CN117352853A - 一种全固态薄膜锂离子电池及其封装方法 - Google Patents

一种全固态薄膜锂离子电池及其封装方法 Download PDF

Info

Publication number
CN117352853A
CN117352853A CN202311272235.1A CN202311272235A CN117352853A CN 117352853 A CN117352853 A CN 117352853A CN 202311272235 A CN202311272235 A CN 202311272235A CN 117352853 A CN117352853 A CN 117352853A
Authority
CN
China
Prior art keywords
layer
solid
lithium ion
current collector
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311272235.1A
Other languages
English (en)
Inventor
郭航
谢天铮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University
Original Assignee
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University filed Critical Xiamen University
Priority to CN202311272235.1A priority Critical patent/CN117352853A/zh
Publication of CN117352853A publication Critical patent/CN117352853A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • C23C14/0652Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0404Machines for assembling batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • H01M4/0423Physical vapour deposition
    • H01M4/0426Sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

一种全固态薄膜锂离子电池及其封装方法,通过微纳加工技术进行全固态薄膜锂离子电池的逐层制备氧化层、负极集流体层、负极层、固态电解质层、正极层、正极集流体层来实现薄膜锂离子电池的微型化与集成化;同时使用电感耦合等离子体化学气相沉积系统(ICPECVD)制备氮化硅钝化封装层。本发明通过稳定控制氮化硅制备温度在较低的130℃来防止全固态电池的固态电解质层材料在较高沉积温度下离子电导率降低进而影响电池循环性能。制备出的氮化硅薄膜降低了封装的水汽透过率,防止电池中的活性物质在日常使用中与环境中的空气和水分反应,提高电池的可靠性以及使用寿命。

Description

一种全固态薄膜锂离子电池及其封装方法
技术领域
本发明涉及锂离子电池领域,尤其涉及一种全固态薄膜锂离子电池及其封装方法。
背景技术
锂离子电池自20世纪发展起来后,凭借着较长的工作寿命、较高的能量密度和功率密度特点被广泛应用于手机、笔记本电脑等各类电子设备中,在人们日常生活中发挥着重要作用。但由于市场上的大部分锂离子电池采用的是液体电解质,在过度充电、碰撞或者内部短路的情况下容易发生爆炸,并且人们对于数码电子产品充电速率要求的不断提高,使得快充技术对于充电电流的要求也不断提高,电池充电过热也严重影响了传统锂离子电池的安全性能。同时近年来随着MEMS和IC技术的迅速发展,器件朝着微型化、集成化、智能化的方向发展,液体电解质限制了锂离子电池的体积,无法做到微型化与集成化。要从根本上解决传统锂离子电池的上述问题的办法是采用固态电解质,发展全固态锂离子电池。
常用的固态电解质LiPON作为全固态锂离子电池的关键,有着抑制锂枝晶生长和防止电解质泄露的优点。但仍然有许多缺点,其离子导电性相对较低,导致其离子传输速率较慢。其机械性能较差,在应用中易发生开裂、失效。微加工技术制备出的LiPON薄膜厚度在纳米尺度且精度高、层次性好,能完好解决上述问题。
全固态薄膜锂离子电池中的活性物质对于空气和水蒸气十分的敏感,尤其固态电解质LiPON在空气环境下易发生水解,因此选用具有较低水汽透过率的封装材料成为解决问题的关键。中国专利CN 204857873U公开一种全固态薄膜锂离子电池,其采用了首次充电后在阳极集流体Cu板上生成锂阳极的办法,但是只解决了常规阳极材料金属Li对于空气、水蒸气敏感的问题,没有解决固态电解质同样易受空气、水蒸气影响的问题。
中国专利CN105789372A公开了柔性一体化太阳电池/锂离子电池薄膜复合电池的制备方法,其采用聚酯薄膜将柔性一体化电池整体封装即在电池表面涂一层高分子胶,得到的封装层致密度差,稳定性差并且体积较大无法实现薄膜锂离子电池的集成化和微小化。
中国专利CN 102832412A公开了一种全固态薄膜锂离子电池的封装方法,其通过射频磁控溅射方法制备封装材料硅氮化合物,但其制备过程中控制衬底的温度在120~350℃,较高的沉积温度会造成全固态电池的固态电解质层材料离子电导率降低进而影响循环性能的问题。
发明内容
本发明的目的在于解决现有技术中的上述问题,提供一种全固态薄膜锂离子电池及其封装方法,采用微纳加工技术制备全固态薄膜锂离子电池实现薄膜锂离子电池的微型化与集成化;同时使用电感耦合等离子体化学气相沉积系统(ICPECVD)稳定控制氮化硅制备温度在较低的110~130℃来防止全固态电池的固态电解质层材料在较高沉积温度下离子电导率降低进而影响电池循环性能的问题。制备出的氮化硅薄膜降低了封装的水汽透过率,防止电池中的活性物质在日常使用中与环境中的空气和水分反应,提高电池的可靠性以及使用寿命。
为达到上述目的,本发明采用如下技术方案:
一种全固态薄膜锂离子电池,包括从下到上依次设置的硅片衬底、氧化层、负极集流体层、负极层、固态电解质层、正极层和正极集流体层。
所述的全固态薄膜锂离子电池的制备方法,包括以下步骤:
1)通过干氧-湿氧-干氧的氧化步骤将硅片衬底的表面氧化;
2)在氧化层面进行光刻胶的旋涂、光刻、显影、坚膜烘焙,以限定集流体窗口;
3)通过磁控溅射将Ti/Pt薄膜连续溅射在氧化层上作为负极集流体层;
4)去除光刻胶后,重新通过光刻来限定负极窗口,再进行磁控溅射将负极层Li4Ti5O12沉积在负极集流体层的上方;
5)去除光刻胶后,接着进行剩余薄膜窗口的光刻,通过磁控溅射将固态电解质膜LiPON沉积在负极层的上方;
6)通过磁控溅射将正极层LiCO2沉积在固态电解质薄膜上方;
7)通过磁控溅射将正极集流体层Al膜沉积在正极层上方。
步骤4)中,所述负极层的厚度为200~300nm。
步骤5)中,固态电解质层的厚度为150~200nm。
步骤6)中,正极层的厚度为200~300nm。
步骤7)中,正极集流体层的厚度为200~300nm。
一种全固态薄膜锂离子电池的封装方法,将全固态薄膜锂离子电池为衬底,通过电感耦合等离子体增强化学气相沉积,控制衬底温度为110~130℃,在电池器件表面沉积氮化硅封装层。
所述氮化硅封装层的厚度为300~700nm。
相对于现有技术,本发明技术方案取得的有益效果是:
1、本发明采用氮化硅材料进行封装,氮化硅层作为封装层防止电池活性材料与空气、水蒸气的接触,提高了电池的可靠性以及使用寿命。
2、本发明采用电感耦合等离子体增强化学气相沉积能够控制氮化硅的沉积温度在110~130℃,有效解决了其他化学气相沉积技术需在高温的环境下才能进行氮化硅的沉积导致电池的固态电解质层材料离子电导率降低进而影响循环性能的问题。
3、本发明的全固态锂离子电池采用微纳加工技术进行加工制造,不仅能够实现非常高的制造精度,而且制备出的纳米级尺寸薄膜在全固态电池中能够提供较大的比表面积和更短的离子扩散路径,同时高度的集成化能够让电池适应各种应用场合。
附图说明
图1为本发明全固态薄膜锂离子电池的剖面结构示意图;
图2为全固态薄膜锂离子电池的封装示意图;
图3为实施例1所获得的氮化硅封装层的表面以及厚度方向上的扫描电镜图;
图4为全固态电池随LiPON沉积温度变化的CV曲线图。
具体实施方式
为了使本发明所要解决的技术问题、技术方案及有益效果更加清楚、明白,以下结合附图和实施例,对本发明做进一步详细说明。
实施例1
如图1所示为氮化硅封装的微型全固态薄膜锂离子电池结构示意图,依次包括硅片衬底1、氧化层2、负极集流体层3、负极层4、固态电解质层5、正极层6、正极集流体层7,具体的制备步骤如下:
步骤1:选用N型(100)硅片作为衬底(约500μm厚),经过标准清洗和表面活化后,通过干氧-湿氧-干氧的氧化步骤将硅片氧化,氧化层厚度在1μm;
步骤2:在氧化层上进行光刻胶AZ5214的旋涂后,96℃烘6min,选用负极集流体层掩模版来限定集流体窗口进行光刻、通过显影将窗口露出后,进行135℃后烘30min;
步骤3:通过磁控溅射系统JC500-3/D将Ti/Pt薄膜(20nm/200nm厚)连续溅射在硅片上作为负极集流体层;
步骤4:将样品浸入丙酮去除光刻胶后,重新旋涂光刻胶,选用负极层掩模版光刻来限定负极窗口,再进行磁控溅射将负极层Li4Ti5O12沉积在负极集流体层的上方,厚度为250nm;
步骤5:将样品浸入丙酮去除光刻胶后,重新旋涂光刻胶,选用固态电解质层掩模版光刻来限定电解质层窗口,通过在氮气氛围中溅射Li3PO4靶材将固态电解质层LiPON沉积在负极层的上方,厚度为175nm;
步骤6:通过磁控溅射将正极层LiCO2沉积在固态电解质层上方,厚度250nm;
步骤7:通过磁控溅射将正极集流体层Al膜沉积在正极层上方,厚度在250nm,完成未封装的全固态薄膜锂离子电池制备,得到如图1所示的电池结构剖面图;
步骤8:通过控制电感耦合等离子体增强化学气相沉积,温度为130℃、ICP射频功率350W、SiH4(5%)速率145sccm、Ar气速率140sccm、NH3速率8sccm、腔体压力5Pa的条件下,在电池器件表面沉积氮化硅,从而完成器件的制备,得到如图2所示的结构。
参见图3的中A)和B)图,用扫描电子显微镜(SEM)观察和测量本实施例制备的封装材料氮化硅的厚度为692nm,氮化硅层表面的致密度非常高,能够有效的抑制水蒸气和空气的透过。
参见图4,通过控制沉积固态电解质LiPON的沉积温度能够发现随着沉积温度从室温的不断增加,电池的循环性能不断衰减,因此控制氮化硅封装层的沉积温度在较低的温度并且保证氮化硅封装层沉积的可靠性对于全固态电池的性能至关重要。
本发明通过微纳加工技术进行全固态薄膜锂离子电池的逐层制备,包括氧化层、负极集流体层、负极层、固态电解质层、正极层、正极集流体层来实现薄膜锂离子电池的微型化与集成化;同时使用电感耦合等离子体化学气相沉积系统(ICPECVD)制备氮化硅钝化封装层。本发明通过稳定控制氮化硅制备温度在较低的110~130℃来防止全固态电池的固态电解质层材料的失效。制备出的氮化硅薄膜降低了封装的水汽透过率,防止电池中的活性物质在日常使用中与环境中的空气和水分反应,提高电池的可靠性以及使用寿命。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,在本发明的原理之内,还可以做出改进、替代、完善等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种全固态薄膜锂离子电池,其特征在于:包括从下到上依次设置的硅片衬底、氧化层、负极集流体层、负极层、固态电解质层、正极层和正极集流体层。
2.一种如权利要求1所述的全固态薄膜锂离子电池的制备方法,其特征在于,包括以下步骤:
1)通过干氧-湿氧-干氧的氧化步骤将硅片衬底的表面氧化;
2)在氧化层面进行光刻胶的旋涂、光刻、显影、坚膜烘焙,以限定集流体窗口;
3)通过磁控溅射将Ti/Pt薄膜连续溅射在氧化层上作为负极集流体层;
4)去除光刻胶后,重新通过光刻来限定负极窗口,再进行磁控溅射将负极层Li4Ti5O12沉积在负极集流体层的上方;
5)去除光刻胶后,接着进行剩余薄膜窗口的光刻,通过磁控溅射将固态电解质膜LiPON沉积在负极层的上方;
6)通过磁控溅射将正极层LiCO2沉积在固态电解质薄膜上方;
7)通过磁控溅射将正极集流体层Al膜沉积在正极层上方。
3.如权利要求2所述的制备方法,其特征在于:步骤4)中,所述负极层的厚度为200~300nm。
4.如权利要求2所述的制备方法,其特征在于:步骤5)中,固态电解质层的厚度为150~200nm。
5.如权利要求2所述的制备方法,其特征在于:步骤6)中,正极层的厚度为200~300nm。
6.如权利要求2所述的制备方法,其特征在于:步骤7)中,正极集流体层的厚度为200~300nm。
7.一种如权利要求1所述的全固态薄膜锂离子电池的封装方法,其特征在于:将全固态薄膜锂离子电池为衬底,通过电感耦合等离子体增强化学气相沉积,控制衬底温度为110~130℃,在电池器件表面沉积氮化硅封装层。
8.如权利要求7所述的封装方法,其特征在于:氮化硅封装层的厚度为300~700nm。
CN202311272235.1A 2023-09-28 2023-09-28 一种全固态薄膜锂离子电池及其封装方法 Pending CN117352853A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311272235.1A CN117352853A (zh) 2023-09-28 2023-09-28 一种全固态薄膜锂离子电池及其封装方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311272235.1A CN117352853A (zh) 2023-09-28 2023-09-28 一种全固态薄膜锂离子电池及其封装方法

Publications (1)

Publication Number Publication Date
CN117352853A true CN117352853A (zh) 2024-01-05

Family

ID=89370302

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311272235.1A Pending CN117352853A (zh) 2023-09-28 2023-09-28 一种全固态薄膜锂离子电池及其封装方法

Country Status (1)

Country Link
CN (1) CN117352853A (zh)

Similar Documents

Publication Publication Date Title
CN101771168B (zh) 微型锂电池的制备方法
West et al. Fabrication and testing of all solid-state microscale lithium batteries for microspacecraft applications
KR100682883B1 (ko) 고체 전해질, 그의 제조방법 및 이를 채용한 리튬전지 및 박막전지
US7083877B2 (en) All solid state battery with coated substrate
KR100389655B1 (ko) 우수한 사이클링 안정성과 높은 이온 전도도를 갖는리튬-이온 이차 박막 전지
CN101504889B (zh) 应用于微系统的微型超级电容器及其制备方法
JP2013512547A (ja) リチウムイオン電池およびリチウムイオン電池の製造方法
CN102301518A (zh) 薄膜固态锂离子二次电池及其制造方法
CN102301520A (zh) 薄膜固态锂离子二次电池及其制造方法
JP2011508951A (ja) 構造および/または電気化学特性のための均質二重層の固体薄膜蒸着
CN108886150A (zh) 包含具有精细图案的锂金属层及其保护层的二次电池用负极、以及所述负极的制造方法
JPH0927343A (ja) 非水系二次電池及び該電池の作製法
JP2003133420A (ja) 半導体装置
JP2003132941A (ja) コンデンサ一体型の固体電解質二次電池
JPS58126679A (ja) 薄膜リチウム電池の電極形成法
CN117352853A (zh) 一种全固态薄膜锂离子电池及其封装方法
KR100734060B1 (ko) LiPON을 보호막으로 갖는 LLT계 고체 전해질 및 그제조방법
CA3056194C (en) Oxide semiconductor secondary battery
JP2020043006A (ja) 電極膜の形成方法およびリチウム電池
KR0134930B1 (ko) 이차전지용 리튬 망간 산화물 박막전극 및 그 제조방법
CN113903982B (zh) 一种微型全固态锂离子电池及其制备方法
KR100533934B1 (ko) 리튬 이차 전지용 고체 전해질 및 그 제조 방법
JPH04324251A (ja) 固体電解質燃料電池用インターコネクターの製造方法
CN110311163A (zh) 一种基于锂磷氧氮电解质的锂离子电池及其制备方法
KR100533933B1 (ko) 고체 전해질 및 그 제조 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination