CN117157429A - 涂层扁钢产品及其生产方法 - Google Patents

涂层扁钢产品及其生产方法 Download PDF

Info

Publication number
CN117157429A
CN117157429A CN202280023799.9A CN202280023799A CN117157429A CN 117157429 A CN117157429 A CN 117157429A CN 202280023799 A CN202280023799 A CN 202280023799A CN 117157429 A CN117157429 A CN 117157429A
Authority
CN
China
Prior art keywords
percent
flat steel
maximum
steel product
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202280023799.9A
Other languages
English (en)
Inventor
丹尼尔·施万克
斯特凡·比恩霍尔茨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Steel Europe AG
Original Assignee
ThyssenKrupp Steel Europe AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThyssenKrupp Steel Europe AG filed Critical ThyssenKrupp Steel Europe AG
Publication of CN117157429A publication Critical patent/CN117157429A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • C23C28/025Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only with at least one zinc-based layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/028Including graded layers in composition or in physical properties, e.g. density, porosity, grain size
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Thermal Sciences (AREA)
  • Coating With Molten Metal (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明涉及一种抗拉强度Rm至少为800MPa的扁钢产品,其涂有金属覆层,其中该金属覆层由具有锌和锰元素并从气相沉积的体系组成。此外,本发明还涉及其生产方法。

Description

涂层扁钢产品及其生产方法
技术领域
本发明涉及一种抗拉强度Rm至少为800MPa的扁钢产品,其涂层有金属覆层,本发明还涉及一种用于生产该扁钢产品的方法。
背景技术
现有技术中通常已知具有从气相沉积的金属覆层的钢材,例如德国公开文献DE 1621 376 A中所述。德国公开文献DE 10 2014 004
652A1和DE 10 2018 128 131 A1中已知从气相沉积的类似金属覆层,其设定用于热成型,其中钢材或具体而言通过热成型和(模压)硬化生产的部件的最终抗拉强度达到1500MPa或更多。
在较高强度的多相钢中,尤其是在所谓的淬火和配分(Q&P)钢中,含锌金属覆层在电阻点焊(WPS)时由于液态金属脆化,也叫liquid metal embrittlement(LME)而导致的开裂形成倾向增加。针对WPS期间由LME引发的开裂存在大量公开文献,其中国际公开文献WO2017/234839 A1和WO 2018/234938 A1涉及LME结合WPS,其说明了具有锌覆层的极高强度Q&P钢。从这些公开文献中可以进一步看出,硅、铬和钼作为合金元素,随着其在钢板中含量的增加,会促进LME,因此在此建议,在一种气氛中进行退火以建立Q&P结构,在这种气氛中,通过有针对性地控制露点来调节氧分压,并在退火阶段促使氧气向钢板中扩散,使在钢板的近表面区域中硅等元素结合为二氧化硅的形式,从而降低钢板中锌层下方的硅元素含量,进而提高对LME的抗性。这些公开文献的教导旨在限制性调整合金元素硅、铬和钼的含量,从而调整得到钢板的在锌覆层下方0至100μ
m区域的相应结构,以便为镀锌Q&P钢提供高水平的LME抗性。这里顺便提一下,根据一种替代方案,锌覆层也可以从气相中沉积。
此外,由现有技术还已知,随着钢材强度的不断增加,结合锌基覆层,对LME的敏感性也会增加,因此在WPS期间会由于开裂而扩展问题,因为在WPS期间,覆层中的锌会液化,渗入基材,并可能沉积在钢材的晶界处,从而使钢材更容易发生脆性断裂,并可能在随后的应用中导致钢材在荷载作用下过早失效。
已知另外的通过增加焊接电极的接触面积或通过改变材料和钢板厚度的组合来抑制LME问题的方案,参见专利文件US 9 333 588B2。
发明内容
因此,本发明的目的是提供一种抗拉强度Rm至少为800MPa的扁钢产品,并结合金属覆层,同时给出其相应的生产方法,利用该方法在WPS期间降低LME引起的开裂倾向,而无需对现有(标准)工艺采取如现有技术中所述的相应措施和/或调整。
根据本发明的第一方面,本发明通过具有权利要求1所述特征的扁钢产品来实现这一目的。
根据本发明提供了一种抗拉强度Rm至少为800MPa的扁钢产品,其涂有金属覆层,其中该金属覆层由具有锌和锰元素并(已)从气相沉积的体系组成。
本发明的关键在于,金属覆层由含有锌和锰元素的体系组成,由此,锌有助于阴极腐蚀保护,而锰则对钢(基材)的LME裂纹倾向有积极影响,因为金属覆层体系中锰元素的存在可以提高体系的熔化温度,从而在WPS期间降低和/或延缓体系的熔化。因此,脆性断裂的可能性也会降低。
此外,令人惊奇地确定,根据该方法,从气相沉积的金属覆层通常不会提供任何氢气,而在其他涂层方法中,尤其是电解涂层,氢气可能受限于工艺而产生并嵌入在金属晶格中。在抗拉强度至少为800MPa或更高的钢材中,嵌入的氢会导致氢致脆性断裂。
气相沉积的原理,例如CVD(化学气相沉积)或PVD(物理气相沉积),是现有技术。PVD方法是优选的。这项技术不应与电解涂层覆层或热浸涂层覆层相混淆。
根据本发明的扁钢产品的抗拉强度Rm至少为800MPa,尤其是至少为850MPa,优选至少为910MPa,更优选至少为950MPa。本发明扁钢产品的抗拉强度Rm最大为1700MPa,尤其最大为1600MPa,优选最大为1520MPa,更优选最大为1490MPa。抗拉强度Rm可根据DIN ENISO 6892-1:2017拉伸试验确定。根据本发明的扁钢产品只用于冷成型应用,而不用于热成型应用(包括硬化),因此在冷成型之前,扁钢产品中已经具备了相应的性能。
根据一种设计方案,该体系包括一层锌锰合金层。因此,该体系从气相中在一个步骤中沉积,并在扁钢产品上生成一层锌锰合金组成的层。因此,扁钢产品上的金属覆层由气相沉积的单层锌锰合金组成。在这种情况下,尤其这样控制沉积,即,使锌锰合金中的锌含量在10到90重量%之间,锰含量在90到10重量%之间。锰含量需要达到至少10重量%,以确保在WPS过程中降低LME开裂倾向,其中该含量尤其可以为至少20重量%,优选至少30重量%,更优选至少40重量%。相反,合金(层)中的锰含量限制在最高90重量%,这样金属覆层或体系就能确保具有至少为10重量%,尤其是至少20重量%,优选是至少30重量%,更优选是至少40重量%的锌含量的足够的阴极腐蚀保护,因为金属覆层或体系是从气相中以0.5到最大20μm之间,尤其是最大15μm,优选最大10μm的厚度施加在扁钢产品上的。体系或(相对较薄的)金属覆层中的锌含量越高,阴极腐蚀保护能力就越强。
根据一种替换的设计方案,该体系有一层锰层和一层锌层。因此,金属覆层是双层的,并且由一个锌层和一个锰层组成,其分别从气相沉积而成。该体系分两步沉积,首先在扁钢产品上沉积锰层,然后在锰层上沉积锌层。因此,锰层位于扁钢产品上,锌层位于锰层上。这两层可分别以在0.5至不超过20μm之间,尤其是最大15μm,优选最大10μm,更优选最大7μm的厚度沉积。
与单层体系相比,双层体系的优点是由锌组成的外层可提供完全的、高级别的阴极腐蚀保护,由锰组成的内层可在WPS期间提供完全的屏障。与单层体系相比,其缺点是需要通过两个独立的气相阶段才能依次沉积各层。
根据一种设计方案,扁钢产品可以经热轧或冷轧。决定因素是应用目的。热轧扁钢产品(热轧带材)的厚度在1.5至10mm之间。冷轧扁钢产品(冷轧带材)的厚度在0.5至4mm之间。从尤其化学组成在下文作为优选所述的熔体的浇铸开始,到预产品,并将预产品加热到一定温度,使其可以热轧成扁钢产品的工艺属于现有技术。如果所需的最小抗拉强度已经在热轧带材中调整得到,那么相应的方法对于技术人员来说是熟知的。如果要从热轧带材中调整得到最小抗拉强度为800MPa的冷轧扁钢产品,那么在冷轧成冷轧带材之前尤其对热轧带材首先进行酸洗也是现有技术。在随后的退火工序中,可获得所需的性能。本发明的核心不在于生产抗拉强度至少为800MPa的扁钢产品,而在于给出一种合适的覆层方案,对于指定抗拉强度等级为800MPa及以上的钢材,这种覆层方案能够在WPS期间抵抗这些抗拉强度等级钢材的特殊LME易损性。
扁钢产品的组织结构中至少包括两个不同的相。因此,该组织结构至少包含两种成分,来自铁素体、珠光体、马氏体、贝氏体、奥氏体、残余奥氏体和/或渗碳体,以及生产所限不可避免的组织结构成分。对此例如包括双相钢(DP钢),其组织结构由硬质相,如马氏体,和软质相,如铁素体,混合组成。复相钢(CP钢)主要含有中等硬度的相,如贝氏体和/或(回火)马氏体,可选择性与析出硬化结合使用。淬火&配分钢(QP钢)主要含有马氏体(包括回火马氏体)和残余奥氏体。替换地或额外地,组织结构中可能存在析出物。
根据一种设计方案,除铁和生产所限不可避免的杂质外,扁钢产品以重量%计还包括
C:0.001至0.50%、
Mn:0.10%至3.0%、
Si:0.01至2.0%、
Al:0.002至1.5%、
P:最大0.020%、
S:最大0.020%、
N:最大0.020%、
选择性一种或多种来自组别(Ti、Nb、V、Cr、Mo、W、Ca、B、Cu、Ni、Sn、As、Co、O、H)的合金元素,其中
Ti:最大0.20%、
Nb:最大0.20%、
V:最大0.20%、
Cr:最大2.0%、
Mo:最大2.0%、
W:最大1.0%、
Ca:最大0.050%、
B:最大0.10%、
Cu:最大1.0%、
Ni:最大1.0%、
Sn:最大0.050%、
As:最大0.020%、
Co:最大0.50%、
O:最大0.0050%、
H:最大0.0010%。
根据本发明的第二方面,通过具有权利要求8所述特征的方法来实现上述目的。
用于生产涂有金属覆层且抗拉强度Rm至少为800MPa的扁钢产品的方法包括以下步骤:
-提供热轧或冷轧的扁钢产品;
-在扁钢产品上涂覆金属覆层。
根据本发明,金属覆层由含有锌和锰元素的体系组成,并从气相沉积在扁钢产品上。
具体实施方式
在考虑WPS接合点时,可能无法准确评估裂纹对部件功能的损害程度。因此,在WPS过程中防止或至少显著减少裂纹对应用具有重要意义。
从以重量%计,除铁和生产所限不可避免的杂质外由C=0.25%、Si=1.5%、Mn=2.2%、Al=0.03%、Cr=0.7%、P=0.005%组成的熔液中,浇铸出预产品,该预产品首先热轧成扁钢产品,随后冷轧至1.5mm的厚度。冷轧扁钢产品经过Q&P工艺,其中形成了主要由马氏体(包括回火马氏体)/贝氏体和9%的残余奥氏体(RA)以及生产所限不可避免的组织结构成分组成的组织结构。从由此产生的扁钢产品中提取样品,该样品
-a)未涂层;
-b)在两侧分别热浸镀7μm厚的锌层(Z),其中RA降至7%;其中部分样品b1)在630℃左右的温度下进行额外热处理(ZF)约15s,并且由于热处理/扩散使RA进一步降至3%;
-c)在两侧电解镀上6μm厚的锌涂层(ZE);
-d)通过气相在两侧同时以锌和锰沉积锌锰合金(ZnMn-PVD),厚度各为6μm,其中这样控制沉积,使得产生单层体系,其锌含量为60重量%,锰含量为40重量%;
-e)首先通过气相在两侧以2μm的厚度沉积一层锰(Mn-PVD)层,然后通过气相在两侧以4μm的厚度在锰层上沉积一层锌(Zn-PVD)层,从而在样品上形成具有Mn-Zn-PVD涂层的双层体系。
从扁钢产品中再取一个样品根据DIN EN ISO 6892-1:2017标准进行拉伸测试。抗拉强度Rm为1183MPa。扁钢产品或样品虽然处于实验室规模,但仍采用大规模生产线的参数分别涂上所述的金属覆层b)至e)。
由于对LME引发裂纹的WPS研究中出现的自然分散,因此一般需要在大量测量系列中消耗大量材料。由于LME相关测量变量的可量化程度较差,在WPS研究中只能确定钢材LME敏感性的定性描述。在实验室应用中,高的材料需求量使现有水平的测试不再适用。因此开发了一种适合实验室规模的测试和优化方案,即“LME-Gleeble热拉伸试验”。测试在商用测试仪器Gleeble3500上进行。所使用的工艺实施变量与裂纹形成区域中在WPS过程中生效的热机械载荷相对应。在测量长度为10mm的情况下,所使用的拉伸速度始终为3mm/s。为了确定样品测量区域的实际延伸值,使用激光对延伸进行了非接触式测量。加热速率为1000K/s。温度区间为500至900℃之间的锌液相,以100℃为步阶。
对所有a)至e)样品进行了热拉伸试验。将样品在试验装置中张紧后,关闭试验箱并执行事先编程好的脚本,如下所示。热拉伸试验期间的测量频率至少为5000Hz。样品通过传导加热,并当样品测试温度达到前述500至900℃的温度窗口后,样品以给定的拉伸速度拉伸至样品失效。然后使用Origin分析软件对测量数据的质量进行验证。热拉伸试验的评估程序基于拉伸试验标准[DIN EN ISO 6892-1:2017]。在计算机辅助下,成功进行的热拉伸试验的原始数据被转换成立方函数。必要的支撑点(Stützstelle)和样品的技术失效时间点由设备操作员输入评估模块。
从各个测量数据中,发现机械性能和断裂行为随温度的变化。为了提高不同金属覆层影响的可比性,根据绝对测量值生成了所谓的相对变化曲线。此处变化曲线的参考变量原则上是未涂层样品a)的测量结果。根据温度,确定各金属覆层引起的变化大小,并以此来衡量LME效应的强度。
对于具有Z的b)样品,在所有测试温度下,技术断裂点都会急剧下降。尤其是与a)样品相比,技术断裂点的延伸值降低了>85%。具有ZF的b1)样品在500和600℃测试温度下的技术断裂点没有发生显著变化。而在其他测试温度(700-900℃)下,技术断裂点的降低非常明显。具有ZE的c)样品的表现与b)样品类似。具有Zn/Mn合金-PVD的d)样品在所有测试温度下的技术断裂点都没有明显的延伸值,其中与a)样品相比,技术断裂点大约低了<10%。对于具有Mn-Zn-PVD的e)样品,结果与d)样品的数量级相同。
塑性能量吸收能力的变化显示出与技术断裂点的变化相似的结果。结果证实了b)样品的Z的负面影响。同样,在500和600℃的测试温度下,b1)样品的ZF对塑性能量吸收能力没有限制。在700至900℃的其他测试温度下,这种降低也非常明显。c)样品的表现与b)样品相似。对于d)样品,在600至800℃的测试温度下,塑性能量吸收能力略有下降。其余的测试温度几乎没有显示出金属覆层的影响。e)样品与d)样品的影响程度的数量级相同。
断裂收缩率的变化结果与技术断裂点和塑性能量吸收能力的变化结果类似。在考虑断裂收缩率时,需要注意的是,与技术断裂点和塑性能量吸收能力不同,断裂收缩率是一个局部测量变量。
结果证实了由于b)样品的Z通过脆性断裂面引起的对断裂收缩率的负面影响,在所有测试温度下都是如此。b1)样品的ZF在500和600℃的测试温度下对断裂收缩率没有限制。然而,当测试温度超过700℃时,断裂面就会出现严重的脆性断裂行为。在这种情况下,具有ZE的c)样品也表现出与b)样品类似的行为。对于具有Zn/Mn-PVD的d)样品,在800℃的测试温度下,断裂收缩率略有下降。在600、800和900℃的测试温度下,在实际断裂面的后面发现了裂纹。具有Mn-Zn-PVD的e)样品的结果与d)样品类似。
对不同金属覆层对技术断裂点、塑性能量吸收能力和断裂收缩的影响的研究表明,在含锌金属覆层的情况下不能完全排除LME诱导的裂纹形成。
在热拉伸试验中研究了具有不同金属覆层的b)至e)样品的“LME敏感性”。作为参照的是未涂层的a)样品。除此以外,还可以研究其他此处未作说明的涂层和不同的钢材方案,而无需进行复杂的定量WPS研究。在这里尤其可以研究抗拉强度Rm至少为800MPa的所有对LME敏感的钢材。
如果在500至900℃的温度范围内,技术断裂点的变化符合以下条件:
f(x)=0.1375·x-58.75
或者,如果在500至900℃的测试范围内,在使用一致的温度步长时在测试区间内成立:
f(x)=7.25·√x-155
或者,对于500至900℃温度范围内所有测量值的总和,在使用一致的温度步长时在测试区间内成立:
∑f(x)/n<40,则可预测裂纹概率、裂纹深度和裂纹长度的预防或减少。
在WPS实验研究中,众多因素中使用了工艺参数和材料厚度组合,在镀锌样品中,这些组合以高概率和良好重现性导致LME裂纹。Gleeble方法中施加的热机械载荷在此反映出WPS实验中起效的平均热机械载荷。
如果Gleeble方法中的“LME敏感性”相对较小,并且在WPS研究中检测到明显降低的裂纹概率和较低的裂纹深度(或根本没有裂纹),则验证成功。
对a)至e)样品进行了WPS实验研究。表1列出了WPS研究的参数。在确定了达到额定焊点直径所需的电流强度后,直接制造用于WPS研究的样品系列。随后在焊接机内使用移动式铣帽装置铣削焊接电极,并利用三次焊接进行调质。出现焊接飞溅的样品将被丢弃。根据一致的焊点直径、电流强度和加工变量,焊接结果的可比性被评价为良好。
表1
WPS研究的结果与Gleeble热拉伸试验的预测结果十分吻合,但由于WPS工艺所限的研究结果分散性,不可能完全定量相关。为了提高裂纹测试的准确性,所有焊接样品都在裂纹表征之前进行了分层。所有样品的裂纹表征都是在LME试样的顶面进行的,使用的是宏观显微镜。这里,样品系列的裂纹概率是通过二元分类法(裂纹/无裂纹)确定的。在分析裂纹形态时,采用了数字测量法,并且通过从每个试样系列选取三个样品来对LME裂纹进行计数。为确定裂纹深度,至少制备了三个金相磨片。磨片的位置标记在样品上,并在中间穿过焊接位置表面上最长的裂纹。此外,还需要确定平均裂纹深度,以确认Gleeble研究结果的定性转换是否成功。
预期涂有Z的b)样品的裂纹概率最高,裂纹最深、最长。由于在定义的参考焊接任务中存在较高的有效负载,预计涂有ZF的b1)样品的裂纹概率不会改善,因为在焊接过程中,焊接位置表面的许多位置可能会超过已确定的700℃临界温度。焊接样品b)和b1)的裂纹概率最高,裂纹长度最长,其中系列2的b1)的裂纹概率最高,但平均裂纹长度低于系列1的样品b1)以及系列1和2的样品b)。这些结果与Gleeble方法中验证的强烈LME效应十分吻合。c)样品的结果也与样品b)相似。从焊接结果来看,样品d)和e)在系列1中没有发现裂纹。在系列2中,只有e)样品在施加电极压力的区域发现了小裂纹。可能的解释是,穿透式焊接电极破坏了这些区域的锰层,使液态锌得以渗入。在金属覆层体系中含有少量液态锌的d)样品中,系列2中也没有出现裂纹。因此,根据d)和e)样品的结果,可以预测在WPS焊接试验中裂纹出现的概率和程度都会明显降低。WPS试验的结果与Gleeble试验的预测结果十分吻合,但由于WPS工艺所限的研究结果分散性,因此不能完全量化相关。
WPS结果,尤其是系列2中e)样品的WPS结果表明,在将对LME敏感的基底材料与含锌涂层焊接时,不能排除LME裂纹形成的可能性,但相对于纯锌层,裂纹的数量和明显程度可以显著减少。

Claims (11)

1.一种扁钢产品,根据DIN EN ISO 6892-1:2017,其抗拉强度Rm至少为800MPa,所述扁钢产品涂覆有金属覆层,其中所述扁钢产品在组织结构中至少包括两个不同的相,其特征在于,所述金属覆层由具有锌和锰元素的体系组成,所述体系从气相中沉积。
2.如权利要求1所述的扁钢产品,其中所述体系具有由锌锰合金组成的层。
3.如权利要求2所述的扁钢产品,其中锌锰合金的锌含量在10-90重量%之间,锰含量在90-10重量%之间。
4.如权利要求1所述的扁钢产品,其中所述体系具有一层锰层和一层锌层。
5.如权利要求4所述的扁钢产品,其中所述锰层布置在扁钢产品上,所述锌层布置在所述锰层上。
6.如前述权利要求中任意一项所述的扁钢产品,其中所述扁钢产品经热轧或冷轧。
7.如前述权利要求中任意一项所述的扁钢产品,其中所述扁钢产品除铁和生产所限不可避免的杂质外,以重量%的组成为C:0.001至0.50%、
Mn:0.10%至3.0%、
Si:0.01至2.0%、
Al:0.002至1.5%、
P:最大0.020%、
S:最大0.020%、
N:至0.020%、
选择性一种或多种来自组别(Ti、Nb、V、Cr、Mo、W、Ca、B、Cu、Ni、Sn、As、Co、O、H)的合金元素,其中
Ti:最大0.20%、
Nb:最大0.20%、
V:最大0.20%、
Cr:最大2.0%、
Mo:最大2.0%、
W:最大1.0%、
Ca:最大0.050%、
B:最大0.10%、
Cu:最大1.0%、
Ni:最大1.0%、
Sn:最大0.050%、
As:最大0.020%、
Co:最大0.50%、
O:最大0.0050%、
H:最大0.0010%。
8.一种用于生产扁钢产品的方法,根据DIN EN ISO 6892-1:2017,所述扁钢产品的抗拉强度Rm至少为800MPa,所述扁钢产品涂覆有金属覆层,其中所述扁钢产品在组织结构中至少包括两个不同的相,所述方法包括以下步骤:
-提供热轧或冷轧的扁钢产品;
-在扁钢产品上涂覆金属覆层;
其特征在于,金属覆层由含有锌和锰元素的体系组成,所述体系从气相沉积在扁钢产品上。
9.如权利要求8所述的方法,其中所述体系在一个步骤中沉积,并在扁钢产品上生成一层锌锰合金层。
10.如权利要求9所述的方法,其中这样控制沉积,即,使锌锰合金中的锌含量在10至90重量%之间,锰含量在90至10重量%之间。
11.如权利要求8所述的方法,其中所述体系分两步沉积,方法是依次首先在扁钢产品上沉积一层锰层,然后在所述锰层上沉积一层锌层。
CN202280023799.9A 2021-03-24 2022-03-14 涂层扁钢产品及其生产方法 Pending CN117157429A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102021107330.8A DE102021107330A1 (de) 2021-03-24 2021-03-24 Beschichtetes Stahlflachprodukt und Verfahren zu seiner Herstellung
DE102021107330.8 2021-03-24
PCT/EP2022/056503 WO2022200099A1 (de) 2021-03-24 2022-03-14 Beschichtetes stahlflachprodukt und verfahren zu seiner herstellung

Publications (1)

Publication Number Publication Date
CN117157429A true CN117157429A (zh) 2023-12-01

Family

ID=80953371

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202280023799.9A Pending CN117157429A (zh) 2021-03-24 2022-03-14 涂层扁钢产品及其生产方法

Country Status (5)

Country Link
EP (1) EP4314386A1 (zh)
JP (1) JP2024516505A (zh)
CN (1) CN117157429A (zh)
DE (1) DE102021107330A1 (zh)
WO (1) WO2022200099A1 (zh)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1187802A (en) 1966-06-30 1970-04-15 United States Steel Corp Method of Applying a Protective Metal Coating to a Steel Base
US9333588B2 (en) 2011-01-28 2016-05-10 GM Global Technology Operations LLC Crack avoidance in resistance spot welded materials
KR20160099588A (ko) * 2013-12-18 2016-08-22 타타 스틸 네덜란드 테크날러지 베.뷔. 높은 용융 온도를 갖는 부식 방지 코팅이 제공된 강 기재
DE102014004652A1 (de) 2014-03-29 2015-10-01 Daimler Ag Bauteil, insbesondere Strukturbauteil für einen Kraftwagen, sowie Verfahren zum Herstellen eines solchen Bauteils
WO2017109540A1 (en) * 2015-12-21 2017-06-29 Arcelormittal Method for producing a high strength steel sheet having improved ductility and formability, and obtained steel sheet
WO2018234839A1 (en) 2017-06-20 2018-12-27 Arcelormittal ZINC COATED STEEL SHEET HAVING HIGH STRENGTH POINTS WELDABILITY
DE102018128131A1 (de) 2018-11-09 2020-05-14 Thyssenkrupp Ag Gehärtetes Bauteil umfassend ein Stahlsubstrat und eine Korrosionsschutzbeschichtung, entsprechendes Bauteil zur Herstellung des gehärteten Bauteils sowie Herstellverfahren und Verwendung

Also Published As

Publication number Publication date
DE102021107330A1 (de) 2022-09-29
WO2022200099A1 (de) 2022-09-29
EP4314386A1 (de) 2024-02-07
JP2024516505A (ja) 2024-04-16

Similar Documents

Publication Publication Date Title
RU2728369C2 (ru) Способ производства высокопрочной листовой стали, характеризующейся улучшенными тягучестью и формуемостью, и полученная листовая сталь
RU2729671C2 (ru) Способ производства высокопрочной листовой стали с нанесенным покрытием, характеризующейся улучшенными тягучестью и формуемостью, и полученная листовая сталь с нанесенным покрытием
EP3394298B1 (en) Method for producing a high strength steel sheet having improved ductility and formability, and obtained steel sheet
EP3084014B1 (fr) Acier à haute résistance et procédé de fabrication
KR101820273B1 (ko) 프레스 경화용 강 시트의 제조 방법, 빛 이 방법에 의해 획득되는 부품
EP2256224B1 (en) High-strength cold-rolled steel sheet, high-strength galvanized steel sheet, and high-strength alloyed hot-dip galvanized steel sheet having excellent formability and weldability, and methods for manufacturing the same
EP2436797A1 (en) High-strength steel sheet, hot-dipped steel sheet, and alloy hot-dipped steel sheet that have excellent fatigue, elongation, and collision characteristics, and manufacturing method for said steel sheets
EP3178949A1 (en) High-strength steel sheet and method for manufacturing same
MX2014011619A (es) Plancha de acero laminado en frio de alta resistencia, plancha de acero galvanizado por inmersion en caliente de alta resistencia y plancha de acero galva-recocido por inmersion en caliente de alta resistencia excelentes en cuanto a aptitud de conformacion y retencion de forma y metodos para fabricacion de las mismas.
BR122013030320B1 (pt) Processo de fabricação de uma chapa de aço austenítico oferecendo resistência à fratura retardada
KR102629666B1 (ko) 향상된 연성을 갖는 고강도 강 부품들을 제조하기 위한 방법, 및 상기 방법에 의해 얻어진 부품들
EP3619330B1 (en) Method for producing a high strength steel sheet having high ductility, formability and weldability, and obtained steel sheet
AU2017263399A1 (en) High strength steel products and annealing processes for making the same
KR102180811B1 (ko) 수소취성에 대한 저항성이 우수한 열간 프레스 성형 부재 및 그 제조방법
KR20200076788A (ko) 굽힘 가공성이 우수한 고강도 냉연강판 및 그 제조방법
CN117157429A (zh) 涂层扁钢产品及其生产方法
EP2832884A1 (en) Hot-dip galvanized steel sheet for press forming with excellent cold workability, in-mold hardenability, and surface property, and process for producing same
RU2809296C1 (ru) Холоднокатаный отожжённый стальной лист и способ его изготовления

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination