CN117303878A - 一种熔融复烧陶瓷颗粒及粘接剂喷射陶瓷的制备 - Google Patents

一种熔融复烧陶瓷颗粒及粘接剂喷射陶瓷的制备 Download PDF

Info

Publication number
CN117303878A
CN117303878A CN202311242352.3A CN202311242352A CN117303878A CN 117303878 A CN117303878 A CN 117303878A CN 202311242352 A CN202311242352 A CN 202311242352A CN 117303878 A CN117303878 A CN 117303878A
Authority
CN
China
Prior art keywords
powder
ceramic
sintering
glass
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311242352.3A
Other languages
English (en)
Inventor
伍尚华
李建斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN202311242352.3A priority Critical patent/CN117303878A/zh
Publication of CN117303878A publication Critical patent/CN117303878A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/001Rapid manufacturing of 3D objects by additive depositing, agglomerating or laminating of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • C04B35/488Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/587Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62665Flame, plasma or melting treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • C04B2235/365Borosilicate glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种熔融复烧陶瓷颗粒及粘接剂喷射陶瓷的制备,涉及增材制造技术领域。本发明提供的陶瓷颗粒是采用熔融复烧的方式,选用具有高烧结活性的陶瓷粉体与玻璃粉体复配,经重新造粒后进行低温熔融烧结,所述低温烧结的温度高于玻璃的软化点温度且低于陶瓷粉体的烧结温度,促使玻璃粉体熔融粘结陶瓷粉体,减小颗粒体积,由此可获得具有高密度、高球形度的陶瓷颗粒;本发明制得的陶瓷颗粒非常适合粘接剂喷射设备的粉床铺粉工作,大大提高了粉床密度,并且保留了陶瓷粉体的高烧结活性。利用本发明制得的陶瓷颗粒作为原料使用粘结剂喷射设备制作坯体,进一步经脱脂、烧结,可得到具有高性能的粘接剂喷射陶瓷件。

Description

一种熔融复烧陶瓷颗粒及粘接剂喷射陶瓷的制备
技术领域
本发明涉及陶瓷增材制造技术领域,尤其涉及一种熔融复烧陶瓷颗粒及粘接剂喷射陶瓷的制备。
背景技术
陶瓷材料具有优异的力学性能、耐化学性和低热膨胀系数,被广泛用于许多行业。复杂形状的陶瓷很难通过传统的成型工艺制造,更适合采用增材制造(AM)技术完成。粘结剂喷射能够构建大而复杂的几何形状的陶瓷零件,此外,在粘结剂喷射技术制造时不需要任何支撑结构,过程更为简单。
然而,采用粘结剂喷射技术制备得到的陶瓷强度非常低,应用范围受到限制。这种低强度是由于几乎不受外力作用的粉床堆积密度有限造成的。为了提高粉体的流动性和堆积密度,通常选用大于20um的粗粉作为打印粉体,大大降低了陶瓷粉体烧结活性,而高密度、高性能陶瓷通常使用亚微米,甚至纳米级粉体原料。许多研究人员专注于不同粒度分布、粘接剂喷射设备的铺粉工艺和胶水饱和度对改善粘结剂喷射技术制造的陶瓷机械性能的影响,提高颗粒堆积密度,从而提高最终产品的性能。由于产品具有较高的孔隙率和较低的力学性能,目前粘接剂喷射技术大多用于制备陶瓷型芯,例如硅基、铝基、锆基陶瓷型芯。
发明内容
本发明所要解决的技术问题是如何提高打印粉体的流动性和堆积密度,提高粘接剂喷射技术制得的陶瓷件的性能。
为了解决上述问题,本发明提出以下技术方案:
第一方面,本发明提出一种熔融复烧陶瓷颗粒的制备方法,包括以下步骤:
S1、按质量份计,将陶瓷粉体50~99份、烧结助剂粉体0.1~20份、玻璃粉体1~50份,混合均匀,干燥过筛,获得混合粉体;
S2、将所述混合粉体重新造粒,得到粒径范围0.1um-150um的造粒粉体,以0.1-60um的粒径范围为较优;
S3、将所述造粒粉体进行低温烧结,所述低温烧结的温度高于玻璃的软化点温度且低于陶瓷粉体的烧结温度,烧结后制得陶瓷颗粒。
需要说明的是,本发明采用熔融复烧的方式,将具有高烧结活性的陶瓷粉体与玻璃粉体复配,重新造粒后进行低温熔融烧结,所述低温烧结的温度高于玻璃的软化点温度且低于陶瓷粉体的烧结温度,由此可获得具有高密度、高球形度的陶瓷颗粒粉体。在低温熔融烧结时,由于毛细管力的作用,熔融玻璃会渗透扩散至陶瓷粉体间隙,使颗粒体积收缩,并粘接陶瓷粉体,从而提高颗粒的密度。
可以理解地,所述步骤S1中,玻璃粉体在原料粉体中的占比不宜过高,以免影响最终陶瓷制品的性能,以玻璃粉体的质量分数=玻璃粉体/(玻璃粉体+烧结助剂粉体+陶瓷粉体)为1%-35%为宜,以5%-25%为较佳。
其进一步地技术方案为,所述步骤S1中的陶瓷粉体粒径为10nm~10um,优选50nm~1um;烧结助剂粉体粒径为10nm~10um,优选50nm~1um;玻璃粉体的粒径为100nm~50um,优选500nm~10um。
其进一步地技术方案为,所述陶瓷粉体选自氧化铝、氧化锆、氮化硅、氮化铝中的至少一种。
其进一步地技术方案为,所述烧结助剂粉体选自MgO、ZrO2、CaO、SiO2、Cr2O3、Al2O3、SrO、BaO、Sc2O3、Y2O3、La2O3、Ce2O3、Sm2O3、Eu2O3、Gd2O3、Dy2O3、Ho2O3、Tm2O3、Lu2O3中的一种或多种。
其进一步地技术方案为,所述玻璃粉体选自高硅氧玻璃、钠钙玻璃、铅硅酸盐玻璃、铝硅酸盐玻璃、硼硅酸盐玻璃、磷酸盐玻璃中的一种或多种。
一般而言,玻璃粉体的主要成份为SiO2,玻璃粉体中的其他成份可包括:MgO、Al2O3、CaO、Na2O、K2O、Li2O、B2O3、P2O5、PbO、CaF2、Y2O3以及其他的金属卤化物、金属氧化物、金属氮化物、稀土卤化物、稀土氧化物、稀土氮化物等中的一种或多种,但不局限于这几种。
其进一步地技术方案为,所述步骤S3中低温烧结的温度为900℃~1600℃。
一般而言,受玻璃粉体成份的限制,玻璃粉体的软化点一般在500~1300℃,因此,所述步骤S3中,进行低温熔融烧结的烧结温度为900℃~1600℃,烧结温度应高于玻璃软化点以使玻璃熔融,促进颗粒体积收缩,同时,该低温熔融烧结温度应低于陶瓷粉体的液相烧结温度。需要说明的是,软化点是利用宏观型差示热分析仪(DTA)测定的第四拐点的温度。
其进一步地技术方案为,所述步骤S2中造粒所用的方法选自干法成型破碎造粒、湿法成型破碎造粒、湿法造粒、流化床造粒、压力喷雾造粒、旋转喷雾造粒、水雾化喷雾造粒、气雾化喷雾造粒、滴淀成型造粒法中的任一种。
需要说明的是,重新造粒后的粉体具有更高的球形度和更好的流动性。在造粒过程中使用有机物作为粘结剂时,需要在进行低温熔融烧结前去除有机物,或者在低温熔融烧结的过程中去除有机物。
第二方面,本发明还提出一种粘接剂喷射成型用的陶瓷粉体,由第一方面所述的熔融复烧陶瓷颗粒的制备方法制得。
第三方面,本发明还提出一种采用粘接剂喷射技术制备高性能陶瓷的方法,包括以下步骤:
以第一方面制得的熔融复烧陶瓷颗粒或者以第二方面所述的粘接剂喷射成型用的陶瓷粉体作为原料进行铺粉,使用粘结剂喷射设备制作得到坯体;对所述坯体进行脱脂、烧结,得到陶瓷件。
本发明通过使用经过熔融复烧的陶瓷颗粒作为铺粉原料用于在粘接剂喷射设备中打印出坯体,再经过脱脂和烧结从而制备高密度、高性能粘接剂喷射陶瓷,在高温烧结时陶瓷颗粒首先作为骨架,在坯体中由于毛细管力作用熔融玻璃会再次渗透扩散,使坯体体积进行收缩,然后当温度达到陶瓷粉体的烧结温度时,在液相的作用下,陶瓷颗粒内的陶瓷粉体进行液相烧结,最终获得具有高密度、高性能的采用粘接剂喷射技术制备的陶瓷。
第四方面,本发明还提出一种采用粘接剂喷射技术制得的高性能陶瓷,由第一方面制得的熔融复烧陶瓷颗粒或者以第二方面所述的粘接剂喷射成型用的陶瓷粉体采用粘接剂喷射成型技术制备得到;或者由第三方面所述的方法制得。
与现有技术相比,本发明所能达到的技术效果包括:
本发明提供的陶瓷颗粒是采用熔融复烧的方式,选用具有高烧结活性的陶瓷粉体与玻璃粉体复配,经重新造粒后进行低温熔融烧结,所述低温烧结的温度高于玻璃的软化点温度且低于陶瓷粉体的烧结温度,促使玻璃粉体熔融粘结陶瓷粉体,减小颗粒体积,由此可获得具有高密度、高球形度的陶瓷颗粒;本发明制得的陶瓷颗粒非常适合粘接剂喷射设备的粉床铺粉工作,大大提高了粉床密度,并且保留了陶瓷粉体的高烧结活性。
利用本发明制得的陶瓷颗粒作为原料使用粘结剂喷射设备制作坯体,进一步经脱脂、烧结,可得到具有高性能的陶瓷件。这是由于在进行烧结时熔融的玻璃首先渗透扩散,通过液相产生的毛细管力进一步提高了陶瓷烧结的起始密度,当温度达到陶瓷的烧结温度后,陶瓷颗粒进行烧结,液相促进了陶瓷的扩散传质,最终获得高密度粘接剂喷射陶瓷。
附图说明
为了更清楚地说明本发明实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例1制备熔融复烧陶瓷颗粒及粘接剂喷射陶瓷的工艺流程示意图;
图2为本发明实施例1制得的氧化铝陶瓷断面的SEM形貌;
图3为本发明实施例1制得的熔融复烧陶瓷颗粒结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对实施例中的技术方案进行清楚、完整地描述。显然,以下将描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
应当理解,当在本说明书和所附权利要求书中使用时,术语“包括”和“包含”指示所描述特征、整体、步骤、操作的存在,但并不排除一个或多个其它特征、整体、步骤、操作和/或其集合的存在或添加。
还应当理解,在此本发明实施例说明书中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本发明实施例。如在本发明实施例说明书和所附权利要求书中所使用的那样,除非上下文清楚地指明其它情况,否则单数形式的“一”、“一个”及“该”意在包括复数形式。
实施例1
参见图1,本发明实施例提供一种熔融复烧陶瓷颗粒及其制备方法,同时,本实施例还提供采用该熔融复烧陶瓷颗粒作为原料制备的粘接剂喷射陶瓷。
本实施例所用原料为:氧化铝粉体,中粒径为200nm;烧结助剂粉体为氧化镁和氧化钇,中粒径分别为50nm和50nm。玻璃粉体为硼硅酸盐玻璃,其粒径为1um。
具体地,本发明实施例提供的熔融复烧陶瓷颗粒制备方法如下:
S1:按质量份计,取氧化铝78份,氧化镁1份,氧化钇1份,玻璃粉20份,以无水乙醇为介质,加入氧化铝磨球,滚筒球磨混合12小时,使用旋转蒸发仪干燥后过100目筛网,获得混合均匀的混合粉体。
S2:采用冷等-破碎造粒的方法,将步骤S1中的混合粉体进行冷等静压处理,将成型块体破碎后过200目筛网,控制粉体的粒径小于74um,得到造粒粉体。
S3:将S2制得的松散的造粒粉体放入马弗炉中进行低温烧结,烧结温度为1100℃,烧结时间为2小时,获得高密度高强度的陶瓷颗粒,测试该陶瓷颗粒的松装密度和振实密度。
本实施例以上述制得的陶瓷颗粒为原料制备粘接剂喷射陶瓷,具体方法如下:
使用商用粘结剂喷射打印机以及商用胶水打印零件,以上述制得的陶瓷颗粒为原料进行铺粉,控制铺粉厚度为150um,并优化打印参数(铺粉速度、喷胶量等),打印出形状和精度良好的陶瓷坯体。
使用马弗炉对上述坯体进行脱脂,脱脂工艺为空气脱脂,600℃保温2小时。然后使用马弗炉对脱脂后的坯体进行烧结,烧结工艺为1600℃烧结2小时,烧结后获得高致密、高性能的氧化铝陶瓷,断面的SEM图见图2,对该氧化铝陶瓷的相对密度和抗弯强度进行测试。
实施例2
本发明实施例提供一种熔融复烧陶瓷颗粒及其制备方法,同时,本实施例还提供采用该熔融复烧陶瓷颗粒作为原料制备的粘接剂喷射陶瓷。
本实施例所用原料为:氮化硅粉体,中粒径为1um。烧结助剂粉体为氧化镁和氧化钇,中粒径分别为50nm和50nm。玻璃粉体为硼硅酸盐玻璃,其粒径为1um。
具体地,本发明实施例提供的熔融复烧陶瓷颗粒制备方法如下:
S1:按质量份计,取氮化硅84份,氧化镁3份,氧化钇3份,玻璃粉10份,以无水乙醇为介质,加入氮化硅磨球,滚筒球磨混合12小时,使用旋转蒸发仪干燥后过100目筛网,获得混合均匀的混合粉体。
S2:采用冷等-破碎造粒的方法,将步骤S1中的混合粉体进行冷等静压处理,将成型块体破碎后过200目筛网,控制粉体的粒径小于74um,得到造粒粉体。
S3:将S2制得的松散的造粒粉体放入气氛烧结炉在0.1MPa的氩气气氛中进行低温烧结,烧结温度为1100℃,烧结时间为2小时,获得陶瓷颗粒,测试该陶瓷颗粒的松装密度和振实密度。
本实施例以上述制得的陶瓷颗粒为原料制备粘接剂喷射陶瓷,具体方法如下:
使用商用粘结剂喷射打印机以及商用胶水打印零件,以上述制得的陶瓷颗粒为原料进行铺粉,控制铺粉厚度为150um,并优化打印参数(铺粉速度、喷胶量等),打印出形状和精度良好的陶瓷坯体。
使用马弗炉对上述坯体进行脱脂,脱脂工艺为真空脱脂和空气脱脂两步脱脂法,脱脂温度均为550℃,保温2小时。然后使用气氛烧结炉对脱脂后的坯体进行烧结,烧结工艺为1800℃烧结2小时,烧结后获得高致密、高性能的氮化硅陶瓷,对该氮化硅陶瓷的相对密度和抗弯强度进行测试。
对比例1
对比例1所用的陶瓷粉体原料为氧化铝粉体,中粒径为45um。烧结助剂粉体为氧化镁和氧化钇,中粒径分别为50nm和50nm。与实施例1相比,原料中不含玻璃粉体。
对比例1提供的粘接剂喷射陶瓷的制备方法如下:
按质量份计,取氧化铝98份,氧化镁1份,氧化钇1份,以无水乙醇为介质,加入氧化铝磨球,滚筒球磨混合12小时,使用旋转蒸发仪干燥后获得混合均匀的混合粉体,测试该混合粉体的松装密度和振实密度。
使用商用粘结剂喷射打印机以及商用胶水打印零件,以上述混合粉体为原料进行铺粉,控制铺粉厚度为150um,并优化打印参数(铺粉速度、喷胶量等),打印出形状和精度良好的陶瓷坯体。
使用马弗炉对上述坯体进行脱脂,脱脂工艺为空气脱脂,600℃保温2小时。然后使用马弗炉对脱脂后的坯体进行烧结,烧结工艺为1600℃烧结2小时,烧结后获得粘接剂喷射成型的氧化铝陶瓷,对该氧化铝陶瓷的相对密度和抗弯强度进行测试。
对比例2
对比例2所用的陶瓷粉体原料为氧化铝粉体,中粒径为200nm。烧结助剂粉体为氧化镁和氧化钇,中粒径分别为50nm和50nm。与实施例1相比,原料中不含玻璃粉体。
对比例2提供的陶瓷的制备方法如下:
按质量份计,取氧化铝98份,氧化镁1份,氧化钇1份,以无水乙醇为介质,加入氧化铝磨球,滚筒球磨混合12小时,使用旋转蒸发仪干燥后获得混合均匀的混合粉体,测试该混合粉体的松装密度和振实密度。
使用马弗炉对上述混合粉体进行松装烧结(将混合粉体倒入坩埚内,不施加压力,不振实),烧结工艺为1600℃烧结2小时,烧结后获得氧化铝陶瓷,对该氧化铝陶瓷的相对密度和抗弯强度进行测试。
需要说明的是,本对比例中,由于陶瓷粉体为纳米级粉体,具有非常差的流动性,无法直接在粘接喷射打印机上进行铺粉,因此,对比例2使用松装烧结的方式模拟。
对比例3
对比例3所用的陶瓷粉体原料为氧化铝粉体,中粒径为200nm。烧结助剂为氧化镁和氧化钇,中粒径分别为50nm和50nm。与实施例1相比,原料中不含玻璃粉体。
对比例3提供的陶瓷的制备方法如下:
按质量份计,取氧化铝98份,氧化镁1份,氧化钇1份,以无水乙醇为介质,加入氧化铝磨球,滚筒球磨混合12小时,使用旋转蒸发仪干燥后获得混合均匀的混合粉体。
对上述混合粉体采用搅拌挤压造粒的方式进行造粒,胶水加入量为粉体质量的10%,然后使用筛网去除大于74um的颗粒,得到粘接剂用粉体,测试该粉体的松装密度和振实密度。
随后,使用商用粘结剂喷射打印机以及商用胶水打印零件,以上述粉体为原料进行铺粉,控制铺粉厚度为150um,并优化打印参数(铺粉速度、喷胶量等),打印出形状和精度良好的陶瓷坯体。
使用马弗炉对上述坯体进行脱脂,脱脂工艺为空气脱脂,600℃保温2小时。然后使用马弗炉对脱脂后的坯体进行烧结,烧结工艺为1600℃烧结2小时,烧结后获得粘接剂喷射成型的氧化铝陶瓷,对该氧化铝陶瓷的相对密度和抗弯强度进行测试。
对比例4
对比例4所用的陶瓷粉体原料为氧化铝粉体,中粒径为200nm。烧结助剂粉体为氧化镁和氧化钇,中粒径分别为50nm和50nm。与实施例1相比,原料中不含玻璃粉体。
对比例4提供的陶瓷的制备方法如下:
按质量份计,取氧化铝98份,氧化镁1份,氧化钇1份,以无水乙醇为介质,加入氧化铝磨球,滚筒球磨混合12小时,使用旋转蒸发仪干燥后获得均匀混合粉体。
对上述混合粉体采用搅拌挤压造粒的方式进行造粒,胶水加入量为粉体质量的10%。然后使用筛网去除大于74um的颗粒,得到造粒粉体。
将松散的造粒粉体放入马弗炉中进行低温烧结,烧结温度为1100℃,时间为2小时,获得预烧粉,测试该粉体的松装密度和振实密度。
随后,使用商用粘结剂喷射打印机以及商用胶水打印零件,以上述粉体为原料进行铺粉,控制铺粉厚度为150um,并优化打印参数(铺粉速度、喷胶量等),打印出形状和精度良好的陶瓷坯体。
使用马弗炉对上述坯体进行脱脂,脱脂工艺为空气脱脂,600℃保温2小时。然后使用马弗炉对脱脂后的坯体进行烧结,烧结工艺为1600℃烧结2小时,烧结后获得粘接剂喷射成型的氧化铝陶瓷,对该氧化铝陶瓷的相对密度和抗弯强度进行测试。
对比例5
对比例5所用的陶瓷粉体原料为氧化铝粉体,中粒径为200nm。烧结助剂为氧化镁和氧化钇,中粒径分别为50nm和50nm。玻璃粉体为硼硅酸盐玻璃,其粒径为1um。
对比例5提供的陶瓷的制备方法如下:
按质量份计,取氧化铝78份,氧化镁1份,氧化钇1份,玻璃粉20份,以无水乙醇为介质,加入氧化铝磨球,滚筒球磨混合12小时,使用旋转蒸发仪干燥后过100目筛网,获得混合均匀的混合粉体。
采用冷等-破碎造粒的方法,将上述混合粉体进行冷等静压处理,将成型块体破碎后过200目筛网,控制粉体的粒径小于74um,得到造粒粉体,测试该造粒粉体的松装密度和振实密度。
使用商用粘结剂喷射打印机以及商用胶水打印零件,以上述造粒粉体为原料进行铺粉,控制铺粉厚度为150um,并优化打印参数(铺粉速度、喷胶量等),打印出形状和精度良好的陶瓷坯体。
使用马弗炉对上述坯体进行脱脂,脱脂工艺为空气脱脂,600℃保温2小时。然后使用马弗炉对脱脂后的坯体进行烧结,烧结工艺为1600℃烧结2小时,烧结后获得粘接剂喷射成型的氧化铝陶瓷,对该氧化铝陶瓷的相对密度和抗弯强度进行测试。
与实施例1相比,对比例5的制备方法中,不含低温烧结的步骤。
本发明实施例1~2以及对比例1~5中的打印用粉体的松装密度和振实密度测试结果以及烧结后样品的相对密度和抗弯强度的测试结果见表1。
表1本发明实施例1~2与对比例1~5中的相关测试结果
松装密度(%) 振实密度(%) 相对密度(%) 抗弯强度(MPa)
实施例1 30 40 85 180
实施例2 25 35 85 480
对比例1 43 52 60 60
对比例2 14 19 45 35
对比例3 15 20 50 40
对比例4 15 20 50 40
对比例5 15 20 55 50
由上述表1结果可知,实施例1~2的测试结果表明采用本发明制备的陶瓷颗粒具有良好松装密度和振实密度,可以实现较高的粉床填充密度。同时,使用本发明制备的陶瓷颗粒利用粘接剂喷射成型方法制备的陶瓷具有高密度和高性能,这得力于陶瓷颗粒在低温熔融烧结过程中玻璃粉体形成液相使颗粒发生收缩而提高颗粒密度,从而提高陶瓷颗粒的松装密度和振实密度,这也就意味着该陶瓷颗粒具有更高的粉床密度。而对比例2~5的打印用粉体的松装密度和振实密度非常低。
进一步比较陶瓷制品的相对密度和抗弯强度数据,实施例1-2的陶瓷颗粒制得的坯体在烧结时,在坯体中由于毛细管力作用,颗粒中的熔融玻璃再次渗透扩散,使坯体进行收缩,当温度达到陶瓷的烧结温度后,进行陶瓷烧结致密化,这不仅使陶瓷在正式烧结前有了更高的起始密度,而且没有影响陶瓷的烧结活性,甚至通过液相强化了陶瓷的致密化过程。因此,本发明实施例1中的粘接剂喷射氧化铝陶瓷具有高密度和高强度,实施例2中粘接剂喷射氮化硅陶瓷具有高密度和高强度。
在对比例1中,虽然铺粉的粉体松装密度和振实密度非常高,但是45um球形氧化铝粉体的烧结活性太低,即使加入烧结助剂,得到的陶瓷制品也远低于实施例1的相对密度和抗弯强度。在对比例2中,虽然使用了高烧结活性的纳米粉体原料,但是无法铺粉,松装密度和振实密度极低,导致无法打印,松装烧结的致密度也极低,强度也极低。对比例4相比于对比例3而言,虽然进行了同实施例1中的低温烧结,但是氧化铝粉体没有发生烧结,对粉体基本无任何改变。对比例5中,加入了玻璃粉体,但是没有对混合的粉体进行低温熔融烧结,松装密度和振实密度极低,打印件烧结后的致密度也极低,强度也极低。可见实施例1-2中,玻璃的加入与低温烧结相结合后,打印体的起始密度提高,最终的烧结密度提高,强度增加。实施例1~2中,陶瓷颗粒由于玻璃粉体在高温下发生软化从而将陶瓷粉体包覆,冷却后形成玻璃粘接陶瓷的颗粒,颗粒收缩,密度增加,强度大大提高,而未经低温烧结的造粒粉体很脆弱,容易被破坏,本发明熔融复烧的陶瓷颗粒原理图如图3所示,这种颗粒具有更高的稳定性,更适合采用粘接剂喷射技术制备高性能陶瓷的产业化。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详细描述的部分,可以参见其他实施例的相关描述。
以上所述,为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (9)

1.一种熔融复烧陶瓷颗粒的制备方法,其特征在于,包括以下步骤:
S1、按质量份计,将陶瓷粉体50~99份、烧结助剂粉体0.1~20份、玻璃粉体1~50份,混合均匀,干燥过筛,获得混合粉体;
S2、将所述混合粉体重新造粒,得到粒径范围0.1um-150um的造粒粉体;
S3、将所述造粒粉体进行低温烧结,所述低温烧结的温度高于玻璃的软化点温度且低于陶瓷粉体的烧结温度,烧结后制得陶瓷颗粒;
所述步骤S1中的陶瓷粉体粒径为10nm~10um;烧结助剂粉体粒径为10nm~10um;玻璃粉体的粒径为100nm~50um。
2.如权利要求1所述的熔融复烧陶瓷颗粒的制备方法,其特征在于,所述陶瓷粉体选自氧化铝、氧化锆、氮化硅、氮化铝中的至少一种。
3.如权利要求1所述的熔融复烧陶瓷颗粒的制备方法,其特征在于,所述烧结助剂粉体选自MgO、ZrO2、CaO、SiO2、Cr2O3、Al2O3、SrO、BaO、Sc2O3、Y2O3、La2O3、Ce2O3、Sm2O3、Eu2O3、Gd2O3、Dy2O3、Ho2O3、Tm2O3、Lu2O3中的一种或多种。
4.如权利要求1所述的熔融复烧陶瓷颗粒的制备方法,其特征在于,所述玻璃粉体选自高硅氧玻璃、钠钙玻璃、铅硅酸盐玻璃、铝硅酸盐玻璃、硼硅酸盐玻璃、磷酸盐玻璃中的一种或多种。
5.如权利要求1所述的熔融复烧陶瓷颗粒的制备方法,其特征在于,所述步骤S3中低温烧结的温度为900℃~1600℃。
6.如权利要求1所述的熔融复烧陶瓷颗粒的制备方法,其特征在于,所述步骤S2中造粒所用的方法选自干法成型破碎造粒、湿法成型破碎造粒、湿法造粒、流化床造粒、压力喷雾造粒、旋转喷雾造粒、水雾化喷雾造粒、气雾化喷雾造粒、滴淀成型造粒法中的任一种。
7.一种粘接剂喷射成型用的陶瓷粉体,其特征在于,由权利要求1-6任一项所述的熔融复烧陶瓷颗粒的制备方法制得。
8.一种采用粘接剂喷射技术制备高性能陶瓷的方法,其特征在于,包括以下步骤:
以权利要求1-6任一项制得的熔融复烧陶瓷颗粒或者以权利要求7所述的粘接剂喷射成型用的陶瓷粉体作为原料进行铺粉,使用粘结剂喷射设备制作得到坯体;对所述坯体进行脱脂、烧结,得到陶瓷件。
9.一种采用粘接剂喷射技术制得的高性能陶瓷,其特征在于,由权利要求1-6任一项制得的熔融复烧陶瓷颗粒或者以权利要求7所述的粘接剂喷射成型用的陶瓷粉体采用粘接剂喷射成型技术制备得到;或者由权利要求8的方法制得。
CN202311242352.3A 2023-09-25 2023-09-25 一种熔融复烧陶瓷颗粒及粘接剂喷射陶瓷的制备 Pending CN117303878A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311242352.3A CN117303878A (zh) 2023-09-25 2023-09-25 一种熔融复烧陶瓷颗粒及粘接剂喷射陶瓷的制备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311242352.3A CN117303878A (zh) 2023-09-25 2023-09-25 一种熔融复烧陶瓷颗粒及粘接剂喷射陶瓷的制备

Publications (1)

Publication Number Publication Date
CN117303878A true CN117303878A (zh) 2023-12-29

Family

ID=89287798

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311242352.3A Pending CN117303878A (zh) 2023-09-25 2023-09-25 一种熔融复烧陶瓷颗粒及粘接剂喷射陶瓷的制备

Country Status (1)

Country Link
CN (1) CN117303878A (zh)

Similar Documents

Publication Publication Date Title
CN1330016C (zh) 含有玻璃基体和陶瓷纤维的固体氧化物燃料电池密封材料及其制备方法
US20230331632A1 (en) Nanoporous ceramic for atomization core and preparation method thereof
EP2749544A1 (en) A glaze composition, method for manufacturing the glaze composition and methods of glazing
CN113511886A (zh) 陶瓷雾化芯及其制备方法
CN114315162A (zh) 一种无铅硼硅玻璃基陶瓷复合材料及其制备方法
WO2024124786A1 (zh) 一种金属化多孔陶瓷复合材料及其制备方法
CN114573323A (zh) 一种3dp成型的高致密卫生陶瓷及其制备方法
CN109336562B (zh) 一种氧化铝基陶瓷复合材料的制备方法
CN109320257B (zh) 一种高强度高孔隙率多孔氮化硅陶瓷的制备方法
KR20070096131A (ko) 소결 지르코늄실리케이트 비드의 제조 방법 및 이 제조방법에 의해 제조된 소결 지르코늄실리케이트 비드
CN117303878A (zh) 一种熔融复烧陶瓷颗粒及粘接剂喷射陶瓷的制备
CN100509692C (zh) 一种钨刚玉陶瓷材料及低温烧结方法
JP2002226285A (ja) 軽量セラミックス部材およびその製造方法
CN108516807A (zh) 一种汽车压力传感器用氧化铝陶瓷的制备方法
Lee et al. Shrinkage‐free, alumina–glass dental composites via aluminum oxidation
CN100412033C (zh) 一种大尺寸储能介质陶瓷的制备方法
CN111943690B (zh) 一种莫来石混合粉及其制备方法和在3d打印中的应用
CN107555803A (zh) 一种玻璃粉料、其制备方法及应用
CN113213905A (zh) 一种堇青石基微晶玻璃结合Al2O3-SiO2系统陶瓷材料及其制备方法
KR20170077972A (ko) 고강도 도자기의 제조방법
CN117602948A (zh) 一种基于粘接剂喷射成型的大型多孔人造骨及其制备方法
CN117303877A (zh) 一种基于粘结剂喷射技术制备高性能结构陶瓷的方法
Shyu et al. Effect of particle size on the sintering of Li 2 O-Al 2 O 3-4SiO 2-borosilicate glass composites
KR102362587B1 (ko) 3d 프린팅에 사용할 수 있는 주물사 및 그의 제조방법
CN109320263A (zh) 烧结助剂与石英陶瓷及其制备与应用方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination