CN117247282A - 一种微波烧结油基岩屑残渣陶粒支撑剂及其制备方法 - Google Patents

一种微波烧结油基岩屑残渣陶粒支撑剂及其制备方法 Download PDF

Info

Publication number
CN117247282A
CN117247282A CN202311207453.7A CN202311207453A CN117247282A CN 117247282 A CN117247282 A CN 117247282A CN 202311207453 A CN202311207453 A CN 202311207453A CN 117247282 A CN117247282 A CN 117247282A
Authority
CN
China
Prior art keywords
sintering
rock debris
proppant
preparation
zro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311207453.7A
Other languages
English (en)
Inventor
杨元意
陈虹先
雷证寰
刘洪武
宋力
方婉霞
李才英
杨婷婷
李辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Petroleum University
Original Assignee
Southwest Petroleum University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Petroleum University filed Critical Southwest Petroleum University
Priority to CN202311207453.7A priority Critical patent/CN117247282A/zh
Publication of CN117247282A publication Critical patent/CN117247282A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/009Porous or hollow ceramic granular materials, e.g. microballoons
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/131Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/132Waste materials; Refuse; Residues
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/132Waste materials; Refuse; Residues
    • C04B33/138Waste materials; Refuse; Residues from metallurgical processes, e.g. slag, furnace dust, galvanic waste
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/32Burning methods
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/195Alkaline earth aluminosilicates, e.g. cordierite or anorthite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62204Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products using waste materials or refuse
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/80Compositions for reinforcing fractures, e.g. compositions of proppants used to keep the fractures open
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/667Sintering using wave energy, e.g. microwave sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明提出一种微波烧结油基岩屑残渣陶粒支撑剂及其制备方法。该方法制备出的陶粒支撑剂具有制备成本低、制备过程耗能少、焙烧效率高的优点;69MPa下的破碎率、酸溶度、浊度、圆球度均满足SY/T5108‑2014的规范要求。实现了通过制备一种绿色环保、工艺简单、耗能量少、资源化利用率高的陶粒支撑剂,进而解决油基岩屑残渣大量堆积的问题,同时还能够有效降低现有页岩气开采过程中,陶粒支撑剂的应用成本过高的问题。

Description

一种微波烧结油基岩屑残渣陶粒支撑剂及其制备方法
技术领域
本发明属于石油、环保和建材领域,具体是一种微波烧结制备油基岩屑残渣陶粒支撑剂及其制备的方法。
背景技术
当前,中国页岩气勘探开发正处于高速发展阶段,在页岩气的大规模开发过程中,不可避免的产生油基钻井液与岩石碎屑粘连而成的固体废弃物,称为“油基岩屑”,油基岩屑是油气田钻井过程中产生的一种危险废物,其成分十分复杂,通常是由石油烃类、钻屑、水、大分子有机物等杂质组成,这些成分使得油基岩屑具有一定的生物或化学毒性,其中的石油烃类污染物在环境中极难被降解,对生态环境的影响较大。热脱附处理技术因对油类物质回收效率高、处理过程污染风险小,成为了目前油田唯一大规模工业化实施的油基岩屑处置方案,但经过热脱附处理后的油基岩屑热解残渣仍然残留少量的石油烃类物质和部分重金属离子,因而它的环境风险并未完全解除。油基岩屑残渣的不妥善处理将会造成土地资源的浪费、污染物的富集、重金属的浸出泄露等环境安全风险。因此,急需寻找一种绿色、经济、吃屑量大、资源化利用率高的处理方式实现油基岩屑残渣的资源化处理。
在开采资源时,为保证石油天然气的开采作业顺利进行,通常需要将支撑剂注入压裂液中。质量好的支撑剂不仅可以承受较强的闭合应力,还有较为优秀的裂缝导流能力。目前在我国石油天然气开采选择支撑剂时主要以陶粒支撑剂为主。相对于石英砂支撑剂,陶粒支撑剂的硬度、圆球度、抗腐蚀性等性能更加良好,更能满足石油天然气的开采要求。陶粒支撑剂的原料一般是含铝矿物、工业废弃物等,通过添加一些辅助配料,进行特定的加工处理后,形成一种耐高温、耐高压、低密度的支撑剂。因此,开发一种利用页岩气油基岩屑残渣制备陶粒支撑剂,可实现油基岩屑残渣的无害化、经济、吃屑量大、资源化利用率高的处理的同时,拓展油基岩屑残渣的综合利用途径,同时降低页岩气压裂作业的成本。
专利CN202110476448.0,名为“一种利用油基岩屑制备支撑剂生产原料的方法”的中国专利公开了一种利用油基岩屑制备支撑剂生产原料的方法,包括如下步骤:(1)油基岩屑组分确定及定量化表征;(2)重质组分BaSO4的分离及收集;(3)重质组分磁性矿物的分离及收集;(4)骨架物料补充;(5)成孔剂添加;(6)球磨混料。该发明可将油基岩屑处理成为低密度支撑剂生产原料并回收BaSO4,实现了油基岩屑的无害化处理及资源化利用,降低了油基岩屑环境污染的风险及支撑剂的生产成本。专利CN1067473761A,名为“一种具有亲油特性的陶粒支撑剂及其制备方法”的中国专利公开了发明公开了一种具有亲油特性的陶粒压裂砂,利用热解析后油基钻屑残渣、钾长石、铝矾土、膨润土的不同配比,还通过添加少量的废玻璃粉提高陶粒压裂砂的性能,并且通过铝酸醋偶联剂的负载使制备的陶粒压裂砂具有亲油特性。该发明所述的具有亲油特性的陶粒压裂砂,具有抗压强度大、密度低,适应闭合压力高,渗透能力低的特点,并且陶粒支撑剂的烧结温度相对较低,范围在1040~1260℃之间,在节能同时达到破碎率小的效果。
针对上述背景的调研中可以发现,目前已有少量公开资料针对油田废弃物制备陶粒展开了研究,但在所有利用油基废弃物制备陶粒支撑剂的研究中,大部分为直接采用油基岩屑作为支撑剂的制备的原材料,且使用传统的马弗炉加热烧结进行陶粒支撑剂的制备,其制备过程存在加热不均匀、能耗高、产品性能偏低等问题,并且支撑剂除岩屑外的组成材料大多非工业固废,从而成本通常较高,且无法达到协同消纳固废和节约原材料成本的目的。鉴于此,本专利采用微波烧结技术制备油基岩屑残渣陶粒支撑剂,微波烧结技术是样品依靠吸波介质损耗吸收能量,即原材料在微观尺度与微波发生耦合作用,从样品内部产生热量来对物体进行加热的过程。微波烧结可以有效降低反应所需要的活化能,降低烧结温度,加快烧结进程,缩短烧结时间和耗能。为了实现微波快速烧结,将ZrO2砂与支撑剂生料球按1:1的质量比进行混合,以保证支撑剂能够受热均匀。同时,本专利将制备工艺与材料性能优化相结合,通过引入ZrO2和LiF作为外加剂,其中ZrO2作为吸波剂和晶核剂,除了在烧结过程中降低材料的烧结不均现象的出现,避免由热应力引起的材料性能受损,而且能有效降低烧结所需活化能,提高烧结速率;还能作为晶核剂和助熔剂,与材料中的Fe2O3协同作用,加快基体高温下的成核速度,利于刚玉、钡长石的析出,促进基体强度的生长。而加入的LiF作为晶核剂,促进样品中钡长石的析出。最后利用低品位铝矾土,油基岩屑残渣、废铝灰、煤矸石、湿法冶金锰渣,针对油基岩屑残渣的矿物组成,进行配料分析,制备出体积密度1.17~1.34g/cm3,视密度2.31~2.62g/cm3,69MPa下的破碎率为2.3~5.1%,酸溶度2.0~4.1%,浊度20~60FTU,圆球度>0.9均满足SY/T 5108-2014对陶粒支撑剂要求。
发明内容
为了解决油基岩屑残渣的大量堆积,同时避免在使用传统的马弗炉在烧结过程存在加热不均匀、能耗高、产品性能偏低等问题,本发明提出一种微波烧结油基岩屑残渣陶粒支撑剂及其制备方法。该方法制备出的陶粒支撑剂具有制备成本低、制备过程耗能少、焙烧效率高的优点;69MPa下的破碎率、酸溶度、浊度、圆球度均满足SY/T 5108-2014的规范要求。实现了通过制备一种绿色环保、工艺简单、耗能量少、资源化利用率高的陶粒支撑剂,进而解决油基岩屑残渣大量堆积的问题,同时还能够有效降低现有页岩气开采过程中,陶粒支撑剂的应用成本过高的问题。
本发明的技术方案是:添加低品位铝矾土、废铝灰、煤矸石、湿法冶金锰渣,协同处理油基岩屑残渣,通过气流磨研磨原材料预处理工艺,达到了细化、均化原材料,并提高了反应活性,同时利用喷雾干燥-强力混料机联合制粒。陶粒支撑剂的各组分所占比例按干燥质量记为:油基岩屑残渣:40~60份,低品位铝矾土:10~20份,废铝灰:30~40份,煤矸石:5~10份,湿法冶金锰渣:10~15份,其中,通过加入ZrO2和LiF优化原材料配方,有效促进陶粒支撑剂强度的发展。另外,为了获得性能较好的陶粒支撑剂(本发明的特点),采用微波烧结法实现陶粒支撑剂的快速高效制备。并且利用ZrO2砂作为辅助加热材料,降低烧结能耗、加速烧结速度、缩短烧结周期,改善由电阻炉焙烧时的出现的温度分布不均。综上所述,本发明通过原材料配比、矿物组成设计、生料球球体制备、梯度烧结和分步冷却设计,成功烧制出以刚玉、钡长石为主要晶相的陶粒支撑剂。
发明效果
油基岩屑残渣:40~60份,低品位铝矾土:10~20份,废铝灰:30~40份,煤矸石:5~10份,湿法冶金锰渣:10~15份;通过喷雾干燥-强力混料机联合制粒的方法制备出的陶粒支撑剂具有粒径可控、圆球度高、粒型系数低的特点;利用微波烧结法进行焙烧,使其在制备过程中具有烧结周期短、烧结耗能低的特点,辅以氧化锆作为加热材料,避免样品中出现热应力过大、烧结不均等现象。最终制备出体积密度1.17~1.34g/cm3,视密度2.31~2.62g/cm3,69MPa下的破碎率为2.3~5.1%,酸溶度2.0~4.1%,浊度20~60FTU,圆球度>0.9均满足SY/T 5108-2014对陶粒支撑剂要求;
本发明与现有技术相比具有以下优点:
(1)本发明提出了一种微波烧结油基岩屑残渣陶粒支撑剂及其制备方法,该方法中主要采用喷式气流磨对支撑剂生料混合物进行研磨、均化;将原料按配比称取后放入粉碎腔内部,利用物料在高速气流的作用下,获得巨大的动能,在粉碎室中造成物料颗粒之间的高速碰撞、剧烈摩擦,同时利用高速气流对物料产生的剪切作用,从而实现物料的粉碎;在高速气流的冲击下,物料颗粒之间相互撞击,使得粉料得到充分混合,以达到物料均化的目的。该研磨方法破碎得到的粉末具有表面光滑,颗粒形状规整,活性大,分散性好的优点;
(2)本发明提出了一种喷雾干燥-强力混料机联合制粒的工艺方法,本发明首先使用喷雾干燥制粒机进行陶粒支撑剂生坯球成核,随后将成核颗粒放入强力混料机中,加入雾化水和生坯粉末以调控生坯球粒径并进行生坯球的抛光,利用该方法保证生坯球具有统一质量、高圆球度、高成球效率;
(3)本发明提出了一种微波烧结油基岩屑残渣陶粒支撑剂及其制备方法,该方法中主要采用微波烧结法进行陶粒支撑剂的制备,微波烧结法主要是依靠材料本身的介质损耗吸收微波能量,即在微观尺度下与微波发生耦合作用,从内部产生热量来对物体进行加热的过程。微波与材料的耦合作用能将微波的电磁能转化为热能,可将材料吸收的电磁能全部用于自身加热,具有能量损失少、利用率高的优点,可以比传统的烧结方法节能80%左右。并且微波烧结技术通过控制输入设备的入射功率来控制温度的升降,密闭的金属炉腔内只有被加热的材料可以吸收微波产生热量,炉腔内的空气和炉体基本不升温,热惯性比较小,可选择性加热;
(4)本发明提出了一种微波烧结油基岩屑残渣陶粒支撑剂及其制备方法,该方法中添加ZrO2作为晶核剂、助熔剂和吸波剂,ZrO2作为吸波剂时,作为一种混合吸收体,高温下(1000℃)具有热剧变性能,可使其介电损耗在高温时剧烈增大而产生热量,不但可以明显改善材料的烧结不均现象,避免由热应力引起的材料性能受损,而且能有效降低烧结所需活化能,减少耗能;ZrO2作为晶核剂,与材料中的氧化铁协同作用,加快基体高温下的成核速度,利于刚玉、钡长石的析出,从而促进基体强度的发展;
(5)本发明提出了一种微波烧结油基岩屑残渣陶粒支撑剂及其制备方法,利用ZrO2砂作为微波加热辅助材料,将ZrO2砂与支撑剂生料球按1:1的质量比混合,是由于ZrO2的介电损耗在高温时剧烈增大而产生热量,利用ZrO2砂产生热能对支撑剂生料球进行加热,使得样品能均匀受热。当ZrO2砂与支撑剂生料球质量比过大时,易造成ZrO2砂的浪费,并且会降低支撑剂的烧成速率;当该质量比过小时,由于ZrO2砂与支撑剂生料球的接触面积减小,使得加热速率显著下降,且制备出的支撑剂性能较差;
(6)本发明提出了一种微波烧结油基岩屑残渣陶粒支撑剂及其制备方法,该方法中添加LiF作为晶核剂。碱金属Li+可以破坏玻璃网络结构的完整性,降低液相的黏性,降低样品烧结温度。同时,氟会取代—Si—O中的氧成为—Si—F。氟离子的断网作用,会促使玻璃的结构由层状向短链状发展,同时非桥联的键使得玻璃网络聚合度降低,使得硅铝结构由二维向三维转变变得容易,促使钡长石的生成;
(7)本发明提出了一种微波烧结油基岩屑残渣陶粒支撑剂及其制备方法,其原料中工业固废为90%,产品附加值高,制备成本低,制备出体积密度1.17~1.34g/cm3,视密度2.31~2.62g/cm3,69MPa下的破碎率为2.3~5.1%,酸溶度2.0~4.1%,浊度20~60FTU,圆球度>0.9均满足SY/T 5108-2014对陶粒支撑剂要求;
(8)本发明一种微波烧结油基岩屑残渣陶粒支撑剂及其制备方法,其主要矿物组为钡长石、刚玉及氧化锆。
附图说明
图1为陶粒支撑剂的制备工艺流程,表1是各实施实例的效果说明,图2、3分别是各实例的XRD图;图4为最佳条件下的SEM图;图5为微波烧结炉;图6为烧结支撑剂样品。下面将结合附表和图对具体实施方式进行说明。
表1.各实施实例的技术指标
具体实施方法
为了更好地理解本发明,下面结合实例对本发明作进一步的详细说明,但本发明的内容不仅仅局限于下面的实施例。
实施例1
本实例中按原料重量份数(以干燥状态计)如下:油基岩屑残渣:55份,低品位铝矾土:10份,废铝灰:30份,煤矸石:5份、湿法冶金锰渣:10份、ZrO2粉末:2份、LiF粉末:1份。具体步骤如下:
a.研磨:根据设计的材料配比称取相应的油基岩屑残渣、低品位铝矾土、废铝灰、煤矸石、湿法冶金锰渣放入对喷式气流磨中,以氮气为研磨介质,设定研磨腔压力为0.6~1MPa,在分选轮频率为20~40Hz范围内进行研磨。将研磨之后的样品置于电热鼓风干燥箱,在105±5℃温度下烘干至恒重。
b.原材料混合与造粒:按照材料配比称取0.2~1.0份的玉米淀粉、1~4份ZrO2、2~5份LiF、70~90份支撑剂粉料与水制备成含量为50%~60%的溶液,将混合好的原料溶液放入干燥器的离心雾化器中,开启蒸汽阀门及高压气泵阀门,待物料温度达到预定温度后,启动喷雾程序,使粉末聚合成核;随后将收集到的成核颗粒倒入强力混料机中并加入雾化水和坯体粉料制备支撑剂生料球,待生料球生长到直径为0.425mm~0.850mm后,强力混料机停止工作,最终将获得的目标粒径的生坯球置于电热鼓风干燥箱,在105±5℃温度下烘干至恒重。
c.焙烧:将制备好的生料球球放入微波烧结炉中进行焙烧,将氧化锆颗粒作为辅助加热材料与生料球按1:1的质量比进行混合。烧结制度为:烧成制度为:从400℃以30℃/min的速度升温至500℃,并在500℃保温10min,然后从500℃以30℃/min的速度升温至700℃,并在700℃保温10min,接着从700℃以20℃/min的速度升温至950℃,并在最终烧结温度处保温30min。
d.冷却:对焙烧完成后处于高温状态的陶粒支撑剂设置保温缓降法进行冷却,从950℃以1~5℃/min降温至700℃,温度降至700℃后以1~3℃/min降至400℃,随后采用随炉冷却降低至室温。
e.性能评价:取出陶粒支撑剂产品后,分别测试样品圆球度、浊度、体积密度、视密度、69MPa下的破碎率和酸溶解度。
参照SY/T 5108-2014《水力压裂和烁石充填作业用支撑剂性能测试方法》,测试出陶粒支撑剂的体积密度(kg/m3)、酸溶解度(%)、69MPa下的破碎率(%)、视密度(kg/m3)、浊度(FTU)、圆球度分别为:1.34kg/m3、4.10%、5.10%、2.62kg/m3、57.6FTU、0.92。
实施例2.
本实例中按原料重量份数与实例1相同。
烧成制度如下:烧结制度为:从400℃以30℃/min的速度升温至500℃,并在500℃保温10min,从500℃以30℃/min的速度升温至700℃,并在700℃保温10min,700℃以20℃/min的速度升温至1000℃,并在最终烧结温度处保温30min。
参照SY/T 5108-2014《水力压裂和烁石充填作业用支撑剂性能测试方法》,测试出陶粒支撑剂的体积密度(kg/m3)、酸溶解度(%)、69MPa下的破碎率(%)、视密度(kg/m3)、浊度(FTU)、圆球度分别为:1.29kg/m3、3.65%、4.59%、2.51kg/m3、53.7FTU、0.93。
实施例3.
本实例中按原料重量份数与实例1相同。
烧成制度如下:烧结制度为:从400℃以30℃/min的速度升温至500℃,并在500℃保温10min,从500℃以30℃/min的速度升温至700℃,并在700℃保温10min,700℃以20℃/min的速度升温至1050℃,并在最终烧结温度处保温30min。
参照SY/T 5108-2014《水力压裂和烁石充填作业用支撑剂性能测试方法》,测试出陶粒支撑剂的体积密度(kg/m3)、酸溶解度(%)、69MPa下的破碎率(%)、视密度(kg/m3)、浊度(FTU)、圆球度分别为:1.20kg/m3、2.94%、3.58%、2.43kg/m3、45.2FTU、0.93。
实施例4.
本实例中按原料重量份数与实例1相同。
烧成制度如下:烧结制度为:从400℃以30℃/min的速度升温至500℃,并在500℃保温10min,从500℃以30℃/min的速度升温至700℃,并在700℃保温10min,700℃以20℃/min的速度升温至1100℃,并在最终烧结温度处保温30min。
参照SY/T 5108-2014《水力压裂和烁石充填作业用支撑剂性能测试方法》,测试出陶粒支撑剂的体积密度(kg/m3)、酸溶解度(%)、69MPa下的破碎率(%)、视密度(kg/m3)、浊度(FTU)、圆球度分别为:1.17kg/m3、2.00%、2.30%、2.31kg/m3、20.0FTU、0.94。
实施例5.
本实例中按原料重量份数与实例1相同。
烧成制度如下:烧结制度为:从400℃以30℃/min的速度升温至500℃,并在500℃保温10min,从500℃以30℃/min的速度升温至700℃,并在700℃保温10min,700℃以20℃/min的速度升温至1050℃,并在最终烧结温度处保温15min。
参照SY/T 5108-2014《水力压裂和烁石充填作业用支撑剂性能测试方法》,测试出陶粒支撑剂的体积密度(kg/m3)、酸溶解度(%)、69MPa下的破碎率(%)、视密度(kg/m3)、浊度(FTU)、圆球度分别为:1.22kg/m3、2.87%、3.78%、2.49kg/m3、43.9FTU、0.92。
实施例6.
本实例中按原料重量份数与实例1相同。
烧成制度如下:烧结制度为:从400℃以30℃/min的速度升温至500℃,并在500℃保温10min,从500℃以30℃/min的速度升温至700℃,并在700℃保温10min,700℃以20℃/min的速度升温至1050℃,并在最终烧结温度处保温45min。
参照SY/T 5108-2014《水力压裂和烁石充填作业用支撑剂性能测试方法》,测试出陶粒支撑剂的体积密度(kg/m3)、酸溶解度(%)、69MPa下的破碎率(%)、视密度(kg/m3)、浊度(FTU)、圆球度分别为:1.30kg/m3、3.49%、4.26%、2.54kg/m3、52.2FTU、0.91。
实施例7.
本实例中按原料重量份数与实例1相同。
烧成制度如下:烧结制度为:从400℃以30℃/min的速度升温至500℃,并在500℃保温10min,从500℃以30℃/min的速度升温至700℃,并在700℃保温10min,700℃以20℃/min的速度升温至1050℃,并在最终烧结温度处保温60min。
参照SY/T 5108-2014《水力压裂和烁石充填作业用支撑剂性能测试方法》,测试出陶粒支撑剂的体积密度(kg/m3)、酸溶解度(%)、69MPa下的破碎率(%)、视密度(kg/m3)、浊度(FTU)、圆球度分别为:1.33kg/m3、3.97%、4.76%、2.60kg/m3、60FTU、0.90。
通过表2可知,原材料除了油基岩屑残渣外,含有大量其他工业固废,因此具备了协同消纳固废、降低原材料生产的效果;同时支撑剂原材料采用了保护气体条件下气流磨均化处理工艺,且通过特殊的微波烧结工艺,具备节约烧制时间(仅需60~100min),提升烧结质量的效果,达到了高效和节能的效果,所制备的支撑剂相比其他公开专利其破碎率和酸溶度更低,具备突出的技术和性能优势。

Claims (10)

1.一种微波烧结油基岩屑残渣陶粒支撑剂及其制备方法,其特征在于,包括以下主要步骤:
S1将破碎后的油基岩屑残渣、低品位铝矾土、废铝灰、煤矸石、湿法冶金锰渣置于电热鼓风干燥箱,105±5℃温度下烘干至恒重;根据材料配比称取相应的油基岩屑残渣、低品位铝矾土、废铝灰、煤矸石、湿法冶金锰渣,放入对喷式气流磨中,以氮气为研磨介质,设定研磨腔压力为0.6~1MPa,在分选轮频率为20~40Hz范围内进行研磨;将研磨之后的样品置于电热鼓风干燥箱,在105±5℃温度下烘干至恒重。
S2将烘干后粉料与氧化锆(ZrO2)、氟化锂(LiF)、玉米淀粉、95~100℃的水混合,不断搅拌制成含固体量为50%~60%的原料混合物或悬浊液。
S3喷雾干燥(聚合均化,成核)-强力混料机联合制粒:将混合好的原料溶液放入离心雾化器中,开启蒸汽阀门及高压气泵阀门,待物料温度达到预定温度后,启动喷雾程序,使粉末聚合成核;随后将收集到的成核颗粒倒入强力混料机中并加入雾化水和坯体生粉,待生料球生长到直径为0.425mm~0.850mm后,强力混料机停止工作,最终将获得的目标粒径的生料球置于电热鼓风干燥箱,在105±5℃温度下烘干至恒重。
S4分段焙烧:将制备好的支撑剂生料球与辅助加热材料ZrO2砂按1:1的质量比混合均匀,放入坩埚中,在微波烧结炉中进行支撑剂的焙烧;烧成制度为:从400℃以30℃/min的速度升温至500℃,并在500℃保温10min,然后从500℃以30℃/min的速度升温至700℃,并在700℃保温10min,接着从700℃以20℃/min的速度升温至950~1100℃,并在最终烧结温度处保温20~60min。
S5冷却:对焙烧完成后处于高温状态的陶粒支撑剂采用保温缓降法进行冷却,从1100℃以1~5℃/min降温至700℃,温度降至700℃后以1~3℃/min降至400℃,随后采用随炉冷却降低至室温。
2.根据权利要求1所述的一种微波烧结油基岩屑残渣陶粒支撑剂及其制备方法其特征在于:所述步骤S1中,配料按照所占质量分数为油基岩屑残渣:40~60份;低品位铝矾土:10~20份;废铝灰:30~40份;煤矸石:5~10份;湿法冶金锰渣:10~15份;玉米淀粉:0.2~1份;ZrO2:1~4份;LiF:2~5份。
3.根据权利要求1所述的一种微波烧结油基岩屑残渣陶粒支撑剂及其制备方法其特征在于:所述步骤S1中,利用对喷式气流磨在惰性保护气体的条件下对原料进行研磨,将压缩的气体通过喷嘴高速喷射入粉碎腔,在两股高压气流的交汇点处,原料被反复碰撞、摩擦、剪切而粉碎;由此破碎的粉末具有细度高且表面光滑,颗粒形状规整,比表面积大,且分散性好的优点。
4.根据权利要求1所述的一种微波烧结油基岩屑残渣陶粒支撑剂及其制备方法其特征在于:所述步骤S3中,使用喷雾干燥(聚合均化成核)-强力混料机联合制粒,喷雾干燥制粒是溶液在高温下雾化后直接得到固体颗粒,雾滴比表面积大,热风温度高,干燥速度非常快,物粒的受热时间极短,具有较高的成球效率。随后将成核颗粒投入强力混料机中,调控陶粒支撑剂生坯球的粒径大小并对其进行抛光处理;两种方法联合制粒能够保证制备出的生坯球具有均匀的质量、高的圆球度、高制备效率。
5.根据权利要求1所述的一种微波烧结油基岩屑残渣陶粒支撑剂及其制备方法其特征在于:所述步骤S2中,ZrO2可同时作为烧结反应时陶粒中的晶核剂和微波加热时的吸波剂功能组分;ZrO2在高温烧结条件下能与原料中的Fe2O3发挥协同作用;由于Fe2O3中的Fe—O键的断裂,打破了硅氧网络结构,降低了液相的黏度,Zr4+离子则将能够将提供非桥氧的Ca2+和Mg2+吸引到自己周围,析出富含ZrO2的结晶区或生成富含ZrO2的不均匀微区,进而促进玻璃分相;而玻璃的分相有利于成核速度的提高,为刚玉、钡长石的析出提供条件,提升支撑剂的性能;同时ZrO2粉末自身具有良好的吸波特性,分散在胚体中的ZrO2粉末不仅能增强微波烧结效应,还能降低样品由于内外部热量差造成样品烧结不均匀,使热应力降至最低,有效减少烧结过程中的开裂或变形倾向,从而有效提升烧结支撑剂效率。
6.根据权利要求1所述的一种微波烧结油基岩屑残渣陶粒支撑剂及其制备方法其特征在于:所述步骤S1,湿法冶金锰渣中的MnO2被用作晶核剂添加在支撑剂基体中,MnO2在高温烧结过程中,Mn4+易取代Al3+,形成有限固溶体,晶格和晶界的扩散,导致烧结过程中发生了晶格畸变,从而活化了晶格,加快刚玉成形;并且锰离子具有强大的形核能力,能改善降温阶段组织的析晶能力,利于刚玉的析出,从而降低陶粒支撑剂破碎率。
7.根据权利要求1所述的一种微波烧结油基岩屑残渣陶粒支撑剂及其制备方法,其特征在于:所述步骤S2中,LiF被作为晶核剂加入到支撑剂基体中,碱金属Li+可以破坏玻璃网络结构的完整性,降低液相的黏性;形成低熔点共融物和降低玻璃的粘度都使玻璃网络的原子重排更易进行,并且降低玻璃黏度也会减小形成钡长石成核的阻力,促进固态SiO2向玻璃相内迁移;同时,氟会取代—Si—O—中的氧成为—Si—F,氟离子的断网作用,会促使玻璃的结构由层状向短链状发展,同时非桥联的—Si—F键会导致玻璃网络聚合度降低,促使硅铝结构由二维向三维的转变变得容易,也使固态SiO2的扩散变得容易,加速钡长石的生成,有助于改善支撑剂内部结构,降低其酸溶度和破碎率。
8.根据权利要求1中所述一种微波烧结油基岩屑残渣陶粒支撑剂及其制备方法其特征在于:所述步骤S4中,将支撑剂生料球与辅助加热材料ZrO2砂按1:1的质量比混合均匀,采用微波烧结制备陶粒支撑剂;支撑剂生料球与辅助加热材料ZrO2砂按1:1的质量比混合均匀,由于ZrO2作为一种混合吸收体,在高温下(1000℃)具有热剧变性能,可使其介电损耗在高温时剧烈增大从而产生热量,具有辅助加热的作用,避免了传统方式利用马弗炉烧结时加热不均匀的现象发生;按1:1的质量比混合均匀是为了保证支撑剂生料球与ZrO2砂之间有足够大接触面,利于生料球被均匀加热,使热应力降至最低,有效减少烧结过程中的开裂或变形;传统烧结方式一般是通过能量热传导、热辐射的方式进行样品加热,容易造成烧结不均,样品内部产生热应力,使得烧结后的样品性能差异大;微波烧结是通过微波与材料的耦合作用将微波的电磁能转化为热能,将材料吸收的电磁能全部用于自身加热,具有能量损失少、利用率高的特点,可以比传统的烧结方法节能80%左右。
9.根据权利要求1所述的一种微波烧结油基岩屑残渣陶粒支撑剂及其制备方法,其特征在于:制备出体积密度1.17~1.34g/cm3,视密度2.31~2.62g/cm3,69MPa下的破碎率为2.3~5.1%,酸溶度2.0~4.1%,浊度20~60FTU,圆球度>0.9均满足SY/T 5108-2014对陶粒支撑剂要求。
10.根据权利要求1所述的一种微波烧结油基岩屑残渣陶粒支撑剂及其制备方法,其特征在于:所述的陶粒支撑剂形成以钡长石和刚玉相为主,同时含有氧化锆微晶体的基体组成结构。
CN202311207453.7A 2023-09-19 2023-09-19 一种微波烧结油基岩屑残渣陶粒支撑剂及其制备方法 Pending CN117247282A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311207453.7A CN117247282A (zh) 2023-09-19 2023-09-19 一种微波烧结油基岩屑残渣陶粒支撑剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311207453.7A CN117247282A (zh) 2023-09-19 2023-09-19 一种微波烧结油基岩屑残渣陶粒支撑剂及其制备方法

Publications (1)

Publication Number Publication Date
CN117247282A true CN117247282A (zh) 2023-12-19

Family

ID=89136221

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311207453.7A Pending CN117247282A (zh) 2023-09-19 2023-09-19 一种微波烧结油基岩屑残渣陶粒支撑剂及其制备方法

Country Status (1)

Country Link
CN (1) CN117247282A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117466559A (zh) * 2023-12-28 2024-01-30 西南石油大学 一种油基岩屑-高钛矿渣-赤泥基轻质高强免烧陶粒及其制备方法
CN117466621A (zh) * 2023-12-28 2024-01-30 西南石油大学 一种基于油基岩屑的中空超轻陶粒及其制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117466559A (zh) * 2023-12-28 2024-01-30 西南石油大学 一种油基岩屑-高钛矿渣-赤泥基轻质高强免烧陶粒及其制备方法
CN117466621A (zh) * 2023-12-28 2024-01-30 西南石油大学 一种基于油基岩屑的中空超轻陶粒及其制备方法
CN117466621B (zh) * 2023-12-28 2024-03-08 西南石油大学 一种基于油基岩屑的中空超轻陶粒及其制备方法
CN117466559B (zh) * 2023-12-28 2024-03-08 西南石油大学 一种油基岩屑-高钛矿渣-赤泥基轻质高强免烧陶粒及其制备方法

Similar Documents

Publication Publication Date Title
CN117247282A (zh) 一种微波烧结油基岩屑残渣陶粒支撑剂及其制备方法
Ge et al. Effects of flux components on the properties and pore structure of ceramic foams produced from coal bottom ash
CN104892019B (zh) 一种全部以固体废物为原料制备的超轻陶粒
CN110564400B (zh) 利用油基钻屑热解析残渣烧结的压裂支撑剂及其制备方法
CN108503371B (zh) 一种利用高炉渣和高铝粉煤灰制备发泡陶瓷材料的方法
CN107487986B (zh) 利用液态高炉熔渣制备玻璃微珠并回收熔渣显热的方法
CN104355546B (zh) 一种以玄武岩玻璃熟料和crt屏玻璃为主原料的泡沫玻璃及其制备方法
CN103288426A (zh) 一种利用工业废料制备页岩气专用压裂支撑剂的方法
CN105778886A (zh) 一种低密高强陶粒支撑剂及其制备工艺
CN113105258B (zh) 一种基于移动床制备无掺杂单一煤矸石陶粒的方法及陶粒
CN110066126A (zh) 建筑材料用铁尾矿陶粒及其制备方法
CN102674788A (zh) 一种煤矸石建筑板材及其制备方法
CN109534793B (zh) 含假蓝宝石晶体的低密度石油压裂支撑剂及其制备方法
CN101774800B (zh) 含硬质碳化物的陶瓷颗粒及其制造方法
CN110950641A (zh) 一种自放热固废基超低密度支撑剂及其制备方法
CN111302679B (zh) 含有钒钛磁铁矿尾矿的水泥混合材及其制备方法和应用
CN109652055B (zh) 含假蓝宝石晶体的复相陶粒石油压裂支撑剂及其制备方法
CN116947352A (zh) 一种煤矸石中温热活化的方法
CN111517820A (zh) 一种含有污泥灰渣的高强陶粒及其制备方法
CN116675454A (zh) 一种基于工业固废的高强度陶粒及其制备方法
CN113563867B (zh) 一种高强度硅酸镁铝支撑剂及其制备方法
CN113979775B (zh) 一种利用二次铝灰制备陶粒支撑剂的方法
CN113666730A (zh) 一种高强度石油压裂硅酸镁铝支撑剂及其制备方法
CN103289673B (zh) 一种高密度、高强度陶粒支撑剂及其制备方法
CN110040994B (zh) 一种陶粒砂及其加工工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination