CN117401710B - 一种室温下快速响应氢气的三维Pd-In2O3/rGO气凝胶的制备方法 - Google Patents

一种室温下快速响应氢气的三维Pd-In2O3/rGO气凝胶的制备方法 Download PDF

Info

Publication number
CN117401710B
CN117401710B CN202311352353.3A CN202311352353A CN117401710B CN 117401710 B CN117401710 B CN 117401710B CN 202311352353 A CN202311352353 A CN 202311352353A CN 117401710 B CN117401710 B CN 117401710B
Authority
CN
China
Prior art keywords
rgo
dimensional
hydrogen
room temperature
nanocomposite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202311352353.3A
Other languages
English (en)
Other versions
CN117401710A (zh
Inventor
陈春燕
周建
刘宇恒
肖国清
陈春林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Petroleum University
Original Assignee
Southwest Petroleum University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Petroleum University filed Critical Southwest Petroleum University
Priority to CN202311352353.3A priority Critical patent/CN117401710B/zh
Publication of CN117401710A publication Critical patent/CN117401710A/zh
Application granted granted Critical
Publication of CN117401710B publication Critical patent/CN117401710B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0091Preparation of aerogels, e.g. xerogels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/005H2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Silicon Compounds (AREA)

Abstract

本发明公开了一种室温下快速响应氢气的三维Pd‑In2O3/rGO气凝胶的制备方法,其将InCl3·4H2O和K2PdCl6加入到去离子水和乙醇的混合溶液中,连续搅拌形成均匀溶液;将尿素添加到上述溶液中并搅拌以制备均匀的混合物,随后,再加入氧化石墨烯,并将溶液超声处理以形成稳定的悬浮液;将悬浮液转移到衬有聚四氟乙烯的不锈钢容器中并加热;当反应器冷却至室温时,获得水凝胶,然后将水凝胶浸入预备溶液中,获得纳米复合材料;将纳米复合材料在‑18℃下冷藏,然后进一步冷冻干燥;冷冻干燥后,将纳米复合材料在氩气气氛中加热至500℃后退火,最终获得三维Pd‑In2O3/rGO气凝胶。

Description

一种室温下快速响应氢气的三维Pd-In2O3/rGO气凝胶的制备 方法
技术领域
本发明属于气体传感材料领域,具体涉及一种室温下快速响应氢气的三维Pd-In2O3/rGO气凝胶的制备方法。
背景技术
随着现代工业进步的到来,氢气(H2)已成为一种越来越受欢迎的清洁能源。然而,其高度易燃和爆炸性给运输和储存过程带来了重大的安全挑战。空气中的爆炸下限约为4%,运输和储存过程中稍有不慎就会导致氢气泄漏,这对现代工业的发展构成了安全挑战。因此,有必要开发一种用于氢气实时检测的气体传感器。金属氧化物半导体(MOS)传感器是近年来最受欢迎的传感器类型,因为它们具有高电子迁移率、宽带隙、低电阻率和低成本的优点。已经被广泛研究的金属氧化物主要是SnO2、In2O3、ZnO和TiO2。其中,In2O3是一种典型的n型半导体,室温下带隙为3.6eV,导电性优异。已有研究提出Au@In2O3采用水热法检测H2,在300℃下对100ppm H2的响应约为34.4。然而,金属氧化物通常在高温下工作,在室温下传感性能大大降低。
添加贵金属修饰、调节材料形态以及引入其他材料来构建P-N异质结是解决这一问题的主要方法。例如,掺入二维(2D)还原氧化石墨烯(rGO)和金属氧化物来合成复合材料,以降低操作温度。已有研究提出了一种简单的一步合成方法来制备二维In2O3/rGO复合材料。该材料显示出良好的性能,在室温下对30ppm NO2具有8.25的响应,但是,4分钟的响应时间相对较长。在合成过程中,2D氧化石墨烯材料倾向于形成不可逆的堆积和聚集,这降低了rGO的比表面积,产生的活性位点较少,导致无法实现所需的气敏性能。
发明内容
为了克服现有技术中存在的不足,本发明提供一种室温下快速响应氢气的三维Pd-In2O3/rGO气凝胶的制备方法。
为实现上述目的,本发明提供一种室温下快速响应氢气的三维Pd-In2O3/rGO气凝胶的制备方法,包括以下步骤:
按照质量比10:1的配比称取InCl3·4H2O和K2PdCl6,并按照InCl3·4H2O为2mg/ml的浓度加入到去离子水和乙醇的混合溶液中,连续搅拌以形成均匀溶液;
将与InCl3·4H2O同等质量的尿素添加到上述溶液中并搅拌15-30分钟以制备均匀的混合物,随后,再加入和InCl3·4H2O同等质量的氧化石墨烯,并将溶液超声处理30-60分钟以形成稳定的悬浮液;
将悬浮液转移到衬有聚四氟乙烯的不锈钢容器中,并在120-160℃下加热12-20小时;当反应器冷却至室温时,获得水凝胶,然后将水凝胶浸入预备溶液中6-10小时,获得纳米复合材料,其中预备溶液为乙醇和去离子水的混合物;
将纳米复合材料在-18℃下冷藏10-15小时,然后在-40℃至-50℃下进一步冷冻干燥24-48小时;
冷冻干燥后,将纳米复合材料在氩气气氛中以3-5℃/min的速率加热至500℃后退火2-4小时,最终获得三维Pd-In2O3/rGO气凝胶。
优选地,按照质量比10:1的配比称取InCl3·4H2O和K2PdCl6
优选地,按照InCl3·4H2O为2mg/ml的浓度加入到去离子水和乙醇的混合溶液中,其中,去离子水与乙醇的体积比为9:1。
优选地,采用改进的Hummers法以天然石墨粉为原料合成氧化石墨烯。
优选地,将悬浮液转移到衬有聚四氟乙烯的不锈钢容器中,并在140℃下加热16h。
优选地,预备溶液中乙醇和去离子水的体积比为1:99。
优选地,将纳米复合材料在-18℃下冷藏10小时,然后在-50℃下进一步冷冻干燥48小时。
优选地,将纳米复合材料在氩气气氛中以3℃/min的速率加热至500℃后退火2小时。
本发明通过简单的一步水热合成成功制备了三维(3D)Pd-In2O3/rGO纳米复合材料。In2O3纳米颗粒在没有任何表面活性剂的情况下一致地分散在3DrGO网络上。该复合材料中存在显著的多孔结构,而且3D结构显著增加了复合材料的比表面积,从而不仅提高了活性位点(如氧空位)的可用性,还防止了不可逆的材料堆积和聚集。利用气凝胶材料中出现的P-N异质结和贵金属掺杂,由这种复合材料构建的传感器即使在室温下也对氢气表现出显著的响应性。3D Pd-In2O3/rGO和3D In2O3/rGO对10000ppm H2的响应值分别为33.14和13.04。此外,反应和恢复时间短且可重复。复合材料表现出的这种显著的氢传感性能使其在各种氢传感应用中极具前景。
附图说明
图1为3D rGO、3D Pd-In2O3/rGO和3D In2O3/rGO纳米复合材料的XRD图像;
图2为3D Pd-In2O3/rGO、3D In2O3/rGO纳米复合材料和rGO的拉曼光谱图;
图3为3D Pd-In2O3/rGO纳米复合材料的XPS光谱:(a)3D Pd-In2O3/rGO气凝胶总XPS光谱;(b)C1s谱;(c)O1s谱;(d)In谱;(e)Pd谱;
图4为SEM图像:(a)3D Pd-In2O3/rGO;(b)3D rGO;(c,d)3DPd-In2O3/rGO;
图5为3D Pd-In2O3/rGO气凝胶的TEM图:(a)Pd-In2O3/rGO气凝胶;(b,c)Pd-In2O3气凝胶;(d)Pd-In2O3气凝胶的HRTEM图像;
图6为3D Pd-In2O3/rGO纳米复合材料的N2吸附-解吸等温线和孔径分布曲线;
图7为室温气凝胶气敏试验图:(a,c)3D Pd-In2O3/rGO对一个循环和三个循环的响应和恢复曲线;(b,d)3D In2O3/rGO对一个循环和三个循环的响应和恢复曲线;
图8(a,b)为3D Pd-In2O3/rGO和3D In2O3/rGO气凝胶(1000ppm-1000ppm)的动态气敏曲线;(c)气凝胶的动力学响应比较;(d)气凝胶25天稳定性试验;(e)气凝胶的气体选择性测试。
具体实施方式
为了使本发明所述的内容更加便于理解,下面结合具体实施方式和附图对本发明所述的技术方案做进一步的说明,但是本发明不仅限于此。
采用改进的Hummers法以天然石墨粉为原料合成氧化石墨烯,此为现有技术,不在此赘述。
将40mg InCl3·4H2O和4mg K2PdCl6加入到18mL去离子水(DI)和2mL乙醇(EtOH)的混合溶液中,并连续搅拌15分钟以形成均匀溶液。然后,将40mg尿素添加到上述溶液中并搅拌15分钟以制备均匀的混合物。随后,加入40mg氧化石墨烯,并将溶液超声处理30分钟以形成稳定的悬浮液。最后,将溶液转移到衬有聚四氟乙烯的50ml不锈钢容器中,并在140℃下加热16h。当反应器冷却至室温时,获得水凝胶,然后将水凝胶浸入制备的溶液(乙醇:DI=1:99)中6h。将获得的纳米复合材料在-18℃下冷藏10h,然后在-50℃下进一步冷冻干燥48小时。然后将纳米复合材料在氩气气氛中以3℃/min的速率加热至500℃后退火2小时,最终获得3D Pd-In2O3/rGO气凝胶。
为了进行比较,除了不添加K2PdCl6之外,以相同的方式制备3DIn2O3/rGO气凝胶。
为了确认氧化石墨烯(GO)成功还原为还原的氧化石墨烯(rGO),使用上述完全相同的方法(不加入铟盐和钯盐,其他步骤相同)制备了3D氧化石墨烯。
通过X射线衍射(XRD)分析证明了纳米复合材料的相组成和晶体结构。如图1(b)所示,2θ=24.5°处的衍射峰对应于rGO。这一明确的证据证实了GO通过水热处理程序有效转化为rGO。如图1(a)所示,对3D Pd-In2O3/rGO和3D In2O3/rGO的XRD光谱的进一步分析揭示了与In2O3纳米晶体的(211)、(222)、(400)、(440)和(622)晶面一致的不同特征峰。纳米复合材料光谱没有显示出对应于rGO和Pd纳米颗粒的可辨别衍射峰。这可能归因于与金属氧化物相比,rGO的结晶度适中,并且贵金属Pd的掺入相对较低。
如图2所示,在GO、3D In2O3/rGO和3D Pd-In2O3/rGO气凝胶的拉曼光谱中观察到的不同带被区分为D带和G带。D带表示缺陷的存在,表示GO的碳网络内官能团的无序诱导振动,而G带表示石墨化的程度。因此,D带与G带的比率(ID/IG)是还原氧化石墨烯基材料固有无序度的可靠衡量标准。D带出现在1345cm-1处,G带出现在1595cm-1,2D带出现在2700cm-1,2G带出现在2932cm-1,突出了原始氧化石墨烯结构的有限分层。值得注意的是,3D In2O3/rGO和3D Pd-In2O3/rGO纳米复合材料的计算ID/IG比率分别为1.33和1.28,证实了GO成功还原为rGO。与GO相比,在3D In2O3/rGO和3DPd-In2O3/rGO气凝胶的拉曼光谱中观察到的ID/IG比的增强可归因于由于In2O3纳米颗粒的大量掺入而导致rGO晶格内sp2碳域的减少,从而导致缺陷浓度的增加。
3D Pd-In2O3/rGO纳米复合材料的XPS光谱请参照图3。图3(a)中,展示了它们的各种价态。具体而言,3D Pd-In2O3/rGO气凝胶的C1s和O1s区域如图3(b,c)所示,其分别表现出以284.8eV和531.8eV为中心的突出峰。这些峰与C-O和C-O-C含氧碳官能团有关。值得注意的是,C-C键表现出最高的峰值强度,而C=O键表现出最低的峰值强度。这表明在水热过程中,GO完全还原为rGO,形成了合成材料的原始3D结构。
对图中O元素能级的进一步探究,发现图3(c)揭示了其三种不同的成分,包括晶格氧(OL)、空位氧(OV)和表面化学吸附氧(OC)。OL的峰高表示In2O3的结晶度,OV表示气凝胶材料内的氧空位,OC表示气凝胶物质的表面吸附能力。OV和OC的大量存在表明,有许多活性位点可用于气体传感,有助于增强目标气体分子的吸附,并具有良好的气体传感性能。
如图3(d)所示,In2O3的In 3d的高分辨率光谱在444.9eV和452.4eV处揭示了强峰,分别对应于In3+的In 3d 5/2和In3d 3/2轨道。这一观察结果验证了In2O3的成功合成。此外,Pd元素的能谱如图3(e)所示,揭示了两个轨道的存在,表明3D杂化,并表明纳米复合材料具有良好的导电性和催化活性。
水热制备的3D Pd-In2O3/rGO气凝胶的SEM图像如图4所示,展示了气凝胶内复杂的3D微米骨架网络结构。从图4(a)可看出,金属氧化物Pd-In2O3的存在导致气凝胶内部的孔变窄,这将进一步增加材料的比表面积。可以看出Pd-In2O3纳米颗粒的加入并没有改变气凝胶内部的原始微观结构。
值得注意的是,从图中可以明显看出,即使没有表面活性剂,Pd-In2O3颗粒也均匀分布在光滑的三维网络结构上。颗粒嵌入rGO的三维骨架中,并紧密排列在rGO内部,形成稳定的结构,这可以有效抑制rGO纳米片的堆积。三种材料之间的强耦合效应表明,气凝胶结构有效地防止了纳米颗粒的聚集,这将有利于提高气敏性能。同时,气凝胶独特的3D结构可能会略微影响图像的聚焦清晰度。不过,仍然可以看出,Pd和In2O3的颗粒尺寸远小于1μm。
此外,使用EDS图像对3D Pd-In2O3/rGO纳米复合材料的元素组成进行了深入分析。观察到包括In、O、C和Pd在内的元素的分布均匀地分散在整个3D Pd-In2O3/rGO纳米复合材料中。
为了深入了解3D Pd-In2O3/rGO纳米复合材料的微观结构,采用透射电子显微镜(TEM)分析了其结构和形态。具有分散纳米颗粒的rGO的3D卷曲波纹结构如图5(a)所示。rGO纳米片在图5(b,c)中看起来是透明的,这表明它们非常薄,并且成功地将Pd-In2O3颗粒包埋在纳米片上。此外,如图5(d)所示,观察到间距约为0.289nm的In2O3颗粒的晶格条纹,与(222)晶面一致,证实了X射线衍射图分析的结果。此外,Pd颗粒的晶格条纹间距为0.226nm,对应于(111)晶面。这些结果有助于进一步验证Pd-In2O3/rGO气凝胶的3D结构。
在3D Pd-In2O3/rGO气凝胶上进行N2吸附-解吸测量,以分析比表面积和孔径。如图6所示,N2吸附-解吸等温线表现出IV型等温线,磁滞回线在0.8和1.0之间(P/P0),表明纳米复合材料中存在多孔结构。N2吸附随着压力的增加而增加,进一步证实了多孔结构的存在。3D Pd-In2O3/rGO纳米复合材料的比表面积为75.5m2/g。值得注意的是,并非所有样品都可以使用BET公式计算,并且只能测量精确测量值小于200nm的孔。在这项工作中,3DPd-In2O3/rGO纳米复合材料具有较低的比表面积,因为其结构中存在大量微米大小的大孔,其中大多数在BET测量范围之外,然而,丰富的孔结构仍然使3D Pd-In2O3/rGO纳米复合材料具有理想的吸附性能。
如图6中的插图所示,3D Pd-In2O3/rGO纳米复合材料的孔径分布曲线显示出约4nm的主要孔径。与2D材料相比,气凝胶中独特的多孔结构提供了更大的比表面积。这种特性促进了气体在材料表面的传播和扩散,为气体分子提供了更多的活性位点,并有望提高传感器的气体检测性能。
在室温下严格进行了3D气凝胶传感器的H2响应性能。整个响应过程由三个主要部分组成,即气体传输过程、浓度响应过程和信号转换过程。当变化阻力达到总值的90%时,称为灵敏度,这个过程的时间称为响应时间。为了避免湿度对传感元件的影响,空气室中的相对湿度保持在25%。
传感器的标准化响应定义为:
响应度=Rair/Rgas
其中,Rair和Rgas分别是传感元件在空气和氢气中的电阻。
如图7(a,b)所示,3D Pd-In2O3/rGO纳米复合材料对1%H2的显著响应约33.14,而3D In2O3/rGO纳米复合物对相同浓度H2的响应约为13.04。将贵金属Pd掺入纳米复合材料中导致对H2的响应显著增强。这主要归因于Pd纳米颗粒的电子迁移率增强,以及在n型In2O3、p型rGO和Pd组分之间建立的有利的p-n异质结效应。
除了响应度之外,气体传感器的响应和恢复时间也是实际应用的重要参数。令人惊讶的是,3D Pd-In2O3/rGO纳米复合材料和3D In2O3/rGO纳米复合物都表现出快速响应,响应时间分别为5秒和11秒。同样地,3D复合纳米材料的回收很快,回收时间分别约为16秒和18秒。为了确保材料的可靠性和耐久性,对两种纳米复合材料进行了连续循环试验,如图7(c,d)所示。可见,传感器表现出了显著的稳定性,将原始响应值保持在33和13左右,没有任何显著下降。此外,响应时间和恢复时间表现出最小的波动,分别保持在5-14秒和16-21秒的范围内。这些结果证明了3D纳米复合材料的良好连续操作。
为了研究两种材料组在不同浓度下的性能,进行了一系列测试。在一系列不同浓度下测试了复合气凝胶材料的H2传感性能。如图8(a,b)所示,随着H2浓度的降低,材料的响应性都显著降低,而不含Pd的纳米复合材料的响应性能下降更为显著。
为了彻底评估复合气凝胶材料的长期操作能力,在室温下在10000ppm H2的浓度下进行了重复传感测试。如图8(d)所示,纳米复合材料对H2的反应持续了25天,表现出最小的下降,从而证实了复合气凝胶值得称赞的长期稳定性。另外,进一步评估了气体传感器在室温下对不同类型气体的响应值,如图8(e)。显然,在所有测试的气体中,3D复合气凝胶对H2都具有极高的选择性,尤其是在掺杂贵金属之后。这种现象可归因于Pd优异的吸氢能力及其与载流子的影响相互作用。
表1总结了各种氢传感材料的传感性能。研究结果清楚地表明,3DPd-In2O3/rGO和3D In2O3/rGO纳米复合材料在其优异的氢传感性能方面超过了其他材料。值得注意的是,与同样可以在室温下工作的传感器相比,3D结构的引入显著提高了传感性能。与其他材料相比,3D纳米复合材料表现出更快的响应和恢复时间,同时对H2实现显著更高的响应值。这些独特的优势突出了传感器的巨大潜力,使其非常适合在众多领域的实际应用。
表1不同氢气传感材料的性能对比
其中,参考文献[1]为Shao,G.,et al.,On-chip assembly of 3Dgraphene-basedaerogels for chemiresistive gas sensing.Chemical Communications,2020.56。参考文献[2]为Chen,L.,et al.,Synthesis and gas sensing properties of palladium-doped indium oxide microstructures for enhanced hydrogen detection.Journal ofMaterials Science Materials in Electronics,2016.27(11):p.1-8。参考文献[3]为Lim,Y.,et al.,Highly sensitive hydrogen gas sensor based on a suspendedpalladium/carbon nanowire fabricated via batch microfabricationprocesses.Sensors&Actuators B Chemical,2015.210:p.218-224。参考文献[4]为Zou,Y.,et al.,Doping composite of polyaniline and reduced graphene oxide withpalladium nanoparticles for room-temperature hydrogen-gassensing.International Journal of Hydrogen Energy,2016.41(11):p.5396-5404。参考文献[5]为Peng,Y.,et al.,Enhancing performances of aresistivity-type hydrogensensor based on Pd/SnO2/RGO nanocomposites.Nanotechnology,2017。

Claims (8)

1.一种室温下快速响应氢气的三维Pd-In2O3/rGO气凝胶的制备方法,其特征在于,包括以下步骤:
按照质量比10:(1-3)的配比称取InCl3·4H2O和K2PdCl6,并按照InCl3·4H2O为1-5mg/ml的浓度加入到去离子水和乙醇的混合溶液中,连续搅拌以形成均匀溶液;
将与InCl3·4H2O同等质量的尿素添加到上述溶液中并搅拌15-30分钟以制备均匀的混合物,随后,再加入和InCl3·4H2O同等质量的氧化石墨烯,并将溶液超声处理30-60分钟以形成稳定的悬浮液;
将悬浮液转移到衬有聚四氟乙烯的不锈钢容器中,并在120-160℃下加热12-20小时;当反应器冷却至室温时,获得水凝胶,然后将水凝胶浸入预备溶液中6-10小时,获得纳米复合材料,其中预备溶液为乙醇和去离子水的混合物;
将纳米复合材料在-18℃下冷藏10-15小时,然后在-40℃至-50℃下进一步冷冻干燥24-48小时;
冷冻干燥后,将纳米复合材料在氩气气氛中以3-5℃/min的速率加热至500℃后退火2-4小时,最终获得三维Pd-In2O3/rGO气凝胶。
2.如权利要求1所述的一种室温下快速响应氢气的三维Pd-In2O3/rGO气凝胶的制备方法,其特征在于,按照质量比10:1的配比称取InCl3·4H2O和K2PdCl6
3.如权利要求1所述的一种室温下快速响应氢气的三维Pd-In2O3/rGO气凝胶的制备方法,其特征在于,按照InCl3·4H2O为2mg/ml的浓度加入到去离子水和乙醇的混合溶液中,其中,去离子水与乙醇的体积比为9:1。
4.如权利要求1所述的一种室温下快速响应氢气的三维Pd-In2O3/rGO气凝胶的制备方法,其特征在于,采用改进的Hummers法以天然石墨粉为原料合成氧化石墨烯。
5.如权利要求1所述的一种室温下快速响应氢气的三维Pd-In2O3/rGO气凝胶的制备方法,其特征在于,将悬浮液转移到衬有聚四氟乙烯的不锈钢容器中,并在140℃下加热16h。
6.如权利要求1所述的一种室温下快速响应氢气的三维Pd-In2O3/rGO气凝胶的制备方法,其特征在于,预备溶液中乙醇和去离子水的体积比为1:99。
7.如权利要求1所述的一种室温下快速响应氢气的三维Pd-In2O3/rGO气凝胶的制备方法,其特征在于,将纳米复合材料在-18℃下冷藏10小时,然后在-50℃下进一步冷冻干燥48小时。
8.如权利要求1所述的一种室温下快速响应氢气的三维Pd-In2O3/rGO气凝胶的制备方法,其特征在于,将纳米复合材料在氩气气氛中以3℃/min的速率加热至500℃后退火2小时。
CN202311352353.3A 2023-10-17 2023-10-17 一种室温下快速响应氢气的三维Pd-In2O3/rGO气凝胶的制备方法 Active CN117401710B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311352353.3A CN117401710B (zh) 2023-10-17 2023-10-17 一种室温下快速响应氢气的三维Pd-In2O3/rGO气凝胶的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311352353.3A CN117401710B (zh) 2023-10-17 2023-10-17 一种室温下快速响应氢气的三维Pd-In2O3/rGO气凝胶的制备方法

Publications (2)

Publication Number Publication Date
CN117401710A CN117401710A (zh) 2024-01-16
CN117401710B true CN117401710B (zh) 2024-04-30

Family

ID=89490118

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311352353.3A Active CN117401710B (zh) 2023-10-17 2023-10-17 一种室温下快速响应氢气的三维Pd-In2O3/rGO气凝胶的制备方法

Country Status (1)

Country Link
CN (1) CN117401710B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109433193A (zh) * 2018-10-15 2019-03-08 昆明理工大学 一种纳米Pd/M-rGO复合催化剂及其制备方法
CN113830753A (zh) * 2021-08-27 2021-12-24 中国科学院空天信息创新研究院 一种Pd掺杂的rGO/ZnO-SnO2异质结四元复合材料、制备方法及其应用
CN114348999A (zh) * 2022-01-21 2022-04-15 中国科学技术大学 Pd修饰的SnO2/rGO纳米复合材料及制备方法、传感器及制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109433193A (zh) * 2018-10-15 2019-03-08 昆明理工大学 一种纳米Pd/M-rGO复合催化剂及其制备方法
CN113830753A (zh) * 2021-08-27 2021-12-24 中国科学院空天信息创新研究院 一种Pd掺杂的rGO/ZnO-SnO2异质结四元复合材料、制备方法及其应用
CN114348999A (zh) * 2022-01-21 2022-04-15 中国科学技术大学 Pd修饰的SnO2/rGO纳米复合材料及制备方法、传感器及制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Electrospinning of Pd−In2O3 Nanofibers for High-Performance Room Temperature Hydrogen Sensors;Chunyan Chen等;《ACS Appl. Nano Mater.》;20220820;12646−12655 *
In2O3–graphene nanocomposite based gas sensor for selectivedetection of NO2 at room temperature;Fubo Gu等;《Sensors and Actuators B: Chemical》;20150519;94–99 *
Ppb-Level Triethylamine Gas Sensors Based on Palladium Nanoparticles Modified Flower-Like In2O3 Grown on rGO Nanosheets Operating at Low Temperature;Fanli Meng等;《IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT》;20220711;9507909 *
Trimethylamine detection of 3D rGO/mesoporous In2O3 nanocomposites at room temperature;Zhenren Ma等;《Applied Surface Science》;20180927;625–634 *

Also Published As

Publication number Publication date
CN117401710A (zh) 2024-01-16

Similar Documents

Publication Publication Date Title
Zhang et al. ZIF-8 derived hierarchical hollow ZnO nanocages with quantum dots for sensitive ethanol gas detection
Kong et al. Lower coordination Co3O4 mesoporous hierarchical microspheres for comprehensive sensitization of triethylamine vapor sensor
Xiong et al. ZIF-derived porous ZnO-Co3O4 hollow polyhedrons heterostructure with highly enhanced ethanol detection performance
Yang et al. PtO2-nanoparticles functionalized CuO polyhedrons for n-butanol gas sensor application
Li et al. Soft-templated formation of double-shelled ZnO hollow microspheres for acetone gas sensing at low concentration/near room temperature
Wei et al. Spindle-like Fe2O3/ZnFe2O4 porous nanocomposites derived from metal-organic frameworks with excellent sensing performance towards triethylamine
Song et al. Porous Co nanobeads/rGO nanocomposites derived from rGO/Co-metal organic frameworks for glucose sensing
Zhao et al. C-doped TiO2 nanoparticles to detect alcohols with different carbon chains and their sensing mechanism analysis
Zhu et al. Monodispersed In2O3 mesoporous nanospheres: One-step facile synthesis and the improved gas-sensing performance
Shao et al. Ultrasensitive and highly selective detection of acetone based on Au@ WO3-SnO2 corrugated nanofibers
Mishra et al. A highly stable, selective, and high-performance VOC sensor using a SnS 2 nano-lotus structure
Cuong et al. Facile post-synthesis and gas sensing properties of highly porous NiO microspheres
Qin et al. Metal-organic frameworks-derived Mn-doped Co3O4 porous nanosheets and enhanced CO sensing performance
Guo et al. MOF-derived Co3O4 hierarchical porous structure for enhanced acetone sensing performance with high sensitivity and low detection limit
Cuong et al. Konjac glucomannan-templated synthesis of three-dimensional NiO nanostructures assembled from porous NiO nanoplates for gas sensors
Li et al. Porous In2O3 microstructures: hydrothermal synthesis and enhanced Cl2 sensing performance
Wang et al. Fabrication of porous α-Fe 2 O 3 nanoshuttles and their application for toluene sensors
Chen et al. Synthesis of hierarchically porous Co3O4/Biomass carbon composites derived from MOFs and their highly NO2 gas sensing performance
Chen et al. Co, N-doped GQDs/SnO 2 mesoporous microspheres exhibit synergistically enhanced gas sensing properties for H 2 S gas detection
Zheng et al. Susceptible CoSnO 3 nanoboxes with p-type response for triethylamine detection at low temperature
Liu et al. Tuning the sensing selectivity of mesoporous hierarchical Ti-doped Co3O4 to toluene and xylene via controlling the oxygen defects
Liu et al. Layered Ti3C2Tx MXene/CuO spindles composites for NH3 detection at room-temperature
Zhou et al. Ultrasensitive gas sensor based on nanocube In2O3-CNH composite at low operating temperature
Fan et al. Synthesis and gas sensing properties of β-Fe2O3 derived from Fe/Ga bimetallic organic framework
Su et al. One-pot synthesis of plate-like CeO2 nanosheets for sensing NH3 gas at room temperature

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant