CN1172013C - 燃烧合成多孔镍钛形状记忆合金的制备工艺 - Google Patents

燃烧合成多孔镍钛形状记忆合金的制备工艺 Download PDF

Info

Publication number
CN1172013C
CN1172013C CNB011389168A CN01138916A CN1172013C CN 1172013 C CN1172013 C CN 1172013C CN B011389168 A CNB011389168 A CN B011389168A CN 01138916 A CN01138916 A CN 01138916A CN 1172013 C CN1172013 C CN 1172013C
Authority
CN
China
Prior art keywords
shape memory
memory alloy
blank
titanium
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB011389168A
Other languages
English (en)
Other versions
CN1428447A (zh
Inventor
李永华
戎利建
李依依
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Metal Research of CAS
Original Assignee
Institute of Metal Research of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Metal Research of CAS filed Critical Institute of Metal Research of CAS
Priority to CNB011389168A priority Critical patent/CN1172013C/zh
Publication of CN1428447A publication Critical patent/CN1428447A/zh
Application granted granted Critical
Publication of CN1172013C publication Critical patent/CN1172013C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Abstract

本发明涉及多孔镍钛形状记忆合金领域,具体地说是一种燃烧合成多孔镍钛形状记忆合金的制备工艺。步骤操作为:首先,以纯钛粉和镍粉为原料,按近等原子比配置原料粉末,均匀而充分地混合;然后制成具有35~65%原始孔隙度的坯料;再置于加热炉中,在惰性气体气氛的保护下预热;当坯料达到最小点火温度且低于700℃时,采用外热源点燃坯料的一端,燃烧波自发地蔓延到另一端,合成多孔镍钛形状记忆合金。本发明具有周期短、成本低、孔隙度高、产物纯净等特点。

Description

燃烧合成多孔镍钛形状记忆合金的制备工艺
技术领域
本发明涉及多孔镍钛形状记忆合金领域,具体地说是一种燃烧合成多孔镍钛形状记忆合金的制备工艺。
背景技术
全世界每年都有许多患者由于遗传、病变、创伤等原因需要进行硬组织如(骨骼、牙根、膝关节等)的替换与修复手术。最理想的治疗手段是进行器官或组织移植手术,但受到供体数量的限制。因此常规的治疗手段是植入人工的生物材料来替换或修复损伤的组织或器官。因此研制生产适于植入人体的生物医用材料成为紧迫的课题。
常规致密态镍钛形状记忆合金由于其具有特殊的形状记忆效应、超弹性等特性已经广泛应用于多种领域,如可制作连接紧固件、驱动元件、智能元件等广泛应用于航天、航空、电子、机械等工程领域;另外,由于其具有良好的生物相容性做为生物医用材料已应用于口腔、骨科、神经外科、心血管科、胸外科、泌尿外科及妇科等医学领域。然而,常规致密态的金属材料的机械性能和弹性模量都远远高于人体硬组织的机械性能和弹性模量,从而导致应力集中,骨质疏松、骨吸收等缺点。
作为镍钛形状记忆合金的一个分支,多孔镍钛形状记忆合金由于其具有如下特点成为有光明应用前景的硬组织植入材料而引起人们的广泛关注:独特的多孔结构有利于组织的长入、体液的传输以及植入物牢固的固定,比常规致密态的生物材料如钛、钛合金、不锈钢等优越;自然生物材料如骨骼、头发、骨胶质等都具有大于2%的可恢复应变,只有形状记忆合金的超弹性能与之匹配;适宜的机械性能和弹性模量能与人体组织相匹配,多孔镍钛形状记忆合金的机械性能和弹性模量可通过调节制备工艺参数进行调整而与硬组织相当,促进骨组织生长;优良的生物相容性。
目前,多孔镍钛形状记忆合金不能通过常规的熔铸法来制备,可利用传统的粉末烧结法来制备。烧结过程经历一系列的物理化学变化:首先是水分和粉末吸附气体的挥发,应力的消除,粉末颗粒表面氧化层的还原;其次是原子间的扩散、粘性或塑性流动,颗粒间接触面积增加,再结晶,晶粒长大等等;出现液相时还伴随固相的溶解与再结晶。可见多孔镍钛形状记忆合金的烧结过程主要是物理过程,虽然有化学变化,如粉末颗粒表面氧化膜的还原,但还原的结果只是产生具有高扩散活性的原子,促进物质迁移,没有产生新的化合物。(文献1:劳莱、劳伦、劳利等著,李月珠、周水生编译,高性能粉末冶金译文集,国防工业出版社,1982年2月)。
该工艺不足之处在于(文献2:B.Y.Li,L.J.Rong and Y.Y.Li,PorousNiTi alloy prepared from elemental powder sintering,Journal of MaterialsResearch,13(10)(1998)2847-2851):1.烧结制备周期过长,因为需要几到几十个小时,因为烧结时间越长,粉末烧结就越充分、完全,所以生产的效率低;2.生产成本高,需要复杂的真空烧结设备;3.产物的孔隙度较低(通常小于50%),有时需要用Ti2H粉做造孔剂来增大孔隙度;4.产物不纯净,通常含有未烧结完全的原料粉末;5.烧结的温度较高,通常要大于900℃而低于镍钛合金的熔点。
发明内容
为了克服上述不足,本发明的目的是提供一种周期短、成本低、孔隙度高、产物纯净的燃烧合成多孔镍钛形状记忆合金的制备工艺。
为了实现上述目的,本发明的技术方案是按如下步骤操作:
首先,以纯钛粉和镍粉为原料,根据使用要求按近等原子比配置原料粉末,在混料器中均匀而充分地混合;然后制成具有35~65%原始孔隙度的坯料;再置于加热炉中,在惰性气体气氛的保护下预热;当坯料达到最小点火温度、且低于700℃时,采用外热源点燃坯料的一端,燃烧波自发地蔓延到另一端,合成多孔镍钛形状记忆合金;
所述外热源为通电加热的钨丝或激光等。
本发明方法所合成的多孔镍钛形状记忆合金具有三维连通的网状开孔孔隙结构,孔隙度范围为51~70%,平均孔隙尺寸大小大于200μm,开孔孔隙度大于90%,可作为人体硬组织的植入材料。
本发明具有如下优点:
1.制备周期短。采用本发明在保护气体下局部点燃,燃烧放出的热量依次诱发邻近层的反应,通常只需几秒到几分钟,便可生成新的化合物-多孔镍钛形状记忆合金,生产的效率高。
2.生产成本低。使用普通的工业用加热炉,无需添加特殊设备,方便、经济。
3.产物纯净。实施本发明方法,其燃烧过程的高温接近产物的熔点,可挥发杂质,没有未反应的镍粉和钛粉,纯化产物。
4.产物的孔隙度高。采用本发明方法制备多孔镍钛形状记忆合金产物的孔隙度可高达70%,这是常规粉末烧结法难以实现的。
5.可实现产业化。采用本发明方法可制备大块的制品,产物的几何尺寸可根据实际使用的需要通过预制坯来控制,以实现大规模生产。
附图说明
图1为本发明一个实施例原料粉末混合后的X射线衍射图谱。
图2-1为本发明一个实施例制备的多孔镍钛形状记忆合金的宏观照片。
图2-2为图2-1中多孔镍钛形状记忆合金截面图,其中a为横向截面图;b为纵向截面图。
图3为本发明一个实施例制备的多孔镍钛形状记忆合金的孔隙形貌扫描电镜照片。
图4为本发明一个实施例制备的多孔Ti50Ni50形状记忆合金的X射线衍射图谱。
图5为本发明另一个实施例制备的多孔Ti49Ni51形状记忆合金的X射线衍射图谱。
具体实施方式
下面结合实施例对本发明作进一步详细说明。
实施例1
制备具有阻尼性能的多孔镍钛形状记忆合金:
采用工业用纯镍粉(平均粒度为4μm)和钛粉(平均粒度为44μm),按等原子比配料,充分混合24小时后,制成原始孔隙度为(50±2)%的尺寸为φ35×250mm2的坯料,在纯度为99.99%的工业纯氩气氛的保护下,放入工业用电炉中预热,当坯料的预热温度达到300℃时,采用通电加热的钨丝点燃坯料,一经点燃,燃烧波则自发地蔓延下去,在60秒内可合成出多孔镍钛形状记忆合金。
本发明燃烧合成是个化学反应过程,其原理是利用原料的放热化学反应来合成新的化合物。燃烧合成的工艺为:两种或两种以上的粉末经混合和制坯后在保护性气体下局部点燃,燃烧放出的热量依次诱发邻近层的反应,燃烧波过后便生成新的化合物-多孔镍钛形状记忆合金,其燃烧合成反应式为: ,即每摩尔的镍钛混合原料的放热量是66.7千焦耳。由于室温下镍钛粉末合成时的放热量较低,因此镍钛原料粉末必须经过预热才能进行合成反应。
所述混合步骤后的工业用原料粉末的X射线衍射图谱如图1所示,可看出由纯镍粉和钛粉组成。采用燃烧合成法制备的多孔镍钛形状记忆合金样品的宏观照片如图2-1、2-2所示,燃烧合成法制备的多孔镍钛形状记忆合金的孔隙形貌扫描电镜照片如图3所示,从图2-1、2-2和图3中可明显地看出孔隙分布均匀,具有三维连通的网状孔隙结构。孔隙度为58%左右,平均孔隙尺寸为300μm左右,开孔率大于90%。所合成的产品多孔镍钛形状记忆合金样品的X射线衍射图谱如图4所示,表明合金中有TiNi奥氏体相(B2)、TiNi马氏体相(B19’)、Ti2Ni相、TiNi3相,无纯钛和纯镍相,化合反应完全。经过分析测定,马氏体转变终了温度为49℃,表明室温下为马氏体态。
实施例2
制备具有超弹性的多孔镍钛形状记忆合金:
采用工业用纯镍粉(平均粒度为5.4μm)和钛粉(平均粒度为74μm),按Ti49Ni51(原子比)配料,充分混合24小时后,制成原始孔隙度为(52±2)%的尺寸为φ25×200mm2坯料,在纯度为99.99%的工业纯氩气氛的保护下,放入工业用电炉中预热。当坯料的预热温度达到400℃时,采用通电加热的钨丝点燃坯料,一经点燃,燃烧波则自发地蔓延下去,在40秒内合成出多孔镍钛形状记忆合金。
所述混合步骤后的工业用原料粉末的X射线衍射图谱如图1所示,可看出由纯镍粉和钛粉组成。
本实施例孔隙度为62%左右,平均孔隙尺寸为400μm左右,开孔率大于90%;所合成的多孔合金样品的X射线衍射图谱如图5所示,表明合金中有TiNi奥氏体相(B2)、Ti2Ni相,无纯钛和纯镍相,化合反应完全。

Claims (2)

1.一种燃烧合成多孔镍钛形状记忆合金的制备工艺,其特征在于按如下步骤操作:首先,以纯钛粉和镍粉为原料,按近等原子比配置原料粉末,均匀混合;然后制成具有35~65%原始孔隙度的坯料;再置于加热炉中,在惰性气体气氛的保护下预热;当坯料达到最小点火温度、且低于700℃时,采用外热源点燃坯料的一端,燃烧波自发地蔓延到另一端,合成多孔镍钛形状记忆合金;
其中:孔隙度范围为51~70%,平均孔隙尺寸为大于200μm,开孔率大于90%。
2.按照权利要求1所述燃烧合成多孔镍钛形状记忆合金的制备工艺,其特征在于:所述外热源为通电加热的钨丝或激光。
CNB011389168A 2001-12-25 2001-12-25 燃烧合成多孔镍钛形状记忆合金的制备工艺 Expired - Fee Related CN1172013C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB011389168A CN1172013C (zh) 2001-12-25 2001-12-25 燃烧合成多孔镍钛形状记忆合金的制备工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB011389168A CN1172013C (zh) 2001-12-25 2001-12-25 燃烧合成多孔镍钛形状记忆合金的制备工艺

Publications (2)

Publication Number Publication Date
CN1428447A CN1428447A (zh) 2003-07-09
CN1172013C true CN1172013C (zh) 2004-10-20

Family

ID=4674868

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB011389168A Expired - Fee Related CN1172013C (zh) 2001-12-25 2001-12-25 燃烧合成多孔镍钛形状记忆合金的制备工艺

Country Status (1)

Country Link
CN (1) CN1172013C (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100451144C (zh) * 2006-12-25 2009-01-14 华南理工大学 一种具有梯度孔隙率镍钛形状记忆合金的制备方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1731247A1 (en) * 2005-06-07 2006-12-13 Vlaamse Instelling Voor Technologisch Onderzoek (Vito) Titanium, titanium alloy and NiTi foams with high ductility
CN100369989C (zh) * 2006-01-12 2008-02-20 沈阳工业大学 一种激光合成反应制备多孔材料用的粉料
CN101215651B (zh) * 2008-01-04 2010-11-24 昆明理工大学 多孔泡沫镍钛形状记忆合金的制备方法
CN101899592B (zh) * 2010-08-03 2011-08-24 华中科技大学 一种原位合成任意形状NiTi形状记忆合金的方法
CN102560173B (zh) * 2010-12-08 2013-06-26 中国科学院金属研究所 大尺寸高减振性能的多孔Ti-Ni减振合金的制备方法
CN102534282A (zh) * 2010-12-08 2012-07-04 中国科学院金属研究所 多孔Ti-Ni-Mo三元形状记忆合金及其制备方法
CN102337419B (zh) * 2011-04-15 2013-03-06 中南大学 一种孔结构参数可控的多孔TiNi形状记忆合金的制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100451144C (zh) * 2006-12-25 2009-01-14 华南理工大学 一种具有梯度孔隙率镍钛形状记忆合金的制备方法

Also Published As

Publication number Publication date
CN1428447A (zh) 2003-07-09

Similar Documents

Publication Publication Date Title
Chu et al. Fabrication of porous NiTi shape memory alloy for hard tissue implants by combustion synthesis
Maya et al. Zr–Ti–Nb porous alloys for biomedical application
KR102081363B1 (ko) 마그네슘-아연-칼슘 합금, 이의 제조방법 및 이의 용도
Pilliar Metallic biomaterials
Narayanan et al. Electrochemical nano-grained calcium phosphate coatings on Ti–6Al–4V for biomaterial applications
Kuroda et al. Thermomechanical treatments influence on the phase composition, microstructure, and selected mechanical properties of Ti–20Zr–Mo alloys system for biomedical applications
CN1172013C (zh) 燃烧合成多孔镍钛形状记忆合金的制备工艺
Sridhar Nanobioceramic coatings for biomedical applications
Singh et al. Fabrication of biodegradable low elastic porous Mg-Zn-Mn-HA alloy by spark plasma sintering for orthopaedic applications
Hu et al. Microstructure evolution, mechanical properties, and enhanced bioactivity of Ti-13Nb-13Zr based calcium pyrophosphate composites for biomedical applications
Niespodziana et al. The synthesis of titanium alloys for biomedical applications
Li et al. An investigation of the synthesis of Ti-50 At. pct Ni alloys through combustion synthesis and conventional powder sintering
Huang et al. Biocompatible hydroxyapatite ceramic coating on titanium alloys by electrochemical methods via Growing Integration Layers [GIL] strategy: A review
WO2012124661A1 (ja) 高強度・低弾性に優れるチタン-マグネシウム材料
Li et al. Microstructure and superelasticity of porous NiTi alloy
Akbarinia et al. Porous shape memory dental implant by reactive sintering of TiH2–Ni-Urea mixture
Marczewski et al. Structure evolution analysis in ultrafine-grained Zr and Nb-based beta titanium alloys
Marchenko et al. Structure, biocompatibility and corrosion resistance of the ceramic-metal surface of porous nitinol
WO2011006354A1 (en) Polymeric based and surface treated metallic hybrid materials and fabrication methods thereof
Singh et al. Fabrication and characterization of Ti-Nb-HA alloy by mechanical alloying and spark plasma sintering for hard tissue replacements
Ahmad et al. A brief review on the properties of titanium as a metallic biomaterials
CN114681615B (zh) 一步合成Fe掺杂羟基磷灰石的制备方法与应用
Nakhi et al. Laser Cladding of Fluorapatite Nanopowders on Ti6Al4V
Saberi et al. The effectiveness mechanisms of carbon nanotubes (CNTS) as reinforcements for magnesium-based composites for biomedical applications: A review
Al-Asadia et al. Effect of and Deposition on Biological Behavior of Ti-Base Alloys

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20041020

Termination date: 20111225