CN117362014A - 改性结合剂的低碳铝碳砖及其制备方法 - Google Patents

改性结合剂的低碳铝碳砖及其制备方法 Download PDF

Info

Publication number
CN117362014A
CN117362014A CN202210760315.0A CN202210760315A CN117362014A CN 117362014 A CN117362014 A CN 117362014A CN 202210760315 A CN202210760315 A CN 202210760315A CN 117362014 A CN117362014 A CN 117362014A
Authority
CN
China
Prior art keywords
carbon
low
brick
modified
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210760315.0A
Other languages
English (en)
Inventor
吴钦鑫
姚金甫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baoshan Iron and Steel Co Ltd
Original Assignee
Baoshan Iron and Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baoshan Iron and Steel Co Ltd filed Critical Baoshan Iron and Steel Co Ltd
Priority to CN202210760315.0A priority Critical patent/CN117362014A/zh
Publication of CN117362014A publication Critical patent/CN117362014A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/101Refractories from grain sized mixtures
    • C04B35/103Refractories from grain sized mixtures containing non-oxide refractory materials, e.g. carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及耐火材料领域,尤其涉及一种改性结合剂的低碳铝碳砖及其制备方法。一种改性结合剂的低碳铝碳砖,原料按质量百分比计:棕刚玉60~75%,白刚玉细粉20~30%,鳞片石墨2~6%,金属硅粉1~5%,改性结合剂2~5%。所述改性结合剂为纳米NiO掺杂环保沥青Carbores P。纳米NiO含量为改性结合剂总质量的0.5~2.0%,纳米NiO为分析纯,中位粒径d50=50nm;环保沥青Carbores P的残炭量为85%。一种改性结合剂的低碳铝碳砖的制备方法,按质量百分比配置的原料混合均匀后,在150~220MPa的条件下压制成试样,然后于170~240℃固化18~28小时,制得所述低碳铝碳砖。本发明通过对低碳铝碳砖的结合剂进行改性,改善结合碳的碳结构,所制备的低碳铝碳砖具有优异的力学性能、抗氧化性和抗渣性。

Description

改性结合剂的低碳铝碳砖及其制备方法
技术领域
本发明涉及耐火材料领域,尤其涉及一种改性结合剂的低碳铝碳砖及其制备方法。
背景技术
铝碳(Al2O3-C)耐火材料具有高机械强度和良好的抗渣侵蚀性,被广泛用于连铸“三大件”和滑动水口系列产品。传统Al2O3-C耐火材料因其含碳量高,致使在使用过程中热耗大、易氧化,对钢水产生增碳作用等,严重影响了使用性能。但是单纯降低石墨含量又使得抗热震性和抗渣性变差,从而影响使用寿命。
中国专利CN103304248A公开了一种低碳镁碳耐火材料及制备方法,该方法在传统镁碳砖中直接添加碳纳米管,制备出优异的抗氧化性、抗热震性的低碳镁碳砖。但是碳纳米管成本高,分散不均匀等问题限制了其工业化的应用。中国专利CN113292317A公开了一种长寿命VOD精炼钢包熔池用镁铝碳砖及其制备方法,该方法在低碳镁碳砖中引入氧化铝,利用氧化镁和氧化铝的反应产生的镁铝尖晶石来提高熔池砖的抗热震性和烧结稳定性。但是其中氧化铝含量若控制不当则会生成过多的尖晶石产生体积膨胀,导致铝镁碳砖开裂,安全稳定性较低。
上述专利技术为解决低碳含碳耐火材料抗热震性和抗渣性的问题,可以通过添加纳米碳结构或改变组分形成新的物相如尖晶石相来解决。但是碳纳米碳源成本高,分散不均匀,而尖晶石生成又伴随体积膨胀,这使得低碳铝碳砖的应用较难实现。
发明内容
本发明的目的在于提供一种改性结合剂的低碳铝碳砖及其制备方法,通过对低碳铝碳砖的结合剂进行改性,改善结合碳的碳结构,用该方法制备的低碳铝碳砖具有优异的力学性能、抗氧化性和抗渣性。
为了实现上述技术目的,本发明采用如下技术方案:
一种改性结合剂的低碳铝碳砖,原料按质量百分比计:棕刚玉60~75%,白刚玉细粉20~30%,鳞片石墨2~6%,金属硅粉1~5%,改性结合剂2~5%。
所述棕刚玉的Al2O3含量大于94.5%,其中:棕刚玉粒度为5~3mm的占比22~27%,粒度为3~1mm的占比26~32%,粒度为1~0mm的占比12~16%。
所述白刚玉细粉的Al2O3含量大于99.5%,白刚玉粒度小于0.045mm。
所述鳞片石墨的碳含量大于95%,鳞片石墨粒度小于0.145mm。
所述金属硅粉的Si含量大于99%,金属硅粉粒度小于0.044mm。
所述改性结合剂为纳米NiO掺杂环保沥青Carbores P。
所述纳米NiO含量为改性结合剂总质量的0.5~2.0%,纳米NiO为分析纯,中位粒径d50=50nm。
所述环保沥青Carbores P的残炭量为85%。
一种改性结合剂的低碳铝碳砖的制备方法,按质量百分比配置的原料混合均匀后,在150~220MPa的条件下压制成试样,然后于170~240℃固化18~28小时,制得所述低碳铝碳砖。
所述试样为25mm*25mm*125mm的长条状。
本发明通过对低碳铝碳砖的结合剂进行改性,在结合剂中添加催化剂改性,通过原位生成碳纳米管/纤维和陶瓷相,改善结合碳的碳结构,有效地改善含碳耐火材料的显微结构和力学性能,从而提高低碳铝碳砖力学性能、抗氧化性和抗渣性。
本发明与现有技术相比有如下优点:
(1)本发明通过添加催化剂纳米NiO改性结合剂CarboresP,催化裂解原位生成碳纳米结构以提高其热解炭的残炭率和抗氧化温度,操作相对简单、成本低,解决了碳纳米管直接加入耐火材料中分散性不好、成本高的问题。
(2)本发明结合合理的颗粒与粉料配比,有效控制了材料的孔径结构,耐火材料在高温使用过程中碳纳米结构和陶瓷晶须合理分布,使制备的改性结合剂的低碳铝碳砖具有较好的热震稳定性、抗氧化性和抗折强度。
(3)本发明使用的结合剂是环保型沥青CarboresP,其热解后是定型的碳,残炭率高。与煤焦油沥青和酚醛树脂相比,致癌物苯并芘含量仅为煤焦油沥青的3%。
附图说明
图1为实施例1中试样的扫描电子显微镜照片;
图2为实施例2中试样的扫描电子显微镜照片;
图3为实施例3中试样的扫描电子显微镜照片;
图4为实施例4中试样的扫描电子显微镜照片;
图5为实施例2和实施例4的载荷-位移曲线。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明。
一种改性结合剂的低碳铝碳砖,原料按质量百分比计:棕刚玉60~75%,白刚玉细粉20~30%,鳞片石墨2~6%,金属硅粉1~5%,改性结合剂2~5%。棕刚玉的Al2O3含量大于94.5%,其中:棕刚玉粒度为5~3mm的占比22~27%,粒度为3~1mm的占比26~32%,粒度为1~0mm的占比12~16%,该占比是指对于原料质量百分比。白刚玉细粉的Al2O3含量大于99.5%,白刚玉粒度小于0.045mm。鳞片石墨的碳含量大于95%,鳞片石墨粒度小于0.145mm。金属硅粉的Si含量大于99%,金属硅粉粒度小于0.044mm。改性结合剂为纳米NiO掺杂环保沥青Carbores P。
所述纳米NiO含量为改性结合剂总质量的0.5~2.0%,纳米NiO为分析纯,中位粒径d50=50nm。环保沥青Carbores P的残炭量为85%。将两者置于行星式搅拌机中,以100~300转/分钟的转速搅拌2~5小时,得到改性结合剂。
一种改性结合剂的低碳铝碳砖的制备方法,按质量百分比配置的原料混合均匀后,在150~220MPa的条件下压制成试样,然后于170~240℃固化18~28小时,制得所述低碳铝碳砖。试样为25mm*25mm*125mm的长条状。
实施例1
将质量百分比65%的棕刚玉、27%的白刚玉细粉、3%的鳞片石墨、2%的金属硅粉和3%的改性结合剂混合均匀后,于180MPa的条件下压制成25mm*25mm*125mm的长条试样,然后于200℃固化24小时,得到改性结合剂的低碳铝碳砖。
其中,粒级为5~3mm的棕刚玉22%,粒级为3~1mm的棕刚玉28%,粒级为1~0mm的棕刚玉15%。
本实施例中所述改性结合剂为纳米NiO掺杂环保沥青Carbores P制得,NiO含量为改性结合剂总质量的0.5%。
将所述改性结合剂的低碳铝碳砖置于高温电阻炉中,经1400℃保温3小时后随炉冷却,其性能见表1。采用卡尔蔡司公司生产的EVO18型扫描电子显微镜(加速电压:0.2~30kV)对实施例1的试样进行了显微结构表征。由图1可以看出,炭化后的试样未含有碳纳米结构。
实施例2
将质量百分比69%的棕刚玉、23%的白刚玉细粉、3%的鳞片石墨、2%的金属硅粉和3%的改性结合剂混合均匀后,于180MPa的条件下压制成25mm*25mm*125mm的长条试样,然后于200℃固化24小时,得到改性结合剂的低碳铝碳砖。
其中,粒级为5~3mm的棕刚玉25%,粒级为3~1mm的棕刚玉29%,粒级为1~0mm的棕刚玉15%。
本实施例中所述改性结合剂为纳米NiO掺杂环保沥青Carbores P制得,NiO含量为改性结合剂总质量的1%。
将所述改性结合剂的低碳铝碳砖置于高温电阻炉中,经1400℃保温3小时后随炉冷却,其性能见表1。采用卡尔蔡司公司生产的EVO18型扫描电子显微镜(加速电压:0.2~30kV)对实施例2的试样进行了显微结构表征。由图由图2可以看出,炭化后的试样有碳微球聚集形成的碳管长出。
实施例3
将质量百分比68%的棕刚玉、22%的白刚玉细粉、3%的鳞片石墨、4%的金属硅粉和3%的改性结合剂混合均匀后,于180MPa的条件下压制成25mm*25mm*125mm的长条试样,然后于200℃固化24小时,得到改性结合剂的低碳铝碳砖。
其中,粒级为5~3mm的棕刚玉26%,粒级为3~1mm的棕刚玉28%,粒级为1~0mm的棕刚玉14%。
本实施例中所述改性结合剂为纳米NiO掺杂环保沥青Carbores P制得,NiO含量为改性结合剂总质量的0.5%。
将所述改性结合剂的低碳铝碳砖置于高温电阻炉中,经1400℃保温3小时后随炉冷却,其性能见表1。采用卡尔蔡司公司生产的EVO18型扫描电子显微镜(加速电压:0.2~30kV)对实施例3的试样进行了显微结构表征。由图3可以看出,炭化后的试样中有鳞片石墨分布,还有一些CarboresP炭化后的碳微球,在碳微球附近的聚集粒状物为SiC,但还未生成晶须状。
实施例4
将质量百分比70%的棕刚玉、22%的白刚玉细粉、3%的鳞片石墨、2%的金属硅粉和3%的改性结合剂混合均匀后,于180MPa的条件下压制成25mm*25mm*125mm的长条试样,然后于200℃固化24小时,得到改性结合剂的低碳铝碳砖。
其中,粒级为5~3mm的棕刚玉26%,粒级为3~1mm的棕刚玉30%,粒级为1~0mm的棕刚玉14%。
本实施例中所述改性结合剂为纳米NiO掺杂环保沥青Carbores P制得,NiO含量为改性结合剂总质量的1%。
将所述改性结合剂的低碳铝碳砖置于高温电阻炉中,经1400℃保温3小时后随炉冷却,其性能见表1。采用卡尔蔡司公司生产的EVO18型扫描电子显微镜(加速电压:0.2~30kV)对实施例4的试样进行了显微结构表征。由图4可以看出,炭化后的试样中生成了大量纤维状的SiC晶须和管柱状的碳纳米管,SiC晶须和碳纳米结构相互穿插缠绕在一起。
实施例4与实施例2的试样测试了试样的载荷-位移曲线。由图5可以看出,实施例2试样的位移量为2.60mm,弯曲应力为10.77MPa。实施例4试样的位移量为2.67mm,弯曲应力为9.73MPa。实施例4试样的位移量比实施例2试样多0.07mm,而弯曲应力略小于实施例2的试样。这说明在低碳铝碳砖中碳纳米结构和陶瓷晶须的存在,有助于提高制品的断裂韧性。
实施例5
将质量百分比68%的棕刚玉、24%的白刚玉细粉、3%的鳞片石墨、2%的金属硅粉和3%的改性结合剂混合均匀后,于180MPa的条件下压制成25mm*25mm*125mm的长条试样,然后于200℃固化24小时,得到改性结合剂的低碳铝碳砖。
其中,粒级为5~3mm的棕刚玉26%,粒级为3~1mm的棕刚玉30%,粒级为1~0mm的棕刚玉12%。
本实施例中所述改性结合剂为纳米NiO掺杂环保沥青Carbores P制得,NiO含量为改性结合剂总质量的1.5%。
将所述改性结合剂的低碳铝碳砖置于高温电阻炉中,经1400℃保温3小时后随炉冷却,其性能见表1。
表1实施例1~5的物理性能如下表所示。
项目编号 实施例1 实施例2 实施例3 实施例4 实施例5
显气孔率/% 13.8 12.8 13.1 11.3 12.2
体积密度/(g·cm-3) 3.01 3.23 3.12 3.35 3.25
常温抗折强度/MPa 8.0 8.9 8.6 9.7 9.2
常温耐压强度/MPa 51.4 58.6 57.5 60.6 59.2

Claims (10)

1.一种改性结合剂的低碳铝碳砖,其特征是:原料按质量百分比计:棕刚玉60~75%,白刚玉细粉20~30%,鳞片石墨2~6%,金属硅粉1~5%,改性结合剂2~5%。
2.根据权利要求1所述的改性结合剂的低碳铝碳砖,其特征是:所述棕刚玉的Al2O3含量大于94.5%,其中:棕刚玉粒度为5~3mm的占比22~27%,粒度为3~1mm的占比26~32%,粒度为1~0mm的占比12~16%。
3.根据权利要求1所述的改性结合剂的低碳铝碳砖,其特征是:所述白刚玉细粉的Al2O3含量大于99.5%,白刚玉粒度小于0.045mm。
4.根据权利要求1所述的改性结合剂的低碳铝碳砖,其特征是:所述鳞片石墨的碳含量大于95%,鳞片石墨粒度小于0.145mm。
5.根据权利要求1所述的改性结合剂的低碳铝碳砖,其特征是:所述金属硅粉的Si含量大于99%,金属硅粉粒度小于0.044mm。
6.根据权利要求1所述的改性结合剂的低碳铝碳砖,其特征是:所述改性结合剂为纳米NiO掺杂环保沥青Carbores P。
7.根据权利要求6所述的改性结合剂的低碳铝碳砖,其特征是:所述纳米NiO含量为改性结合剂总质量的0.5~2.0%,纳米NiO为分析纯,中位粒径d50=50nm。
8.根据权利要求6所述的改性结合剂的低碳铝碳砖,其特征是:所述环保沥青CarboresP的残炭量为85%。
9.一种根据权利要求1-6中任一所述的改性结合剂的低碳铝碳砖的制备方法,其特征是:按质量百分比配置的原料混合均匀后,在150~220MPa的条件下压制成试样,然后于170~240℃固化18~28小时,制得所述低碳铝碳砖。
10.根据权利要求9所述的制备方法,其特征是:所述试样为25mm*25mm*125mm的长条状。
CN202210760315.0A 2022-06-29 2022-06-29 改性结合剂的低碳铝碳砖及其制备方法 Pending CN117362014A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210760315.0A CN117362014A (zh) 2022-06-29 2022-06-29 改性结合剂的低碳铝碳砖及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210760315.0A CN117362014A (zh) 2022-06-29 2022-06-29 改性结合剂的低碳铝碳砖及其制备方法

Publications (1)

Publication Number Publication Date
CN117362014A true CN117362014A (zh) 2024-01-09

Family

ID=89397056

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210760315.0A Pending CN117362014A (zh) 2022-06-29 2022-06-29 改性结合剂的低碳铝碳砖及其制备方法

Country Status (1)

Country Link
CN (1) CN117362014A (zh)

Similar Documents

Publication Publication Date Title
Wei et al. Microstructure and mechanical properties of low-carbon MgO–C refractories bonded by an Fe nanosheet-modified phenol resin
Zhu et al. Heightening mechanical properties and thermal shock resistance of low–carbon magnesia–graphite refractories through the catalytic formation of nanocarbons and ceramic bonding phases
Zhu et al. Catalytic formation of one-dimensional nanocarbon and MgO whiskers in low carbon MgO–C refractories
Peng et al. Effects of alumina sources on the microstructure and properties of nitrided Al2O3-C refractories
CN111138207A (zh) 一种直拉单晶硅炉用石墨热场材料制备方法
CN111517761A (zh) 一种复合内衬材料及其应用和应用方法
CN108727050B (zh) 炭材料3d增韧碳化硅复合材料及其制备方法和应用
Su et al. Properties and microstructure evolution of unfired Al–Si incorporated Al2O3–C slide plate materials with trace nano-Al2O3 particles
JP5697210B2 (ja) 転炉の操業方法、その転炉に使用するマグネシアカーボン質れんが、当該れんがの製造方法、及び転炉内張りのライニング構造
CN102070339A (zh) 一种含碳耐火材料用改性碳素原料及其制备方法
CN115141008A (zh) 一种长寿命摆动沟浇注料及其制备方法
CN117164348A (zh) 一种碳硅化铝晶须增强的氧化铝-碳化硅-碳免烧耐火材料及其制备方法和应用
CA2388675C (en) Carbonaceous refractory shaped body with improved oxidation behavior and batch composition and method for producing the same
Su et al. Role of nano-Al2O3 particles in improving the properties of MgO–C slide plate materials
CN117362014A (zh) 改性结合剂的低碳铝碳砖及其制备方法
CN110255970A (zh) 一种免烧低碳镁碳砖及其制备方法
CN113248269B (zh) 一种添加复合结合剂的镁碳砖及其制备方法
CN112745138B (zh) 一种晶须增强轻量化铝锆碳质耐火材料及其制备方法
CN109400128B (zh) 一种含叶腊石粉体的铝碳质耐火材料及其制备方法
CN109811429B (zh) 含纳米氮化铝和金属镍的碳化硅纤维及其制备方法与应用
CN1185320C (zh) 一种纳米改性酚醛树脂结合剂及其制备方法
CN112094124A (zh) 一种用于耐火材料的碳源及其制备方法
CN111217597A (zh) 一种特种钢连铸用碱性滑板及其制备工艺
Lao et al. Effect of soaking time and molding pressure on in-situ synthesis of β-SiC whiskers in reaction-bonded SiC ceramics
Dou et al. Tailoring layered Csf/SiBCN composites with pseudoplastic fracture behavior: Strengthening and toughening mechanisms

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination