CN117224726A - 一种抗菌促修复压电膜及其制备方法与应用 - Google Patents

一种抗菌促修复压电膜及其制备方法与应用 Download PDF

Info

Publication number
CN117224726A
CN117224726A CN202311147911.2A CN202311147911A CN117224726A CN 117224726 A CN117224726 A CN 117224726A CN 202311147911 A CN202311147911 A CN 202311147911A CN 117224726 A CN117224726 A CN 117224726A
Authority
CN
China
Prior art keywords
mof
bto
repair
piezoelectric film
dha
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311147911.2A
Other languages
English (en)
Inventor
苟雪
朱子馨
刘来义
黄晨峻
罗胜年
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Jiaotong University
Original Assignee
Southwest Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Jiaotong University filed Critical Southwest Jiaotong University
Priority to CN202311147911.2A priority Critical patent/CN117224726A/zh
Publication of CN117224726A publication Critical patent/CN117224726A/zh
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明提供了一种抗菌促修复压电膜及其制备方法与应用,属于压电材料技术领域。本发明方法是通过Fe‑MOF在BTO表面原位自组装,并进一步负载DHA,合成了电控药物释放抗菌和促进修复的纳米复合物BTO/Fe‑MOF/DHA,再将BTO/Fe‑MOF/DHA添加到半固化PDMS表面,形成抗菌促修复压电膜PDMS‑BTO/Fe‑MOF/DHA。当PDMS‑BTO/Fe‑MOF/DHA压电膜受到超声刺激时,BTO将机械能转化为电能,将Fe‑MOF中的Fe3+降为Fe2+,Fe‑MOF降解并释放DHA,最终,Fe2+与同步释放的DHA反应,产生大量有毒ROS,破坏蛋白质和核酸,诱导细菌死亡。本发明的抗菌促修复压电膜在动物运动引起的机械变形时产生压电电位,并在创面处诱发EF以促进伤口愈合,该抗菌促修复压电膜在未来的细菌感染伤口治疗中显示出巨大的潜力。

Description

一种抗菌促修复压电膜及其制备方法与应用
技术领域
本发明属于压电材料技术领域,具体涉及一种抗菌促修复压电膜及其制备方法与应用。
背景技术
皮肤是人体最大的器官,起到调节体温、保护内部器官免受外部物理和化学物质侵害的作用,并提供了抵御病原体和微生物的物理屏障。然而,由于与外界直接接触,皮肤组织已成为最脆弱的组织之一,全球每年由于各种意外事故或疾病并发症造成的皮肤破损可能会导致重要的屏障和感觉功能的丧失,并为伤口部位感染建立一个活跃的门户。因此,皮肤组织又是一种极易造成损伤和容易带来细菌感染的器官。
伤口愈合是一个复杂的过程,愈合过程常常伴随着细菌感染的风险,应该做到对伤口按需治疗,加速伤口的愈合。由于伤口愈合过程的复杂性,治疗伤口在从个人、医疗保健、决策者等有关的尺度上具有重要的社会和经济意义。一般而言,伤口愈合包含四个不同的阶段:止血、炎症、增殖和皮肤重塑。这些阶段涉及到多种生长因子和细胞类型之间复杂而协调的相互作用。然而伤口修复过程一般不能完全有序地遵循上述四个阶段,常常由于破坏了多种生物途径和细菌感染导致的炎症反应,引起伤口愈合失败。
抗生素常作为抗菌的主要材料,负载抗生素的伤口敷料起到了良好的杀菌治疗效果,但近年来,抗生素的过度使用加速了细菌的耐药性,使得单一的负载抗生素的伤口敷料无法高效的治疗伤口感染。
为了对抗细菌感染和优化伤口愈合的治疗方式,许多纳米材料、物理信号刺激治疗方法作为抗菌替代品来进行伤口愈合管理,如银、二氧化锰、二氧化钛等纳米颗粒、电刺激、超声刺激、热刺激、外源性磁场等物理信号刺激。在以上策略中,电刺激(ES)由于具有精确的可控性和加速皮肤伤口处内源性细胞的增值来降低伤口愈合时间的特性,从而受到越来越多的关注,特别是,ES已被证明调节细胞增殖和迁移,还能减少炎症,以及通过模拟或放大钾(K+)和钠(Na+)离子诱导的伤口内源性电场的影响来加速伤口的闭合。
能产生局部电刺激的材料包括两类:导电材料和压电材料,压电材料是非导电智能材料,在机械刺激下可逆地经历尺寸变化或结构变形,无创地响应机械应力产生电势。故基于此背景下,结合电刺激的伤口敷料来主动刺激伤口处内源性细胞的滋生,减少炎症,加速伤口闭合这一理念受到了广大研究者的关注。
Bhang等人[1]以氧化锌纳米棒作为压电层,开发了一种可将机械变形产生压电势,应用于皮肤伤口部位的压电电子皮肤贴片,可产生电刺激来增强内源性细胞代谢、促进细胞迁移和加强蛋白质合成以促进伤口愈合。Wang等人[2]通过建立一种独特的冻融-溶剂替代-退火-溶胀的制备工艺,构建了一种自动力压电聚乙烯醇(PVA)/聚偏氟乙烯(PVDF)复合水凝胶伤口敷料,该压电水凝胶能将大鼠身体活动产生的机械能转化为电能,实时提供均匀对称的局部压电刺激促进伤口愈合。尽管目前的研究取得了一系列的成果,然而仅仅依靠电刺激的修复治疗方式仍然难以应对严重感染的环境,单一的电刺激不足以替代抗生素所带来的影响。
因此,如何提供一种更加优异的具有抗细菌感染,以及促进伤口愈合的修复材料,成为亟待解决的技术问题。
引用的参考文献如下:
[1]Bhang S H,Jang W S,Han J,et al.Zinc Oxide Nanorod-BasedPiezoelectric Dermal Patch for Wound Healing[J].Wiley-VCH Verlag,2017(1).DOI:10.1002/adfm.201603497.
[2]Limin Wang,Yaru Yu,Xiaowen Zhao,Zhen Zhang,Xueling Yuan,JinlongCao,Weikun Meng,Lin Ye,Wei Lin,Guanglin Wang.ABiocompatible Self-PoweredPiezoelectric Poly(vinyl alcohol)-Based Hydrogel for Diabetic Wound Repair[J].ACS Applied Materials&Interfaces,2022.
发明内容
本发明就是为了解决上述技术问题,从而提供一种抗菌促修复压电膜及其制备方法与应用。本发明提供的抗菌促修复压电膜与其它抗菌材料相比,能够具有更优秀的抗菌性能和促进伤口修复性能。
本发明的目的之一是提供一种抗菌促修复压电膜的制备方法,包括以下步骤:
(1)将钛酸钡纳米颗粒与含巯基乙酸的乙醇溶液混合后振荡,得到羧基化的钛酸钡纳米颗粒;
(2)将羧基化的钛酸钡纳米颗粒分散于含有FeCl3的乙醇溶液中,然后加入均苯三甲酸,于加热下进行分散自组装,离心后得到钛酸钡修饰的铁基纳米复合物;
(3)将钛酸钡修饰的铁基纳米复合物分散于双氢青蒿素溶液中,搅拌反应,制备得到负载有双氢青蒿素的钛酸钡修饰铁基纳米复合物;
(4)将负载有双氢青蒿素的钛酸钡修饰铁基纳米复合物添加到半固化的PDMS溶液表面,经固化反应,制备得到所述抗菌促修复压电膜。
本发明通过采用Fe-MOF在钛酸钡(BTO)表面原位自组装,并进一步负载双氢青蒿素(DHA),合成了一种电控药物释放抗菌和促进修复的纳米复合物(BTO/Fe-MOF/DHA),再将该纳米复合物BTO/Fe-MOF/DHA添加到半固化的PDMS表面,形成了抗菌促修复压电膜PDMS-BTO/Fe-MOF/DHA。本发明方法获得的抗菌促修复压电膜具有以下特性:当PDMS-BTO/Fe-MOF/DHA压电膜受到超声刺激时,BTO将机械能转化为电能,将Fe-MOF中的Fe3+降为Fe2+,Fe-MOF降解并释放DHA,最终,Fe2+与同步释放的DHA反应,产生大量有毒ROS,破坏蛋白质和核酸,诱导细菌死亡。因此,本发明的抗菌促修复压电膜PDMS-BTO/Fe-MOF/DHA在动物运动引起的机械变形时产生压电电位,并在创面处诱发EF以促进伤口愈合。该特性决定了本发明的抗菌促修复压电膜能够更好地对抗细菌感染和优化伤口治疗。
而如本发明的实施例记载,当选择PDMS-BTO/Fe-MOF、以及在超声作用下,其抗菌效果较差,无法实现本发明的效果。
进一步的是,步骤(1)中所述乙醇溶液中巯基乙酸的浓度为0.29mM。
进一步的是,步骤(1)中所述振荡的时间为24小时。
进一步的是,步骤(2)中所述FeCl3与均苯三甲酸的摩尔比为1:1。
进一步的是,步骤(2)中所述分散的条件为于70℃分散30min。
进一步的是,步骤(2)中进行分散自组装时,进行5次循环操作。
进一步的是,步骤(3)中所述双氢青蒿素溶液的浓度为1.6g·L-1
进一步的是,步骤(3)中所述钛酸钡修饰的铁基纳米复合物与双氢青蒿素溶液的质量体积比为5:3mg/mL。
本发明的目的之二是提供一种抗菌促修复压电膜,其是由如上所述的任一方法制备得到。
本发明的目的之三是提供了上述抗菌促修复压电膜的应用,其是在制备抗菌和/或促进伤口修复的材料中的应用。
本发明的有益效果如下:
本发明的抗菌促修复压电膜能够在动物运动引起的机械变形时产生压电电位,并在创面处诱发EF以促进伤口愈合。该抗菌促修复压电膜实现电控药物释放抗菌和促进伤口修复,起到很好的疗效,杀菌和促修复效果极为显著。
附图说明
图1中(A)为BTO/Fe-MOF/DHA的合成示意图;(B)为PDMS-BTO/Fe-MOF/DHA的合成示意图。
图2为不同处理后L929的活/死细胞染色结果。
图3中(A)为不同处理后的大肠杆菌菌落在琼脂板上的照片;(B)为经过(A)处理后的细菌活性统计结果。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例对本发明进行具体描述,有必要指出的是,以下实施例仅用于对本发明进行解释和说明,并不用于限定本发明。本领域技术人员根据上述发明内容所做出的一些非本质的改进和调整,仍属于本发明的保护范围。
以下实施例中涉及的原料名称及简称如下:
BTO:钛酸钡,MAA:巯基乙酸,H3BTC:均苯三甲酸,DHA:双氢青蒿素,PDMS:聚二甲基硅氧烷,NPs:纳米颗粒,NCs:纳米复合物,Fe-MOF:铁基金属有机骨架材料。
实施例1
一、材料的制备
(1)BTO/Fe-MOF核壳纳米材料的制备
首先,将钛酸钡(BTO)纳米颗粒(NPs)0.1g加入含巯基乙酸(MAA,0.29mM)的20mL乙醇溶液中振荡24h,用乙醇和去离子水连续洗涤3次,得到羧基化的钛酸钡纳米颗粒,记为BTO/COOH NPs,将其在室温下真空干燥24h。
另外,将BTO/COOH NPs(0.02g)分散在5ml FeCl3乙醇溶液(10mM)中15min,然后在5ml均苯三甲酸(H3BTC)乙醇溶液(10mM)中70℃分散30min。在每个步骤之间,将NPs离心以去除上清。其中,循环5次后得到BTO/Fe-MOF纳米复合物(NCs)。(2)载药BTO/Fe-MOF/DHA的制备
将5mg BTO/Fe-MOF NCs分散于3mL 1.6g·L-1双氢青蒿素(DHA)乙醇溶液中,在室温下搅拌4h。随后,以0.1mL·min-1的速率注入6mL蒸馏水,继续搅拌20h,直至溶剂蒸发。洗涤和干燥后,产生的纳米复合物被命名为BTO/Fe-MOF/DHA NCs。
(3)PDMS-BTO/Fe-MOF/DHA抗菌促修复压电膜的制备
为了获得均匀透明的PDMS溶液(1.2g,固化剂比例为10:1),在1000rpm下进行30分钟的电搅拌。此外,将10mL 4mg·mL-1BTO/Fe-MOF/DHA NCs乙醇溶液添加到在70℃下预固化15分钟的PDMS表面。最后,在70℃的烘箱中固化4小时后,形成了厚度为500μm的PDMS-BTO/Fe-MOF/DHA抗菌促修复压电膜。
二、性能测试
(1)细胞实验
将L929(1.25×104个细胞/cm2)接种到24孔板中的实验膜中并培养24小时以研究细胞粘附形态。此外,US(超声)辐照(1.5W·cm-2,1 MHz、50%占空比并且照射时间为1 min)施加到细胞上。此外,钙黄绿素乙酰氧基甲酯/PI试剂盒用于标记活细胞/死细胞。通过倒置荧光显微镜(OLYMPUS IX83)观察细胞。
(2)抗菌实验
大肠杆菌在Luria-Bertani(LB)培养基中37℃培养过夜,最终密度为1×108CFU·mL-1。将2×105CFU·mL-1大肠杆菌用pH=7.4的PBS稀释,在24孔板中孵育。
制备五组大肠杆菌混悬液,然后分别进行以下不同处理:1)空白对照;2)PDMS-BTO/Fe-MOF;3)PDMS-BTO/Fe-MOF+US(1.5W·cm-2、1MHz、50%占空比、5min);4)PDMS-BTO/Fe-MOF/DHA;5)PDMS-BTO/Fe-MOF/DHA+US(1.5W·cm-2、1MHz、50%占空比、5min)。US照射后,37℃孵育8h,涂布板操作。
细菌存活率计算公式如下:
存活率=C/C0×100%
式中,C为处理后细菌平均菌落数,C0为对照实验中细菌平均菌落数。
(三)实验结果
(1)材料的合成及表征结果
通过Fe-MOF在BTO表面原位自组装,并进一步负载DHA,合成了电控药物释放抗菌和促进修复的NCs(BTO/Fe-MOF/DHA)(图1中A部分)。首先,将BTO NPs浸入MAA的乙醇溶液中,得到BTO/COOH。此外,这些NPs依次反复分散在含有FeCl3和H3BTC的乙醇溶液中,用于Fe-MOF的原位自组装。最后,通过将BTO/Fe-MOF浸泡在含有药物(DHA)的溶液中24h来加载DHA。
PDMS-BTO/Fe-MOF/DHA抗菌促修复压电膜的制备过程如图1中B部分所示。首先,将BTO/Fe-MOF/DHA添加到半固化PDMS表面,然后在70℃下固化,将复合材料命名为PDMS-BTO/Fe-MOF/DHA。
(2)细胞实验结果
活/死染色实验表明,抗菌促修复压电膜和US(1.5W·cm-2,1MHz,50%占空比,1min)对细胞是安全的(图2)。
(3)细菌实验结果
如图3中A和B部分所示,PDMS-BTO、PDMS-BTO/Fe-MOF和PDMS-BTO/Fe-MOF/DHA处理对大肠杆菌不造成损伤。当PDMS-BTO和US同时照射(5min)时,大肠杆菌的存活率仅为66%,说明在US照射下压电式BTO NPs可以产生有毒ROS,有效杀灭细菌。
当PDMS-BTO/Fe-MOF和US(5min辐照)作用时,大肠杆菌的存活率仅为55%,表明异质结构的形成导致声动力效应增强。
PDMS-BTO/Fe-MOF/DHA组进一步进行US照射(5min)后,BTO产生的有毒ROS和DHA与Fe2+联合产生的有毒ROS的杀菌作用增强,细菌几乎全部被清除。

Claims (10)

1.一种抗菌促修复压电膜的制备方法,其特征在于,包括以下步骤:
(1)将钛酸钡纳米颗粒与含巯基乙酸的乙醇溶液混合后振荡,得到羧基化的钛酸钡纳米颗粒;
(2)将羧基化的钛酸钡纳米颗粒分散于含有FeCl3的乙醇溶液中,然后加入均苯三甲酸,于加热下进行分散自组装,离心后得到钛酸钡修饰的铁基纳米复合物;
(3)将钛酸钡修饰的铁基纳米复合物分散于双氢青蒿素溶液中,搅拌反应,制备得到负载有双氢青蒿素的钛酸钡修饰铁基纳米复合物;
(4)将负载有双氢青蒿素的钛酸钡修饰铁基纳米复合物添加到半固化的PDMS溶液表面,经固化反应,制备得到所述抗菌促修复压电膜。
2.根据权利要求1所述的制备方法,其特征在于,步骤(1)中所述乙醇溶液中巯基乙酸的浓度为0.29mM。
3.根据权利要求1所述的制备方法,其特征在于,步骤(1)中所述振荡的时间为24小时。
4.根据权利要求1所述的制备方法,其特征在于,步骤(2)中所述FeCl3与均苯三甲酸的摩尔比为1:1。
5.根据权利要求1所述的制备方法,其特征在于,步骤(2)中所述分散的条件为于70℃分散30min。
6.根据权利要求1所述的制备方法,其特征在于,步骤(2)中进行分散自组装时,进行5次循环操作。
7.根据权利要求1所述的制备方法,其特征在于,步骤(3)中所述双氢青蒿素溶液的浓度为1.6g·L-1
8.根据权利要求1所述的制备方法,其特征在于,步骤(3)中所述钛酸钡修饰的铁基纳米复合物与双氢青蒿素溶液的质量体积比为5:3mg/mL。
9.一种抗菌促修复压电膜,其特征在于,是由权利要求1-8任一项所述方法制备得到。
10.权利要求9所述的抗菌促修复压电膜的应用,其特征在于,是在制备抗菌和/或促进伤口修复的材料中的应用。
CN202311147911.2A 2023-09-07 2023-09-07 一种抗菌促修复压电膜及其制备方法与应用 Pending CN117224726A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311147911.2A CN117224726A (zh) 2023-09-07 2023-09-07 一种抗菌促修复压电膜及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311147911.2A CN117224726A (zh) 2023-09-07 2023-09-07 一种抗菌促修复压电膜及其制备方法与应用

Publications (1)

Publication Number Publication Date
CN117224726A true CN117224726A (zh) 2023-12-15

Family

ID=89081790

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311147911.2A Pending CN117224726A (zh) 2023-09-07 2023-09-07 一种抗菌促修复压电膜及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN117224726A (zh)

Similar Documents

Publication Publication Date Title
Wu et al. Piezoelectric nanocomposites for sonodynamic bacterial elimination and wound healing
Zhang et al. Electroactive electrospun nanofibers for tissue engineering
Cui et al. Copper peroxide-loaded gelatin sponges for wound dressings with antimicrobial and accelerating healing properties
Liu et al. Ultrasound-triggered piezocatalytic composite hydrogels for promoting bacterial-infected wound healing
CN112121226B (zh) 一种促伤口愈合的复合水凝胶及其制备方法和应用
Wang et al. Pd-Cu nanoalloy for dual stimuli-responsive chemo-photothermal therapy against pathogenic biofilm bacteria
CN112575576B (zh) 一种具有光热/铜协同抗菌功能的聚多巴胺/聚乳酸/纳米铜复合纤维膜的制备方法
CN113018417B (zh) 一种促伤口愈合抑菌药物材料及其制备方法
Wang et al. Antibiotic‐derived carbon‐Nanodot‐decorated hydrogel for reactive oxygen species‐enhanced anti‐infection through biofilm damage
CN114432276B (zh) 一种细菌响应性微针贴片及其制备方法和应用
Zhu et al. Dynamically evolving piezoelectric nanocomposites for antibacterial and repair-promoting applications in infected wound healing
CN113621144A (zh) 磁电响应仿生水凝胶及可调细胞电学微环境磁电响应仿生水凝胶及其制备方法
CN113456840A (zh) 一种新型离子液体功能化可注射导电水凝胶的制备方法及应用
CN114438782B (zh) 一种快速抗菌/抗氧化活性的聚乳酸/单宁酸/铁/半胱氨酸骨诱导复合纤维膜的制备方法
Cheng et al. Photothermal MXene@ Zn-MOF-decorated bacterial cellulose-based hydrogel wound dressing for infectious wound healing
Xu et al. Engineering ultrasound-activated piezoelectric hydrogels with antibacterial activity to promote wound healing
Han et al. The current status of stimuli-responsive nanotechnologies on orthopedic titanium implant surfaces
Yu et al. Self-powered biodegradable and antibacterial MoS2-based triboelectric nanogenerators for the acceleration of wound healing in diabetes
CN117224726A (zh) 一种抗菌促修复压电膜及其制备方法与应用
Li et al. Advancing piezoelectric 2D nanomaterials for applications in drug delivery systems and therapeutic approaches
Hu et al. Multifunctional photothermal hydrogels: Design principles, various functions, and promising biological applications
CN114732906A (zh) 一种钛酸钡-石墨烯复合材料及其制备方法和应用
Ding et al. Pyro-piezoelectric effect of BaTiO3 bio-nanocarrier for osteomyelitis therapy
Liang et al. Research progress on the correlation between bacterial biofilm microenvironment and charge regulation
Chen et al. Photodynamic-Controllable microneedle composite with Antibacterial, Antioxidant, and angiogenic effects to expedite infected diabetic wound healing

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination