CN117126755B - 一种葡萄糖-乙醇共碳源发酵高产香叶醇的酿酒酵母工程菌及其构建方法和应用 - Google Patents

一种葡萄糖-乙醇共碳源发酵高产香叶醇的酿酒酵母工程菌及其构建方法和应用 Download PDF

Info

Publication number
CN117126755B
CN117126755B CN202311377960.5A CN202311377960A CN117126755B CN 117126755 B CN117126755 B CN 117126755B CN 202311377960 A CN202311377960 A CN 202311377960A CN 117126755 B CN117126755 B CN 117126755B
Authority
CN
China
Prior art keywords
saccharomyces cerevisiae
geraniol
gene
genes
yield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202311377960.5A
Other languages
English (en)
Other versions
CN117126755A (zh
Inventor
于涛
金哲浩
赵雪梅
田飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Merchants Investment Development Co ltd
Shenzhen Institute of Advanced Technology of CAS
Original Assignee
China Merchants Investment Development Co ltd
Shenzhen Institute of Advanced Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Merchants Investment Development Co ltd, Shenzhen Institute of Advanced Technology of CAS filed Critical China Merchants Investment Development Co ltd
Priority to CN202311377960.5A priority Critical patent/CN117126755B/zh
Publication of CN117126755A publication Critical patent/CN117126755A/zh
Application granted granted Critical
Publication of CN117126755B publication Critical patent/CN117126755B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1022Transferases (2.) transferring aldehyde or ketonic groups (2.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1085Transferases (2.) transferring alkyl or aryl groups other than methyl groups (2.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1205Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1229Phosphotransferases with a phosphate group as acceptor (2.7.4)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01044Phosphogluconate dehydrogenase (decarboxylating) (1.1.1.44)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01049Glucose-6-phosphate dehydrogenase (1.1.1.49)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y202/00Transferases transferring aldehyde or ketonic groups (2.2)
    • C12Y202/01Transketolases and transaldolases (2.2.1)
    • C12Y202/01001Transketolase (2.2.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y202/00Transferases transferring aldehyde or ketonic groups (2.2)
    • C12Y202/01Transketolases and transaldolases (2.2.1)
    • C12Y202/01002Transaldolase (2.2.1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y205/00Transferases transferring alkyl or aryl groups, other than methyl groups (2.5)
    • C12Y205/01Transferases transferring alkyl or aryl groups, other than methyl groups (2.5) transferring alkyl or aryl groups, other than methyl groups (2.5.1)
    • C12Y205/0101(2E,6E)-Farnesyl diphosphate synthase (2.5.1.10), i.e. geranyltranstransferase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/01Phosphotransferases with an alcohol group as acceptor (2.7.1)
    • C12Y207/010116-Phosphofructokinase (2.7.1.11)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/04Phosphotransferases with a phosphate group as acceptor (2.7.4)
    • C12Y207/04002Phosphomevalonate kinase (2.7.4.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/07Diphosphoric monoester hydrolases (3.1.7)
    • C12Y301/07011Geranyl diphosphate diphosphatase (3.1.7.11)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/01Carboxy-lyases (4.1.1)
    • C12Y401/01033Diphosphomevalonate decarboxylase (4.1.1.33), i.e. mevalonate-pyrophosphate decarboxylase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y501/00Racemaces and epimerases (5.1)
    • C12Y501/03Racemaces and epimerases (5.1) acting on carbohydrates and derivatives (5.1.3)
    • C12Y501/03001Ribulose-phosphate 3-epimerase (5.1.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y503/00Intramolecular oxidoreductases (5.3)
    • C12Y503/01Intramolecular oxidoreductases (5.3) interconverting aldoses and ketoses (5.3.1)
    • C12Y503/01006Ribose-5-phosphate isomerase (5.3.1.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/645Fungi ; Processes using fungi
    • C12R2001/85Saccharomyces
    • C12R2001/865Saccharomyces cerevisiae

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本发明公开了一种葡萄糖‑乙醇共碳源发酵高产香叶醇的酿酒酵母工程菌及其构建方法和应用。所述酿酒酵母工程菌表达融合的ObGers和Erg20基因,缺失pfk1和pfk2基因,过表达Zwf1、Gnd1、Tal1、Rki1、Rpe1、Tkl1、Erg8和Erg19基因。本发明构建全新的基于葡萄糖‑乙醇共碳源发酵稳定合成香叶醇重组酵母细胞,通过高级基因工程技术进行全面的代谢改造,提高了香叶醇生物合成的稳定性和产量,同时提供此类化合物工程化生产的方法与技术。

Description

一种葡萄糖-乙醇共碳源发酵高产香叶醇的酿酒酵母工程菌 及其构建方法和应用
技术领域
本发明属于合成生物学技术领域,涉及一种葡萄糖-乙醇共碳源发酵高产香叶醇的酿酒酵母工程菌及其构建方法和应用。
背景技术
香叶醇(3,7-二甲基-2,6-辛二烯-1-醇),又称为香天竺葵醇、牻牛儿醇,是一种重要的直链单萜类有机化合物,因其具有怡人的气味和较强的抗菌、消炎和提高机体免疫力等生物活性,现被广泛应用于食品、药品、化妆品、杀虫剂以及先进燃料工业中。自然界中的香叶醇是植物通过甲基赤藓糖醇磷酸(MEP)途径合成的次级代谢物。目前香叶醇的生产主要是通过从天然植物中提取或者化学合成得到,不仅成本较高、分离纯化效率低下,而且对环境造成不利影响。
通过改造微生物使其成为生产高附加值化学品的细胞工厂是绿色清洁生产的新途径。酿酒酵母可以通过甲羟戊酸(MVA)途径合成萜类化合物,又因其发酵性能好,操作简单,遗传背景清楚且可以表达真核来源的复杂蛋白,因此被认为是合成萜类化合物的优秀细胞工厂。通过酿酒酵母代谢工程改造,引入香叶醇合成酶基因(Gers)可以实现香叶醇在酿酒酵母中的生物合成。如CN105420135A公开了一株高产单萜香叶醇的重组酿酒酵母菌株,将含有香叶醇合成酶和法呢基焦磷酸合成酶突变体融合蛋白基因tVoGES-ERG20 F96W-N127W的表达载体 pZGV6-GE1与含有异戊烯基二磷酸异构酶基因IDI1、HMG-CoA还原酶基因tHMG1和甾醇调节转录因子基因UPC2-1表达载体pZMVA4共转化酿酒酵母单倍体菌株CEN.PK102-5B,得到含有两个质粒的重组酿酒酵母菌株YZG13-GE1,即为高产单萜香叶醇的重组酿酒酵母菌株。CN106754448A公开了一种发酵生产香叶醇的酵母菌株,所述发酵生产香叶醇的酵母菌株包含经 酵母自身同源重组整合到其基因组上的如下基因片段:酵母trp1位点上游同源序列、GAL1启动子、香叶醇合成酶编码基因GES、PGK1终止子、酵 母trp1位点下游同源序列顺次拼接而成的基因片段1;酵母leu2位点上游同源序列、LEU2标记、ACT1终止子、截短的HMG-CoA还原酶基因tHMGR1、GAL10启动子、酵母leu2位点下游同源序列顺次拼接而成的基因片段2。然而,酵母细胞内存在紧密联系的代谢网络和复杂的代谢调控系统,单纯的导入和强化与产物合成相关的酶类并不能实现外源产物的稳定和高效生产。
综上所述,开发稳定高效生物合成香叶醇的方法,对于香叶醇的应用领域具有重要意义。
发明内容
针对现有技术的不足和实际需求,本发明提供一种葡萄糖-乙醇共碳源发酵高产香叶醇的酿酒酵母工程菌及其构建方法和应用。
为达上述目的,本发明采用以下技术方案:
第一方面,本发明提供一种高产香叶醇的酿酒酵母工程菌,所述酿酒酵母工程菌表达融合的ObGers和Erg20基因,缺失pfk1和pfk2基因,过表达Zwf1、Gnd1、Tal1、Rki1、Rpe1、Tkl1、Erg8和Erg19基因。
本发明中设计全新工程改造策略,以酿酒酵母为底盘细胞对其进行改造,包括敲除pfk1和pfk2基因,切断糖酵解途径,过表达香叶醇合成必要辅因子PP途径上的酶基因Zwf1,Gnd1,Tal1,Rki1,Rpe1和Tkl1基因,获得过量生产辅因子NADPH的重组酿酒酵母菌株,同时表达融合的ObGers和Erg20基因以及过表达香叶醇合成的MVA途径上的酶基因Erg8和Erg19,实现稳定生产香叶醇。
优选地,所述酿酒酵母工程菌的底盘细胞为Saccharomyces cerevisiae IMX581(1MATa ura3-52 can1Δ::cas9-natNT2 TRP1 LEU2 HIS3),1(注:菌株接合型为MATa,带有尿嘧啶缺陷型筛选标记,并整合了cas9基因和natNT2、TRP1、LEU2和HIS3标记)。
优选地,所述Erg20基因选自定点突变的Erg20基因。
优选地,所述融合的ObGers和Erg20基因的核酸序列包括SEQ ID NO:1所示的序列。
优选地,所述酿酒酵母工程菌还过表达EfmvaS、EfmvaE、Erg12和Idi1基因。
优选地,所述EfmvaS基因的核酸序列包括SEQ ID NO:2所示的序列。
优选地,所述EfmvaE基因的核酸序列包括SEQ ID NO:3所示的序列。
SEQ ID NO:1:
atgtcttgcgccagaatcactgttactttgccttacagatctgccaagacctctatccaaagaggtatcactcactacccagccttgatcagaccaagattctccgcttgtacccctctagcttctgctatgccattatcatccactccattaattaacggtgacaattctcaaagaaagaacactagacaacacatggaagaatcttcttccaagagaagagaatacttgctcgaagaaactaccagaaagctacaaagaaacgacaccgaatccgttgaaaagttgaagttgattgataacattcaacaattaggtatcggttactacttcgaagacgctatcaacgctgtccttcgtagtccattctccaccggtgaagaagatctgtttactgccgctctaaggtttagattgttaagacacaacggtattgaaatctctccagaaatcttcttgaaattcaaggatgaaagaggtaaattcgacgaatctgacactttgggtttgttgtctttgtacgaagcttccaacttgggtgttgctggtgaagaaattttggaagaggccatggaattcgctgaagctagattgagaagatctttgtccgaaccagctgctccattgcacggtgaagtcgctcaagccttggatgtcccaagacatttgagaatggcacgtttggaagctagaagattcattgaacaatacggtaagcaatccgaccacgatggtgatttattggaactggctattttggactacaaccaagtccaagctcaacatcaatctgaattgactgaaatcatcagatggtggaaggaattgggcttggtcgacaagttgtctttcggtagagacagaccattggaatgtttcttatggacagtcggcctgttgccagaaccaaagtactctagtgttagaattgaattggctaaggcaatttccatcttgttggttatcgatgacattttcgatacctacggtgaaatggacgatttgatcttgtttactgatgctatccgtcgttgggacttagaagctatggaaggtttgccagaatacatgaagatctgttatatggccttatataacaccaccaacgaagtttgttacaaagtcttgcgcgacactggtcgtattgttttgttgaacttgaagtctacctggattgacatgatcgaaggtttcatggaagaagccaagtggttcaacggtggttctgctccaaaattggaagaatacattgaaaacggtgtttctactgctggtgcttacatggctttcgctcacattttcttcttgattggtgaaggtgtcacccaccaaaactctcaattgttcacccaaaagccatacccaaaggttttctcagctgccggtagaatattaagattgtgggatgacttgggaaccgctaaggaagaacaagaaagaggtgacttggcttcttgtgttcaattgttcatgaaagaaaagtccttgaccgaagaagaagccagatccagaatcttagaagaaatcaagggtttgtggagagatctcaatggtgaattagtgtacaacaagaatttgccattgtccattattaaggtcgctttgaacatggctcgtgccagccaagttgtttataagcacgatcaagatacttacttttcctctgttgacaactacgtcgacgctttatttttcactcaaggtggtggttctgcttcagaaaaagaaattaggagagagagattcttgaacgttttccctaaattagtagaggaattgaacgcatcgcttttggcttacggtatgcctaaggaagcatgtgactggtatgcccactcattgaactacaacactccaggcggtaagctaaatagaggtttgtccgttgtggacacgtatgctattctctccaacaagaccgttgaacaattggggcaagaagaatacgaaaaggttgccattctaggttggtgcattgagttgttgcaggcttactggttggtcgccgatgatatgatggacaagtccattaccagaagaggccaaccatgttggtacaaggttcctgaagttggggaaattgccatctgggacgcattcatgttagaggctgctatctacaagcttttgaaatctcacttcagaaacgaaaaatactacatagatatcaccgaattgttccatgaggtcaccttccaaaccgaattgggccaattgatggacttaatcactgcacctgaagacaaagtcgacttgagtaagttctccctaaagaagcactccttcatagttactttcaagactgcttactattctttctacttgcctgtcgcattggccatgtacgttgccggtatcacggatgaaaaggatttgaaacaagccagagatgtcttgattccattgggtgaatacttccaaattcaagatgactacttagactgcttcggtaccccagaacagatcggtaagatcggtacagatatccaagataacaaatgttcttgggtaatcaacaaggcattggaacttgcttccgcagaacaaagaaagactttagacgaaaattacggtaagaaggactcagtcgcagaagccaaatgcaaaaagattttcaatgacttgaaaattgaacagctataccacgaatatgaagagtctattgccaaggatttgaaggccaaaatttctcaggtcgatgagtctcgtggcttcaaagctgatgtcttaactgcgttcttgaacaaagtttacaagagaagcaaataa。
SEQ ID NO:2:
atgacaattgggattgataaaattagtttttttgtgcccccttattatattgatatgacggcactggctgaagccagaaatgtagaccctggaaaatttcatattggtattgggcaagaccaaatggcggtgaacccaatcagccaagatattgtgacatttgcagccaatgccgcagaagcgatcttgaccaaagaagataaagaggccattgatatggtgattgtcgggactgagtccagtatcgatgagtcaaaagcggccgcagttgtcttacatcgtttaatggggattcaacctttcgctcgctctttcgaaatcaaggaaggttgttacggagcaacagcaggcttacagttagctaagaatcacgtagccttacatccagataaaaaagtcttggtcgtagcggcagatattgcaaaatatggcttaaattctggcggtgagcctacacaaggagctggggcggttgcaatgttagttgctagtgaaccgcgcattttggctttaaaagaggataatgtgatgctgacgcaagatatctatgacttttggcgtccaacaggccacccgtatcctatggtcgatggtcctttgtcaaacgaaacctacatccaatcttttgcccaagtctgggatgaacataaaaaacgaaccggtcttgattttgcagattatgatgctttagcgttccatattccttacacaaaaatgggcaaaaaagccttattagcaaaaatctccgaccaaactgaagcagaacaggaacgaattttagcccgttatgaagaaagtatcgtctatagtcgtcgcgtaggaaacttgtatacgggttcactttatctgggactcatttcccttttagaaaatgcaacgactttaaccgcaggcaatcaaattggtttattcagttatggttctggtgctgtcgctgaatttttcactggtgaattagtagctggttatcaaaatcatttacaaaaagaaactcatttagcactgctggataatcggacagaactttctatcgctgaatatgaagccatgtttgcagaaactttagacacagacattgatcaaacgttagaagatgaattaaaatatagtatttctgctattaataataccgttcgttcttatcgaaactaa。
SEQ ID NO:3:
atgaagactgtcgttatcatagatgccttgagaacaccaatcggtaaatacaaaggttcattatcccaagtttccgccgttgacttaggtactcatgttactacacaattgttgaagagacactccacaatcagtgaagaaatcgatcaagtcatattcggtaacgtattgcaagctggtaatggtcaaaacccagccagacaaatagctatcaattctggtttatcacatgaaattcctgctatgacagtaaacgaagtttgtggttcaggcatgaaagcagtcattttggccaagcaattgatacaattaggtgaagcagaagttttaatcgccggtggtatagaaaacatgagtcaagctccaaaattgcaaagattcaattacgaaactgaatcttacgatgcacctttctcttcgatgatgtatgatggtttgactgacgctttttctggtcaagcaatgggtttaacagctgaaaatgtcgcagaaaagtaccatgtaaccagagaagaacaagatcaattttccgttcacagtcaattaaaagctgcacaagcacaagccgaaggtattttcgccgacgaaatagctccattggaagtttctggtacattagtcgaaaaggatgaaggtattagacctaactccagtgttgaaaaattgggtactttgaagacagtattcaaggaagacggtacagttaccgctggtaatgcctctaccattaacgatggtgctagtgcattgattatagcttctcaagaatatgccgaagctcatggtttgccatacttagctatcattagagatagtgtagaagttggtattgacccagcatacatgggtatctctcctataaaagcaatccaaaagttgttagccagaaaccaattgaccactgaagaaattgatttgtacgaaattaacgaagcatttgccgctacatcaatcgttgtccaaagagaattggcattgccagaagaaaaggttaacatctatggtggtggtatctccttgggtcacgctataggtgcaaccggtgccagattgttgacttccttaagttaccaattgaaccaaaaggaaaagaaatacggtgttgcttctttatgcattggtggtggtttgggtttagcaatgttgttagaaagaccacaacaaaagaaaaattctagattctaccaaatgtcccctgaagaaagattggcctcattgttaaatgaaggtcaaatttccgcagatactaagaaagaatttgaaaacaccgctttatcttcacaaatcgcaaaccatatgatcgaaaaccaaatctctgaaacagaagttccaatgggtgtcggtttgcacttaactgtcgatgaaacagactatttggtaccaatggctaccgaagaacctagtgttatcgcagccttatctaatggtgctaagatagcacaaggttttaagactgttaaccaacaaagattgatgagaggtcaaatcgtattctacgatgttgctgacccagaatcattaatcgataagttgcaagtaagagaagccgaagtttttcaacaagctgaattgtcttacccttcaatagttaagagaggtggtggtttgagagatttgcaatacagaacttttgacgaatccttcgtcagtgtagatttcttagttgatgtcaaggacgccatgggtgctaatattgttaacgcaatgttggaaggtgtcgccgaattgtttagagaatggttcgctgaacaaaagattttgttttctatcttgtcaaactacgctacagaatctgtagttaccatgaaaactgcaattccagtttccagattgagtaagggttctaacggtagagaaatcgctgaaaagattgttttggcatcaagatatgcctccttagacccttacagagctgttactcataataagggtataatgaacggtatcgaagctgtcgtattagcaaccggtaatgatactagagcagtatctgcctcatgtcacgcattcgccgttaaggaaggtagataccaaggtttgacatcatggaccttggatggtgaacaattaattggtgaaatatccgttccattggctttagcaactgttggtggtgctacaaaagtcttgcctaagagtcaagctgcagccgatttgttagccgtcactgacgctaaggaattgtctagagttgtcgctgcagtaggtttagctcaaaatttggccgctttaagagcattggtttcagaaggtattcaaaaaggtcatatggctttgcaagcaagatccttagccatgacagttggtgctaccggtaaagaagtcgaagccgtagctcaacaattaaaaagacaaaagacaatgaaccaagacagagcaatggctatattaaacgatttgagaaagcaataa。
本发明中,进一步异源表达MVA途径上的限速酶基因EfmvaS和EfmvaE,同时过表达了MVA途径上Erg12和Idi1基因以提高香叶醇合成前体的供应,以进一步提高香叶醇产量。
优选地,所述酿酒酵母工程菌还缺失cit2和icl1基因。
本发明中,敲除与MVA途径竞争消耗前体乙酰辅酶A并降低酿酒酵母对葡萄糖依赖性的乙醛酸循环上的cit2基因和乙醛酸循环上的icl1基因,优化代谢流的重组酵母菌株,以进一步提高香叶醇产量。
优选地,所述酿酒酵母工程菌还过表达Gdh2基因。
本发明中,过表达谷氨酸盐转氢酶Gdh2基因,一定程度恢复菌株生产能力,以进一步提高香叶醇产量。
优选地,所述酿酒酵母工程菌还经过适应性进化,使工程菌株适应重新设计的代谢路线,获得恢复生长速率并提高香叶醇产量的重组酵母菌株。
优选地,所述酿酒酵母工程菌还缺失gdh2基因,并在缺失位点表达融合的ObGers和Erg20基因。
本发明中,敲除三羧酸循环分支途径上gdh2基因,并在敲除位点上多拷贝过表达融合的ObGers与定点突变的Erg20基因,进一步优化了辅因子平衡,以进一步提高香叶醇产量。
优选地,所述酿酒酵母工程菌还缺失dos2、rox1、vba5、yer134c、ynr063w和ygr259c基因。
本发明中,敲除被反馈抑制的转录调控因子dos2,rox1,vba5,yer134c, ynr063w和ygr259c,以进一步提高香叶醇产量。
优选地,所述酿酒酵母工程菌还缺失atf1和oye2基因。
本发明中,敲除香叶醇合成途径下游竞争途径基因atf1和oye2,以进一步提高香叶醇产量。
优选地,所述酿酒酵母工程菌还缺失idh1基因,并过表达Yhm2和Idp2基因。
优选地,所述酿酒酵母工程菌还缺失ald2和ald3基因,并过表达Ada基因。
本发明中,敲除三羧酸循环上NAD(+)依赖的异柠檬酸盐脱氢酶idh1基因,并在敲除位点上多拷贝过表达线粒体柠檬酸盐和酮戊二酸运输蛋白Yhm2和NADP(+)依赖的异柠檬酸盐脱氢酶Idp2基因;或者敲除乙醛脱氢酶ald2和ald3基因,并在敲除位点上多拷贝过表达乙醛脱氢酶Ada基因,进一步优化了碳源代谢流,以进一步提高香叶醇产量。
作为优选的技术方案,所述高产香叶醇的酿酒酵母工程菌缺失果糖-6-磷酸向1,6-二磷酸果糖转化的合成酶基因pfk1 (GenBank登录号:YGR240C)和pfk2 (GenBank登录号:YMR205C),过表达PP途径上的Zwf1(GenBank登录号:YNL241C),Gnd1(GenBank登录号:YHR183W),Tal1(GenBank登录号:YLR354C),Rki1(GenBank登录号:YOR095C),Rpe1(GenBank登录号:YJL121C)和Tkl1(GenBank登录号:YPR074C)基因,表达香叶醇合成酶ObGers与Erg20融合基因,过表达EfmvaS、EfmvaE、Erg12和Idi1基因(GenBank登录号:YPL117C),缺失cit2(GenBank登录号:YCR005C)和icl1(GenBank登录号:YER065C),过表达Gdh2(GenBank登录号:YDL215C)和ObGers-Erg20的融合基因,菌株适应性进化,恢复生长效率,缺失gdh2、dos2(GenBank登录号:YDR068W),rox1(GenBank登录号:YPR065W)、vba5(GenBank登录号:YKR105C)、yer134c、ynr063w、ygr259c、atf1(GenBank登录号:YOR377W)、oye2(GenBank登录号:YHR179W)、缺失idh1基因(GenBank登录号:YNL037C)并过表达Yhm2(GenBank登录号:YMR241W)和Idp2基因(GenBank登录号:YLR174W),缺失乙醛脱氢酶ald2基因(GenBank登录号:YMR170C)和ald3基因(GenBank登录号:YMR169C)并过表达乙醛脱氢酶Ada基因,缺失乙酰辅酶A合成酶acs1(GenBank登录号:YAL054C)和acs2基因(GenBank登录号:YLR153C)。
第二方面,本发明提供第一方面所述的高产香叶醇的酿酒酵母工程菌的构建方法,所述方法包括:
敲除酿酒酵母中pfk1和pfk2基因,并导入融合的ObGers和Erg20基因,过表达Zwf1、Gnd1、Tal1、Rki1、Rpe1、Tkl1、Erg8和Erg19基因。
本发明中,采用本领域通用手段、策略如CRISPR-Cas9方法等进行基因敲除、导入及过表达。
第三方面,本发明提供第一方面所述的高产香叶醇的酿酒酵母工程菌在生产香叶醇中的应用。
第四方面,本发明提供一种制备香叶醇的方法,所述方法包括:
培养第一方面所述的高产香叶醇的酿酒酵母工程菌,收集菌液进行产物分离纯化,得到所述香叶醇。
与现有技术相比,本发明具有以下有益效果:
本发明构建全新的基于葡萄糖-乙醇共碳源发酵稳定合成香叶醇重组酵母细胞,通过高级基因工程技术进行全面的代谢改造提高了香叶醇生物合成的稳定性和产量,同时提供此类化合物工程化生产的方法与技术。
附图说明
图1为重组酵母菌株构建示意图;
图2为实施例1中重组酿酒酵母菌株改造糖酵解途径(EMP)与磷酸戊糖途径(PPP)示意图;
图3为实施例2中重组酿酒酵母菌株构建香叶醇合成途径示意图与产量统计结果图;
图4为实施例3中重组酿酒酵母菌株甲羟戊酸(MVA)途径改造示意图与产量统计结果图;
图5为实施例4中重组酿酒酵母菌株乙醛酸循环改造示意图与产量统计结果图;
图6为实施例4中重组酿酒酵母菌株三羧酸(TCA)循环改造示意图与进化前后产量统计结果图;
图7为实施例6中切断香叶醇的下游竞争途径基因改造示意图与产量统计结果图;
图8为各阶段重组酿酒酵母菌株改造后香叶醇产量及工程菌生长情况统计结果图。
具体实施方式
为进一步阐述本发明所采取的技术手段及其效果,以下结合实施例和附图对本发明作进一步地说明。可以理解的是,此处所描述的具体实施方式仅仅用于解释本发明,而非对本发明的限定。
实施例中未注明具体技术或条件者,按照本领域内的文献所描述的技术或条件,或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可通过正规渠道购买获得的常规产品。
本发明实施例以酿酒酵母为例来详细说明重组酿酒酵母生物合成香叶醇的合成方法,所用酿酒酵母菌株信息为:2MATa ura3-52 can1Δ::cas9-natNT2 TRP1 LEU2 HIS3pfk1,2Δ XII-3::(FBA1t-Zwf1-CCW12p)+(THD3p-Gnd1-ADH1t)+(PYKt-Tal1-TEF1p) XI-2::(DIT1t-Rki1-TPI1p)+(HXT7p-Rpe1-EHO2t)+(TDH2t-Tkl1-PGKp) XII-2:(TPS1t-Erg8-CCW12p)+(ENO2p-Erg19-TDH2t)+(TEF1p-Gers-linker-Erg20*-DIT1t) XI-3::(DIT1t-EfmvaS-CCW12p)+(ENO2p-Erg12-FBA1t)+(TDH2t-EfmvaE- TDH3p)+(TEF1p-Idi1-TPS1t)cit1Δ icl1Δ XI-5::(PYK1t-Erg20*-Gers-TDH1p) +(TDH2p-Gdh2-DIT1t) gdh2Δ::(PYK1t-Erg20*-Gers-TDH1p) DOS2Δ ROX1Δ VBA5Δ YER134CΔ YNR063WΔ YGR259CΔidh1Δ::Yhm2,Idp2 ald2,3Δ::Ada acs1Δ acs2Δ。2(注:Δ含义为敲除此符号前面的基因;::含义为在此符号前面的位点上插入符号后面的基因)。
本发明实施例所构建菌株均采用CRISPR-Cas9方法,参照文献(MANS, Robert, etal. CRISPR/Cas9: a molecular Swiss army knife for simultaneous introductionof multiple genetic modifications in Saccharomyces cerevisiae. FEMS YeastResearch, 2015,15.1)。酿酒酵母转化方法参照文献(GIETZ, R. Daniel; SCHIESTL,Robert H. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nature protocols, 2007, 2.1: 31-34.)。
重组酵母菌株构建示意图如图1所示,以下实施例中首先敲除果糖-6-磷酸向1,6-二磷酸果糖转化的合成酶基因pfk1 (GenBank登录号:YGR240C)和pfk2 (GenBank登录号:YMR205C),获得一株糖酵解途径被切断的重组酵母菌。其次,过表达PP途径上的Zwf1(GenBank登录号:YNL241C),Gnd1(GenBank登录号:YHR183W),Tal1(GenBank登录号:YLR354C),Rki1(GenBank登录号:YOR095C),Rpe1(GenBank登录号:YJL121C)和Tkl1(GenBank登录号:YPR074C)基因(趋向于辅因子NADPH的合成)。随后,整合香叶醇合成酶ObGers(与MVA途径关键酶Erg20融合,人工合成基因,序列如SEQ ID NO:1所示),获得一株香叶醇生物合成功能的重组酿酒酵母菌株,其香叶醇合成产量为 9.88 mg/L。过表达MVA途径上的EfmvaS(人工合成基因,序列如SEQ ID NO:2所示)、EfmvaE(人工合成基因,序列如SEQ ID NO:3所示)、Erg12(GenBank登录号:YMR208W)和Idi1基因(GenBank登录号:YPL117C)(趋向于香叶醇前体化合物的合成)。敲除乙醛酸循环上的cit2(GenBank登录号:YCR005C)和icl1(GenBank登录号:YER065C)。过表达Gdh2(GenBank登录号:YDL215C)和ObGers-Erg20的融合基因。菌株适应性进化,恢复生长效率。敲除三羧酸循环分支途径上的gdh2恢复合成途径的还原力供给。敲除转录调控因子dos2(GenBank登录号:YDR068W),rox1(GenBank登录号:YPR065W),vba5(GenBank登录号:YKR105C),yer134c, ynr063w和ygr259c。敲除香叶醇下游竞争途径基因atf1(GenBank登录号:YOR377W)和oye2(GenBank登录号:YHR179W)。敲除三羧酸循环上NAD(+)依赖的异柠檬酸盐脱氢酶idh1基因(GenBank登录号:YNL037C)并过表达线粒体柠檬酸盐和酮戊二酸运输蛋白Yhm2(GenBank登录号:YMR241W)和NADP(+)依赖的异柠檬酸盐脱氢酶Idp2基因(GenBank登录号:YLR174W),优化碳源代谢流向。敲除乙醛脱氢酶ald2基因(GenBank登录号:YMR170C)和ald3基因(GenBank登录号:YMR169C)并过表达乙醛脱氢酶Ada基因,进一步优化代谢流。敲除乙酰辅酶A合成酶acs1(GenBank登录号:YAL054C)和acs2基因(GenBank登录号:YLR153C),优化乙醇代谢。
以20g/L葡萄糖和2%的乙醇为碳源进行发酵,重组酿酒酵母合成香叶醇产量达605mg/L。
实验中所采用的敲除手段,也可以是RNA干扰,酶活性降低,低强度启动子置换或敲除等能达到相同效果的其他技术。
实施例1
本实施例改造糖酵解途径(EMP)与磷酸戊糖途径(PPP),示意图如图2所示制备过量生产NADPH的重组酿酒酵母菌株。
在网站(http://yeastriction.tnw.tudelft.nl/#!/)设计pfk1和pfk2敲除的gRNA引物。pfk1_up sgRNA F&R:5’-gaaagataaatgatcTTTGGAAAGAATCTGTGAAAgttttagagctagaaatagcaagt-3’;
pfk1_dw sgRNA F&R:
5’-gaaagataaatgatcGTGGCTGGAATCAAACACATgttttagagctagaaatagcaagt-3’;
pfk2_up sgRNA F&R:
5’-gaaagataaatgatcTTTTCGTTAACAGCAATCAAgttttagagctagaaatagcaagt-3’;
pfk2_dw sgRNA F&R:
5’-gaaagataaatgatcTAGCTGGTATCAAGACCATTgttttagagctagaaatagcaagt-3’。
下划线表示在酵母基因组中点特异性识别位点,获得引物用于扩增2 μm段,反应体系如下表1。
表1 扩增2 μm片段的反应体系
以引物CRISPR plasmid back F&R(5’-gatcatttatctttcactgcggagaag-3’)扩增质粒骨架。反应体系如下表2。
表2 扩增质粒骨架的反应体系
将2 μm片段和质粒骨架通过Gibson Assembly方法组装构建本申请中指定的指定位点切割质粒。以pkf1基因为例,用酿酒酵母基因组为模板,引物PFK1-up-F (5’-cagcgttatccgatttgagatcg-3’)和引物PFK1-up-(ccw12)-R(5’- tgtggttcatgggtgGCTTTCCCAAATAGTGCTAAAGTG-3’)扩增pkf1敲除修复上游片段;引物PFK1-dw-dit1t-F(5’-gcgttgcggagtaacatgattgcaatgaaaagtttaagtta agc-3’)和引物PFK1-dw-R(5’-gattatcggcactagtttccatttttc-3’)扩增pfk1敲除修复下游片段;获得片段后,以引物PFK1-up-F和引物PFK1-dw-R进行融合PCR,获得修复片段Pkf1-up-dw,用于构建重组菌株wx020。参照相同方法构建精准切割质粒。以酿酒酵母基因组为模板,分别构建Zwf1,Gnd1,Tal1,Rki1,Rpe1和Tkl1基因的修复片段,用于构建重组菌株MV001;过表达的Zwf1是以酿酒酵母内源基因与FBA1t酿酒酵母启动子,CCW12p酿酒酵母终止子融合后过表达于XII-3插入点。
将获得的过表达修复片段和精准切割质粒转入酿酒酵母细胞。
具体步骤如下:挑取新鲜酵母克隆至1 mL YPD培养基(Yeast Extract, Peptone,Dextrose),培养过夜,取适量菌液转接至20 mL YPD中,使起始OD600=0.1,30℃,200rpm培养至OD600=0.6,3000g离心去除培养基,用1 mL无菌水重悬细胞沉淀,3000g离心去除上清后加入1 mL 0.1 M醋酸锂重悬,3000g离心去除上清,加入200 μL 0.1 M醋酸锂制得酿酒细胞感受态细胞,将获得酵母感受态通过醋酸锂/聚乙二醇转化法进行重组酿酒酵母构造,转化体系如下表3。
表3 重组酿酒酵母的转化体系
实施例2
本实施例制备整合香叶醇合成途径并强化MVA途径的重组酿酒酵母菌株。
以实施例1的过量生产NADPH的重组酿酒酵母菌株MV001为起始,按照参考文献(MIKKELSEN, Michael Dalgaard, et al. Microbial production ofindolylglucosinolate through engineering of a multi-gene pathway in aversatile yeast expression platform. Metabolic engineering, 2012, 14.2: 104-111.) 中叙述的方法设计酵母XII-2位点切割的gRNA引物(XII-2 sgRNA F&R, 5’-gaaagataaatgatcGGTATGTGCAGTTGATTCACgttttagagctagaaatagcaagt-3’,下划线表示在酵母基因组中点特异性识别位点),获得引物用于扩增2μm片段,参照实施例1构建精准切割质粒。以酿酒酵母基因组为模板,分别构建Erg8和Erg19的修复片段。优化后的Gers基因与点突变的Erg20基因融合,再与酿酒酵母内源启动子TEF1p,Dit1t酿酒酵母终止子融合后表达于XII-2位点,得到MV002重组菌株。
为了评价改造菌株合成香叶醇的能力,分别将出发菌株和改造菌株摇瓶发酵。具体步骤如下:挑取新鲜酵母单克隆至1 mL DelftDE培养基(酵母无机盐培养基以2%Dextrose和2%Ethanol为碳源)中(参考文献见VERDUYN C, Postma E, Scheffers W A, etal. Effect of benzoic acid on metabolic fluxes in yeasts: a continuous‐culture study on the regulation of respiration and alcoholic fermentation.Yeast, 1992, 8.7: 501-517),培养过夜,取适量菌液转接至18 mL DelftDE + 2mL 十二烷,使起始OD600=0.2,30℃,200rpm培养,发酵4天后收集菌液,4℃,12000 rpm离心10 min,分别收集上层吸收了香叶醇的十二烷和下层发酵液。上层十二烷用50%乙醇稀释400倍。下层发酵液用50%乙醇稀释10倍。经0.22 μm滤膜过滤,进行液相质谱分析。液相质谱分析方法如下:使用 Phenomenex Kinetex C18 column (100×2.1mm,粒径为2.6μm)色谱柱,柱温30°C,进样量5μL。流动相A含有0.1%甲酸的去离子水,B相是含有0.1%甲酸的乙腈,流速为0.2ml/min。质谱仪电喷雾电压为3.0kV,载气为N2(纯度大于99%)流速为120L/h,干燥气温度为400°C。采用ESI负离子(-)模式检测目标产物香叶醇([M-H]- m/z 153.1)。(香叶醇检测方法)香叶醇产量计算方法:上层测出的含量值÷10×400+下层测出的含量×10。
如图3所示,表达了Ger-Erg20的菌株检测出的香叶醇含量为9.88 mg/L。
实施例3
本实施例制备香叶醇合成途径优化方法提高产量的重组酿酒酵母菌株。
以实施例2的强化MVA途径的重组酿酒酵母菌株MV002为起始,按照实施例2中精准切割质粒制备的方法,设计了酵母XI-3位点切割的gRNA引物(XI-3 sgRNA F&R, 5’-gaaagataaatgatcATATGTCTCTAATTTTGGAAgttttagagctagaaatagcaagt-3’,下划线表示在酵母基因组中点特异性识别位点),获得引物用于扩增2 μm片段,参照实施例1构建精准切割质粒。以酿酒酵母基因组为模板,分别构建EfmvaS,EfmvaE,Erg12和Idi1的修复片段,过表达与XI-3,得到MV003重组菌株。对获得酿酒酵母菌株进行发酵分析,结果如图4所示,过表达上述基因的酿酒酵母香叶醇产量明显提升,产量达到66.08 mg/L。
实施例4
本实施例优化重组酵母的乙醛酸循环和三羧酸循环支路并进行适应性进化以提高香叶醇生产的产量及稳定性的方法。
以实施例3的优化香叶醇合成途径的重组酿酒酵母菌株MV003为起始,按照实施例2中精准切割质粒制备的方法,分别设计了酵母cit2和icl1基因切割的gRNA引物(cit2_upsgRNA F&R,5’-tgaaagataaatgatcGTTAGTTTCATCAATATACGgtttta gagctagaaatagcaagt-3’; cit2_dw sgRNA F&R, 5’-tgaaagataaatgatcGAATTTCCAAGCAAGATTATgttttagagctagaaatagcaagt-3’; icl1 sgRNA F&R,5’-tgaaagataaatgatcTAATACCTTGAATAATTTTCgttttagagctagaaatagcaagt-3’,下划线表示在酵母基因组中点特异性识别位点),获得引物用于扩增2 μm片段,参照实施例1构建精准切割质粒。以酿酒酵母基因组为模板,构建修复片段。对获得酿酒酵母重组菌株MV004和MV005进行发酵分析,结果如图5所示,敲除cit2和icl1后,酿酒酵母香叶醇产量分别为42.22 mg/L和65.19 mg/L。
以MV005重组酵母菌株为起始,按照实施例2中精准切割质粒制备的方法,设计了酵母XI-5位点切割的gRNA引物(XI-5 sgRNA F&R, 5’- gaaagataaatgatcTGAGAATACTGTTG TAA AACgttttagagctagaaatagcaagt-3’,下划线表示在酵母基因组中点特异性识别位点),获得引物用于扩增2 μm片段,参照实施例1构建精准切割质粒。构建Gdh2和ObGers-Erg20*的修复片段,过表达与XI-5,得到重组菌株MV006。紧接着,对改造后的酿酒酵母进行适应性进化,得到进化后的菌株ALE。适应性进化后,工程菌的生长速率恢复,香叶醇产量明显提升。如图6所示,进化前后香叶醇的产量分别为55.21 mg/L和310 mg/L。
随后,以适应性进化后的菌株ALE为起始,按照实施例2中精准切割质粒制备的方法,设计了酵母gdh2基因切割的gRNA引物(gdh2 sgRNA F&R,5’-tgaaagataaatgatcAAATTTGCTAGTGA CGCCGTgttttagagctagaaatagcaagt-3’,下划线表示在酵母基因组中点特异性识别位点),获得引物用于扩增2 μm片段,参照实施例1构建精准切割质粒。以酿酒酵母基因组为模板,构建修复片段,并在gdh2的切割位点上过表达融合的ObGers与定点突变的Erg20基因,得到重组菌株MV008。对获得酿酒酵母菌株进行发酵分析,结果如图6所示,敲除gdh2后,酿酒酵母香叶醇产量为313 mg/L。
实施例5
本实施例优化重组酵母的转录调控因子以提高香叶醇产量。
以实施例4的香叶醇高产重组酿酒酵母菌株MV008为起始,按照实施例2中精准切割质粒制备的方法,分别设计了酵母萜类合成相关调控因子dos2,rox1,vba5,yer134c,ynr063w和ygr259c基因切割的gRNA引物(dos2 sgRNA F&R, 5’-tgaaagataaatgatcTCTGTA GTTTCATTGCTAATgttttagagctagaaatagcaagt-3’;rox1 sgRNA F&R, 5’-tgaaagataaatgatcTGTTCAGACAGCACTACCACgttttagagctagaaatagcaagt-3’; vba5 sgRNA F&R, 5’-tgaaagataaatgatcACTCCATTAAGAACGTATTTgttttagagctagaaatagcaagt-3’; yer134c sgRNA F&R,5’-tgaaagataaatgatcTCAAGATTACCTGAGTGGAA gttttagagctagaaatagcaagt-3’; ynr063wsgRNA F&R, 5’-tgaaagataaatgatcAACTCTATACTAGAGAACAAgttttagagctagaaatagcaagt-3’; ygr259c sgRNA F&R, 5’-tgaaagataaatgatcTGGATAGACCTGCAACTTCTgttttagagctagaaatagcaagt-3’,下划线表示在酵母基因组中点特异性识别位点),获得引物用于扩增2 μm片段,参照实施例1构建精准切割质粒。以酿酒酵母基因组为模板,构建修复片段。对获得酿酒酵母菌株进行发酵分析,结果如图8所示,敲除dos2和rox1、vba5和yer134c、ynr063w和ygr259c后,得到重组菌株MV012。对菌株进行发酵分析,结果香叶醇产量为 530 mg/L。
实施例6
本实施例进行切断香叶醇的下游竞争途径基因以提高香叶醇产量。
以实施例5的转录调控因子优化的重组酿酒酵母菌株MV012为起始,按照实施例2中精准切割质粒制备的方法,分别设计了酵母内编码醇乙酰基转移酶的基因atf1和香叶醇还原酶的基因oye2的切割的gRNA引物(atf1 sgRNA F&R, 5’-tgaaagataaatgatcCTCCGTTT TTACATGTTTGTgttttagagctagaaatagcaag-3’;oye2 sgRNA F&R, 5’-tgaaagataaatgatcCT TCACCTTCAGTTAAAAATgttttagagctagaaatagcaag-3’,下划线表示在酵母基因组中点特异性识别位点),获得引物用于扩增2 μm片段,参照实施例1构建精准切割质粒。以酿酒酵母基因组为模板,构建修复片段。对获得酿酒酵母重组菌株MV013进行发酵分析,结果如图7所示,敲除atf1和oye2后,酿酒酵母香叶醇产量为 552 mg/L。
实施例7
本实施例优化重组酵母的碳源代谢途径以提高香叶醇产量。
以实施例6的切断香叶醇合成下游竞争途径的重组酿酒酵母菌株MV013为起始,按照实施例2中精准切割质粒制备的方法,分别设计idh1和ald2,ald3基因切割的gRNA引物(idh1 sgRNA F&R, 5’-tgaaagataaatgatcATGACAATCAAATCTAT GTCgttttagagctagaaatagcaagt-3’; ald2 sgRNA F&R,5’-tgaaagataaatgatcTTCAAATGCC AAAGGTGATTgttttagagctagaaatagcaagt-3’; ald3 sgRNA F&R,5’-tgaaagataaatgatcTTG TAAATAGTTATCAACGCgttttagagctagaaatagcaagt-3’下划线表示在酵母基因组中点特异性识别位点),获得引物用于扩增2 μm片段,参照实施例1构建精准切割质粒。以酿酒酵母基因组为模板,分别构建Yhm2、Idp2和Ada的修复片段,分别过表达与idh1和ald2,ald3基因的切割位点。对获得酿酒酵母重组菌株MV015进行发酵分析,结果如图8所示,酿酒酵母香叶醇产量为586 mg/L。
以重组菌株MV015为起始,按照实施例2中精准切割质粒制备的方法,分别设计acs1和acs2基因切割的gRNA引物(acs1 sgRNA F&R, 5’-tgaaagataaatgatcTTATTGGGATAT TATTG ATGgttttagagctagaaatagcaagt-3’; acs2 sgRNA F&R,5’-tgaaagataaatgatcTTAA GATTAATCAAACGTGTgttttagagctagaaatagcaagt-3’下划线表示在酵母基因组中点特异性识别位点),获得引物用于扩增2 μm片段,参照实施例1构建精准切割质粒。以酿酒酵母基因组为模板,分别构建修复片段。对获得酿酒酵母重组菌株MV016进行发酵分析,结果如图8所示,酿酒酵母香叶醇产量为605 mg/L。
综上所述,本申请构建全新的基于葡萄糖-乙醇共碳源发酵稳定合成香叶醇重组酵母细胞,通过高级基因工程技术进行全面的代谢改造提高了香叶醇生物合成的稳定性和产量,同时提供此类化合物工程化生产的方法与技术。
申请人声明,本发明通过上述实施例来说明本发明的详细方法,但本发明并不局限于上述详细方法,即不意味着本发明必须依赖上述详细方法才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。

Claims (3)

1.一种高产香叶醇的酿酒酵母工程菌,其特征在于,所述酿酒酵母工程菌表达融合的ObGersErg20基因,缺失pfk1pfk2基因,过表达Zwf1Gnd1Tal1Rki1Rpe1Tkl1Erg8Erg19基因;
所述融合的ObGersErg20基因的核酸序列如SEQ ID NO:1所示的序列;
所述酿酒酵母工程菌还过表达EfmvaSEfmvaEErg12Idi1基因;
所述酿酒酵母工程菌还缺失cit2icl1基因;
所述酿酒酵母工程菌还缺失gdh2基因,并在缺失位点表达融合的ObGersErg20基因;
所述酿酒酵母工程菌还缺失dos2rox1vba5yer134cynr063wygr259c基因;
所述酿酒酵母工程菌还缺失atf1oye2基因。
2.根据权利要求1所述的高产香叶醇的酿酒酵母工程菌,其特征在于,所述酿酒酵母工程菌还缺失idh1基因、ald2ald3基因,并过表达Ada基因、Yhm2Idp2基因。
3.一种制备香叶醇的方法,其特征在于,所述方法包括:
培养权利要求1-2任一项所述的高产香叶醇的酿酒酵母工程菌,收集菌液进行产物分离纯化,得到所述香叶醇。
CN202311377960.5A 2023-10-24 2023-10-24 一种葡萄糖-乙醇共碳源发酵高产香叶醇的酿酒酵母工程菌及其构建方法和应用 Active CN117126755B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311377960.5A CN117126755B (zh) 2023-10-24 2023-10-24 一种葡萄糖-乙醇共碳源发酵高产香叶醇的酿酒酵母工程菌及其构建方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311377960.5A CN117126755B (zh) 2023-10-24 2023-10-24 一种葡萄糖-乙醇共碳源发酵高产香叶醇的酿酒酵母工程菌及其构建方法和应用

Publications (2)

Publication Number Publication Date
CN117126755A CN117126755A (zh) 2023-11-28
CN117126755B true CN117126755B (zh) 2024-03-12

Family

ID=88851117

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311377960.5A Active CN117126755B (zh) 2023-10-24 2023-10-24 一种葡萄糖-乙醇共碳源发酵高产香叶醇的酿酒酵母工程菌及其构建方法和应用

Country Status (1)

Country Link
CN (1) CN117126755B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019092388A1 (en) * 2017-11-10 2019-05-16 University Of Bath Synthesis of monoterpenoid ester compounds
CN112553097A (zh) * 2020-11-26 2021-03-26 天津大学 一种高产香茅醇的酵母基因工程菌株及其构建方法和发酵方法
CN116590165A (zh) * 2023-07-10 2023-08-15 齐鲁工业大学(山东省科学院) 一株利用木糖生产香叶醇的酿酒酵母菌株及其应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11299717B2 (en) * 2016-10-11 2022-04-12 Evolva Sa Production of citronellal and citronellol in recombinant hosts
JP2021505154A (ja) * 2017-12-07 2021-02-18 ザイマージェン インコーポレイテッド 発酵によって(6e)−8−ヒドロキシゲラニオールを生産するための設計された生合成経路
CN115698272A (zh) * 2020-04-08 2023-02-03 哥本哈根大学 二磷酸香叶酯衍生的化合物的产生

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019092388A1 (en) * 2017-11-10 2019-05-16 University Of Bath Synthesis of monoterpenoid ester compounds
CN112553097A (zh) * 2020-11-26 2021-03-26 天津大学 一种高产香茅醇的酵母基因工程菌株及其构建方法和发酵方法
CN116590165A (zh) * 2023-07-10 2023-08-15 齐鲁工业大学(山东省科学院) 一株利用木糖生产香叶醇的酿酒酵母菌株及其应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Complete biosynthesis of cannabinoids and their unnatural analogues in yeast;Luo X 等;《Nature》;第567卷(第7746期);第123-126页 *
Iterative carotenogenic screens identify combinations of yeast gene deletions that enhance sclareol production;Trikka F A 等;《Microbial Cell Factories》;第14卷(第1期);第1-19页 *
Manipulation of GES and ERG20 for geraniol overproduction in Saccharomyces cerevisiae;Jiang GZ 等;《Metab Eng》;第41卷;第57-66页 *
代谢改造酿酒酵母合成萜类化合物的研究进展;陈明凯 等;《生物工程学报》;第37卷(第6期);第2085-2104页 *
改造法呢基焦磷酸合成酶及乙酰辅酶A合成途径提高酿酒酵母香叶醇生产;李琛 等;《中国优秀硕士学位论文全文数据库工程科技Ⅰ辑》(第5期);第B018-94页 *

Also Published As

Publication number Publication date
CN117126755A (zh) 2023-11-28

Similar Documents

Publication Publication Date Title
EP2504422B1 (en) Methods of increasing dihydroxy acid dehydratase activity to improve production of fuels, chemicals, and amino acids
ES2739894T3 (es) Microorganismos de levadura con una acumulación reducida de subproductos para una mejor producción de combustibles, productos químicos y aminoácidos
US8232089B2 (en) Cytosolic isobutanol pathway localization for the production of isobutanol
EP2121949B1 (en) Butanol production by metabolically engineered yeast
EP2776571B1 (en) Production of acetyl-coenzyme a derived isoprenoids
Saunders et al. Triacetic acid lactone production in industrial Saccharomyces yeast strains
Jin et al. Engineering Saccharomyces cerevisiae to produce odd chain‐length fatty alcohols
Lange et al. β-carotene production by Saccharomyces cerevisiae with regard to plasmid stability and culture media
Bae et al. High-yield production of (R)-acetoin in Saccharomyces cerevisiae by deleting genes for NAD (P) H-dependent ketone reductases producing meso-2, 3-butanediol and 2, 3-dimethylglycerate
US20140080188A1 (en) Yeast microorganisms with reduced 2,3-butanediol accumulation for improved production of fuels, chemicals, and amino acids
US20140017748A1 (en) Modified alcohol dehydrogenases for the production of fuels and chemicals
CN113832044A (zh) 一种重组解脂耶氏酵母菌、其构建方法以及应用
CN117126755B (zh) 一种葡萄糖-乙醇共碳源发酵高产香叶醇的酿酒酵母工程菌及其构建方法和应用
US20120034666A1 (en) Methods of increasing dihydroxy acid dehydratase activity to improve production of fuels, chemicals, and amino acids
Zhang et al. Optimization of ethyl hexanoate production in Saccharomyces cerevisiae by metabolic engineering
CN116622532B (zh) 合成阿魏酸的酵母菌株和构建方法及其在制备阿魏酸及胡椒代谢物中的应用
NL2024578B1 (en) Recombinant fungal cell
Zhang et al. Dual β-oxidation pathway and transcription factor engineering for methyl ketones production in Saccharomyces cerevisiae
US20230087872A1 (en) Novel nkr variants for increased production of isobutanol
WO2023108503A1 (zh) 一种工程菌的构建方法及其应用
CN116622532A (zh) 合成阿魏酸的酵母菌株和构建方法及其在制备阿魏酸及胡椒代谢物中的应用
CN114806911A (zh) 一种利用解脂耶氏酵母线粒体途径定位合成α-红没药烯的方法
Yu et al. Construction of a glucose and xylose co-fermenting industrial Saccharomyces cerevisiae by expression of codon-optimized fungal xylose isomerase
CN116240122A (zh) 一种同产己酸乙酯和己酸酿酒酵母菌株及其构建方法与用途
CN117867004A (zh) 合成植物木脂素苷的酿酒酵母工程菌及其构建方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant