制作零件时需要多次固化,耗时长耗能多;再加上热压罐本身的制作与维护昂贵,增加成型成本。大零件加热过程中会产生温度梯度,导致加热不均匀,碳纤维热固以后的模具残余应力,造成材料性能降低的现象。
2)拉挤成型
优点:成本较于热压罐成型低,生产周期短,产出零件质量稳定。
缺陷:由于拉挤的生产形式是将浸渍有液态树脂的碳纤维引入和穿过模具,并通过模具进行热固化,所以对生产的零件形状有要求,一般只适用于杆状、管状等具有一定横截面形状的成型产品。
3)真空袋烘箱成型
优点:成本低廉,可以对相对较大的零件成型加工。
缺陷:零件预浸料抽取真空后放置入烘箱升温固化,加热效果不均匀,真空抽取在烘箱持续加热过长中会受到干扰,生产的零件机械性能与质量较差,产出不稳定;生产时间与热压成型类似,周期长。
发明内容
本发明的目的在于提供一种基于磁性颗粒感应加热的碳纤维复合材料快速固化方法,加热速度快,加热范围仅限制在成型零件本身,对周围环境影响小,同时加热区域精准,可显著降低成型用时间、显著降低耗能。
为实现上述目的,本发明提供了一种基于磁性颗粒感应加热的碳纤维复合材料快速固化方法,包括以下步骤:
S1、制备磁性颗粒增强树脂,所述步骤S1包括如下步骤:
S11、称取定量环氧树脂胶A组分、环氧树脂胶B组分、锰锌铁氧体磁性颗粒材料;
S12、将称取的锰锌铁氧体磁性颗粒材料中加入无水乙醇,在常温环境下超声分散均匀,得到混合液;
S13、将步骤S12中得到的混合液真空抽滤、烘干,得到固体颗粒;
S14、将步骤S13中得到的固体颗粒反复研磨过筛,得到磁性纳米材料;
S15、将步骤S14中过筛后的磁性纳米材料均匀混合进环氧树脂胶A组分中;
S16、将环氧树脂胶B组分加入步骤S15中得到的材料中,常温环境下混合均匀,得到磁性颗粒增强树脂;
S17、将步骤S16制备完成的磁性颗粒增强树脂置入真空环境内充分去除树脂中的气泡;
S2、制备碳纤维层合板零件,所述步骤S2包括如下步骤:
S21、采用成型用的零件模具,在零件模具表面均匀涂覆脱模剂,然后将单向或平纹碳纤维布与步骤S1中得到的磁性颗粒增强树脂充分浸润制成碳纤维预浸料;
S22、将碳纤维预浸料按照设计的铺层角度层叠铺放于零件模具表面;碳纤维预浸料上方再依次覆盖脱模布、有孔分离膜、透气毡,得到碳纤维层合板零件,并用耐高温真空袋密封碳纤维层合板零件;
S23、将密封的耐高温真空袋从袋中开孔引出一条导管连接真空泵,对真空袋中的碳纤维层合板零件进行持续性不间断抽真空;
S3、电磁加热碳纤维层合板零件,所述步骤S3包括如下步骤:
S31、将步骤S2中密封的碳纤维层合板零件水平放置到高频感应加热机的多圈磁感应线圈中;
S32、调节高频感应加热机的磁场强度使碳纤维层合板零件主体稳定在70℃并加热4h;
S33、接着调节高频感应加热机的磁场强度使碳纤维层合板零件主体稳定在120℃加热1h;
S4、工艺完成后关闭高频感应加热机与真空泵,待碳纤维层合板零件冷却后脱模得到固化完好的碳纤维复合材料零件。
优选的,所述步骤S11中,按环氧树脂胶A组分:环氧树脂胶B组分=3:1的体积比例称取环氧树脂胶A组分、环氧树脂胶B组分;所述称取锰锌铁氧体磁性颗粒材料的质量占环氧树脂胶A组分、环氧树脂胶B组分总质量的13%。
优选的,所述步骤S21中,零件模具的材料为非金属材料。
优选的,所述步骤S31中,高频感应加热机的多圈磁感应线圈水平设置,多圈磁感应线圈轴向与碳纤维层合板零件长度方向平行一致。
优选的,所述步骤S3的整个过程中真空泵持续抽真空。
本发明与现有方法相比,具有以下优点:
1)本发明由于碳纤维复合材料原位加热,加热速度较一般加热工艺如热压罐工艺的对流与辐射的传统加热形式快,显著降低成型用时间;
2)本发明电磁加热工艺的加热范围仅限制在成型零件本身,对周围环境影响小,同时加热区域精准,可以显著降低耗能;
3)本发明电磁加热设备的架设根据成型零件不同的大小只需改变多圈磁感应线圈的大小,节省设备成本;
4)本发明的成型零件本体加热不会产生温度梯度,可以直接成型大型零件,同时显著提高零件力学性能;
5)本发明还可以应用于碳纤维复合材料间的粘接,可以将粘接区域水平放置于线圈中央或置于线圈上方,对粘接区域进行局部加热固化。
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。
附图说明
图1为本发明一种基于磁性颗粒感应加热的碳纤维复合材料快速固化方法实施例中步骤S3的正视图;
图2为本发明一种基于磁性颗粒感应加热的碳纤维复合材料快速固化方法实施例中步骤S3的侧视图。
附图标记
1、零件模具;2、碳纤维预浸料;3、真空泵;4、高频感应加热机;5、耐高温真空袋;6、多圈磁感应线圈。
具体实施方式
以下通过附图和实施例对本发明的技术方案作进一步说明。
除非另外定义,本发明使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。
实施例一
一种基于磁性颗粒感应加热的碳纤维复合材料快速固化方法,包括以下步骤:
S1、制备磁性颗粒增强树脂,步骤S1包括如下步骤:
S11、称取定量环氧树脂胶A组分、环氧树脂胶B组分、锰锌铁氧体磁性颗粒材料。按环氧树脂胶A组分:环氧树脂胶B组分=3:1的体积比例称取环氧树脂胶A组分、环氧树脂胶B组分。称取锰锌铁氧体磁性颗粒材料的质量占环氧树脂胶A组分、环氧树脂胶B组分总质量的13%。
S12、将称取的锰锌铁氧体磁性颗粒材料中加入无水乙醇,在常温环境下超声分散均匀,得到混合液。
利用锰锌铁氧体材料居里温度可以根据锰锌含量调节的特点,可以使用不同比例的锰锌铁氧体作为磁性材料,防止加热过程中出现磁性材料聚集现象导致的局部过温问题。
S13、将步骤S12中得到的混合液真空抽滤、烘干,得到固体颗粒。
S14、将步骤S13中得到的固体颗粒反复研磨过筛,得到磁性纳米材料。
S15、将步骤S14中过筛后的磁性纳米材料均匀混合进环氧树脂胶A组分中。
S16、将环氧树脂胶B组分加入步骤S15中得到的材料中,常温环境下混合均匀,得到磁性颗粒增强树脂。
先将磁性纳米材料与环氧树脂胶A组分研磨混合分散后再加入环氧树脂胶B组分固化剂利用超声分散,可避免固化剂与环氧树脂混合过早导致提前固化。
S17、将步骤S16制备完成的磁性颗粒增强树脂置入真空环境内充分去除树脂中的气泡。
S2、制备碳纤维层合板零件,步骤S2包括如下步骤:
S21、采用非金属材料制造的成型用零件模具1,在零件模具1表面均匀涂覆脱模剂,然后将单向或平纹碳纤维布与步骤S1中得到的磁性颗粒增强树脂充分浸润制成碳纤维预浸料2。
S22、将碳纤维预浸料2按照设计的铺层角度层叠铺放于零件模具1表面;碳纤维预浸料2上方再依次覆盖脱模布、有孔分离膜、透气毡,得到碳纤维层合板零件,并用耐高温真空袋5密封碳纤维层合板零件。
S23、将密封的耐高温真空袋5从袋中开孔引出一条导管连接真空泵,对耐高温真空袋5中的碳纤维层合板零件进行持续性不间断抽真空。
S3、电磁加热碳纤维层合板零件,整个过程中真空泵3持续抽真空。如图1-2所示,步骤S3包括如下步骤:
S31、将步骤S2中密封的碳纤维层合板零件水平放置到高频感应加热机4的多圈磁感应线圈6中央,高频感应加热机4的多圈磁感应线圈6水平设置,多圈磁感应线圈6轴向与密封的碳纤维层合板零件长度方向平行一致。可保证碳纤维层合板零件所在区域的磁场均匀,防止磁场距线圈较近处畸变带来加热的不均匀性。
S32、调节高频感应加热机4的磁场强度使碳纤维层合板零件主体稳定在70℃并加热4h。
S33、接着调节高频感应加热机4的磁场强度使碳纤维层合板零件主体稳定在120℃加热1h。
S4、工艺完成后关闭高频感应加热机4与真空泵3,待碳纤维层合板零件冷却后脱模得到固化完好的碳纤维复合材料零件。
因此,本发明采用上述一种基于磁性颗粒感应加热的碳纤维复合材料快速固化方法,加热速度快,加热范围仅限制在成型零件本身,对周围环境影响小,同时加热区域精准,可显著降低成型用时间、显著降低耗能。
最后应说明的是:以上实施例仅用以说明本发明的技术方案而非对其进行限制,尽管参照较佳实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对本发明的技术方案进行修改或者等同替换,而这些修改或者等同替换亦不能使修改后的技术方案脱离本发明技术方案的精神和范围。

Claims (5)

1.一种基于磁性颗粒感应加热的碳纤维复合材料快速固化方法,其特征在于,包括以下步骤:
S1、制备磁性颗粒增强树脂,所述步骤S1包括如下步骤:
S11、称取定量环氧树脂胶A组分、环氧树脂胶B组分、锰锌铁氧体磁性颗粒材料;
S12、将称取的锰锌铁氧体磁性颗粒材料中加入无水乙醇,在常温环境下超声分散均匀,得到混合液;
S13、将步骤S12中得到的混合液真空抽滤、烘干,得到固体颗粒;
S14、将步骤S13中得到的固体颗粒反复研磨过筛,得到磁性纳米材料;
S15、将步骤S14中过筛后的磁性纳米材料均匀混合进环氧树脂胶A组分中;
S16、将环氧树脂胶B组分加入步骤S15中得到的材料中,常温环境下混合均匀,得到磁性颗粒增强树脂;
S17、将步骤S16制备完成的磁性颗粒增强树脂置入真空环境内充分去除树脂中的气泡;
S2、制备碳纤维层合板零件,所述步骤S2包括如下步骤:
S21、采用成型用的零件模具,在零件模具表面均匀涂覆脱模剂,然后将单向或平纹碳纤维布与步骤S1中得到的磁性颗粒增强树脂充分浸润制成碳纤维预浸料;
S22、将碳纤维预浸料按照设计的铺层角度层叠铺放于零件模具表面;碳纤维预浸料上方再依次覆盖脱模布、有孔分离膜、透气毡,得到碳纤维层合板零件,并用耐高温真空袋密封碳纤维层合板零件;
S23、将密封的耐高温真空袋从袋中开孔引出一条导管连接真空泵,对真空袋中的碳纤维层合板零件进行持续性不间断抽真空;
S3、电磁加热碳纤维层合板零件,所述步骤S3包括如下步骤:
S31、将步骤S2中密封的碳纤维层合板零件水平放置到高频感应加热机的多圈磁感应线圈中;
S32、调节高频感应加热机的磁场强度使碳纤维层合板零件主体稳定在70℃并加热4h;
S33、接着调节高频感应加热机的磁场强度使碳纤维层合板零件主体稳定在120℃加热1h;
S4、工艺完成后关闭高频感应加热机与真空泵,待碳纤维层合板零件冷却后脱模得到固化完好的碳纤维复合材料零件。
2.根据权利要求1所述的一种基于磁性颗粒感应加热的碳纤维复合材料快速固化方法,其特征在于:所述步骤S11中,按环氧树脂胶A组分:环氧树脂胶B组分=3:1的体积比例称取环氧树脂胶A组分、环氧树脂胶B组分;所述称取锰锌铁氧体磁性颗粒材料的质量占环氧树脂胶A组分、环氧树脂胶B组分总质量的13%。
3.根据权利要求1所述的一种基于磁性颗粒感应加热的碳纤维复合材料快速固化方法,其特征在于:所述步骤S21中,零件模具的材料为非金属材料。
4.根据权利要求1所述的一种基于磁性颗粒感应加热的碳纤维复合材料快速固化方法,其特征在于:所述步骤S31中,高频感应加热机的多圈磁感应线圈水平设置,多圈磁感应线圈轴向与碳纤维层合板零件长度方向平行一致。
5.根据权利要求1所述的一种基于磁性颗粒感应加热的碳纤维复合材料快速固化方法,其特征在于:所述步骤S3的整个过程中真空泵持续抽真空。
CN202311390813.1A 2023-10-25 2023-10-25 基于磁性颗粒感应加热的碳纤维复合材料快速固化方法 Pending CN117445436A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311390813.1A CN117445436A (zh) 2023-10-25 2023-10-25 基于磁性颗粒感应加热的碳纤维复合材料快速固化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311390813.1A CN117445436A (zh) 2023-10-25 2023-10-25 基于磁性颗粒感应加热的碳纤维复合材料快速固化方法

Publications (1)

Publication Number Publication Date
CN117445436A true CN117445436A (zh) 2024-01-26

Family

ID=89590332

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311390813.1A Pending CN117445436A (zh) 2023-10-25 2023-10-25 基于磁性颗粒感应加热的碳纤维复合材料快速固化方法

Country Status (1)

Country Link
CN (1) CN117445436A (zh)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5248864A (en) * 1991-07-30 1993-09-28 E. I. Du Pont De Nemours And Company Method for induction heating of composite materials
JPH06335973A (ja) * 1993-05-28 1994-12-06 Sekisui Chem Co Ltd 繊維強化樹脂積層体の製造方法
EP1892078A1 (de) * 2006-08-26 2008-02-27 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren und Vorrichtung zum Vorformen von Kohlenstofffaser-Halbzeugen für die Herstellung von Faserverbundbauteilen
US20090218734A1 (en) * 2005-11-10 2009-09-03 Airbus Deutschland Gmbh Tool, Arrangement, and Method for Manufacturing a Component, Component
CN104827613A (zh) * 2015-05-13 2015-08-12 航天材料及工艺研究所 一种复合材料低成本快速固化方法
CN104908338A (zh) * 2015-05-22 2015-09-16 胡春雷 一种用于复合材料的电磁感应加热快速成型设备
CN107471679A (zh) * 2017-08-08 2017-12-15 惠州市海龙模具塑料制品有限公司 碳纤维复合材料制造方法
CN209381409U (zh) * 2018-11-23 2019-09-13 山东双一科技股份有限公司 风力发电叶片成型模具
CN110561779A (zh) * 2019-09-20 2019-12-13 山东非金属材料研究所 一种磁场取向碳纳米管增强纤维树脂基复合材料层间力学性能的方法
WO2020155319A1 (zh) * 2019-01-30 2020-08-06 南京航空航天大学 一种基于动态热屏障的树脂基复合材料加热固化方法
US20210024712A1 (en) * 2018-03-30 2021-01-28 Toray Industries, Inc. Prepreg, laminate body, fiber-reinforced composite material, and manufacturing method for fiber-reinforced composite material
US20230003177A1 (en) * 2019-11-26 2023-01-05 Government Of The United States, Represented By The Secretary Of The Air Force Fiber reinforced polymer composite structures and electromagnetic induction process for making same
CN115742118A (zh) * 2022-11-18 2023-03-07 昆明理工大学 一种微波加热固化连接碳纤维复合材料的方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5248864A (en) * 1991-07-30 1993-09-28 E. I. Du Pont De Nemours And Company Method for induction heating of composite materials
JPH06335973A (ja) * 1993-05-28 1994-12-06 Sekisui Chem Co Ltd 繊維強化樹脂積層体の製造方法
US20090218734A1 (en) * 2005-11-10 2009-09-03 Airbus Deutschland Gmbh Tool, Arrangement, and Method for Manufacturing a Component, Component
EP1892078A1 (de) * 2006-08-26 2008-02-27 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren und Vorrichtung zum Vorformen von Kohlenstofffaser-Halbzeugen für die Herstellung von Faserverbundbauteilen
CN104827613A (zh) * 2015-05-13 2015-08-12 航天材料及工艺研究所 一种复合材料低成本快速固化方法
CN104908338A (zh) * 2015-05-22 2015-09-16 胡春雷 一种用于复合材料的电磁感应加热快速成型设备
CN107471679A (zh) * 2017-08-08 2017-12-15 惠州市海龙模具塑料制品有限公司 碳纤维复合材料制造方法
US20210024712A1 (en) * 2018-03-30 2021-01-28 Toray Industries, Inc. Prepreg, laminate body, fiber-reinforced composite material, and manufacturing method for fiber-reinforced composite material
CN209381409U (zh) * 2018-11-23 2019-09-13 山东双一科技股份有限公司 风力发电叶片成型模具
WO2020155319A1 (zh) * 2019-01-30 2020-08-06 南京航空航天大学 一种基于动态热屏障的树脂基复合材料加热固化方法
CN110561779A (zh) * 2019-09-20 2019-12-13 山东非金属材料研究所 一种磁场取向碳纳米管增强纤维树脂基复合材料层间力学性能的方法
US20230003177A1 (en) * 2019-11-26 2023-01-05 Government Of The United States, Represented By The Secretary Of The Air Force Fiber reinforced polymer composite structures and electromagnetic induction process for making same
CN115742118A (zh) * 2022-11-18 2023-03-07 昆明理工大学 一种微波加热固化连接碳纤维复合材料的方法

Similar Documents

Publication Publication Date Title
CN106457700B (zh) 用于加热模具的设备
CN103057013B (zh) 一种纤维增强树脂基复合材料的加热固化装置及方法
EP2195156B1 (en) Apparatus for resin transfer molding composite parts
CN103587128B (zh) 微波-压力罐成型高性能复合材料构件的方法和装置
KR20120099677A (ko) 섬유강화재로 부품을 제조하는 방법
US8343402B1 (en) Consolidation of composite material
CN1846906A (zh) Fe-Ni软磁合金的微注射成形方法
US9539770B2 (en) Flexible membrane for the production of parts made from composite materials
CN102990946A (zh) 一种采用微波超声固化纤维增强复合材料构件的方法及其专用装置
CN112454938A (zh) 一种碳纤维蜂窝夹心复合材料构件的成型方法
CN105082557A (zh) 格栅的制造方法
US20220059286A1 (en) Manufacturing method for anisotropic bonded magnet
CN117445436A (zh) 基于磁性颗粒感应加热的碳纤维复合材料快速固化方法
CN115742118A (zh) 一种微波加热固化连接碳纤维复合材料的方法
KR102126062B1 (ko) 연자성 복합 재료 및 그 제조방법
CN112936922A (zh) 一种超表面馈能的复合材料构件损伤外场微波快速修补方法
CN110872179B (zh) 一种柔性射频段负介电和负磁导率吸波材料的制备方法
CN105965916A (zh) 一种复合材料成型设备及其用于复合材成型的工艺
GB2348163A (en) A fibre-reinforced composite
US11890824B2 (en) System for manufacturing thermoplastic parts
CN109203313B (zh) 一种复合材料的固化方法
CN110643147A (zh) 一种氢能汽车用微波固化预浸料、制备方法及其用途
CN104550944A (zh) 一种复合稀土磁致伸缩材料的制备方法
CN113004658B (zh) 具有可磁控转换导电导热特性的热固性复合材料及制备方法
CN218614935U (zh) 一种模具加热用在线电磁加热装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination