CN117116471B - 建立预测增殖或非增殖狼疮肾炎模型的方法及预测方法 - Google Patents

建立预测增殖或非增殖狼疮肾炎模型的方法及预测方法 Download PDF

Info

Publication number
CN117116471B
CN117116471B CN202311374534.6A CN202311374534A CN117116471B CN 117116471 B CN117116471 B CN 117116471B CN 202311374534 A CN202311374534 A CN 202311374534A CN 117116471 B CN117116471 B CN 117116471B
Authority
CN
China
Prior art keywords
lupus nephritis
proliferative
logit
probability
proliferation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202311374534.6A
Other languages
English (en)
Other versions
CN117116471A (zh
Inventor
杨攀玉
武永康
曾筱茜
刘忠禹
张超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
West China Hospital of Sichuan University
Original Assignee
West China Hospital of Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by West China Hospital of Sichuan University filed Critical West China Hospital of Sichuan University
Priority to CN202311374534.6A priority Critical patent/CN117116471B/zh
Publication of CN117116471A publication Critical patent/CN117116471A/zh
Application granted granted Critical
Publication of CN117116471B publication Critical patent/CN117116471B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/214Generating training patterns; Bootstrap methods, e.g. bagging or boosting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/217Validation; Performance evaluation; Active pattern learning techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/243Classification techniques relating to the number of classes
    • G06F18/2433Single-class perspective, e.g. one-against-all classification; Novelty detection; Outlier detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/27Regression, e.g. linear or logistic regression
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Evolutionary Biology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Primary Health Care (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Pathology (AREA)
  • Databases & Information Systems (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

本发明涉及建立预测增殖或非增殖狼疮肾炎模型的方法及预测方法,属于医疗技术领域。建立模型的方法包括下述步骤:将预定数量狼疮肾炎患者的临床和实验室指标作为训练队列,用LASSO回归算法筛选出特征指标变量,进行逻辑回归模型拟合,得到拟合后的Logit P逻辑回归模型;根据Logit P逻辑回归模型绘制ROC曲线,在ROC曲线上约登指数最大值即为最佳阈值。预测方法,包括下述步骤:将待预测患者的实际特征指标值代入Logit P逻辑回归模型或列线图得到概率P,若概率P大于等于最佳阈值,则预测结果为增殖狼疮肾炎;若概率P小于最佳阈值,则预测结果为非增殖狼疮肾炎。本发明提供了一种无创安全、无禁忌症、成本低且能及时快速预测狼疮肾炎分型的方法。

Description

建立预测增殖或非增殖狼疮肾炎模型的方法及预测方法
技术领域
本发明涉及医疗技术领域,特别涉及建立预测增殖或非增殖狼疮肾炎模型的方法及预测方法。
背景技术
系统性红斑狼疮(SLE)是由内源性核抗原耐受性丧失引起的自身免疫性疾病的原型,引发针对各种组织的异常自身免疫反应。狼疮肾炎(LN)是SLE患者最常见且严重的靶器官损害,也是SLE患者发病和死亡的主要原因,影响多达60%的患者。
目前,肾活检组织学分类被认为是LN诊断和病理分型的“金标准”,根据2003年国际肾脏病学会/肾脏病理学会(ISN/RPS)的定义,LN在组织学上被分为六种不同的类型,代表SLE中不同的表现和肾脏受累的严重程度。狼疮肾炎分为:I型为轻微病变性LN;II型为系膜增生性LN;III型为局灶性LN;IV型为弥漫性LN;V型为膜性LN;VI型为晚期硬化型病变。其中,非增殖LN(I、II、V)通常采用保守治疗,免疫抑制只用于治疗肾外症状。而增殖LN (III、IV或III/IV+V)均采用全身免疫抑制和维持治疗,以抑制炎症和控制自身免疫。大量的研究发现,I /II型LN表现最为温和,具有较好的肾脏预后。相对于非增殖LN患者来说、增殖LN患者病情更严重,需要肾脏移植的风险最高、预后不良的风险明显增高。LN的病理类型可随着病程进展及治疗的干预发生转变。有研究表明,约15-30%的非增殖LN可转化为增殖LN。由于增殖和非增殖LN的分型不同,治疗方案、预后转归不同,所以,尽早区分增殖和非增殖LN对临床诊疗是非常重要的。
但目前诊断分型的金标准肾活检有很多的弊端。首先,它是一种有创侵入性操作,可能会出现一些并发症,如血尿、肾周血肿和感染。因此有些病人不适合接受这种手术。其次,组织病理学会随着时间的推移而改变,治疗需要适当调整。由于重复肾活检不容易重复进行,也存在争议,因此不利于监测分型的转变和调整治疗方案。此外,LN临床诊断与组织学评估之间的时间间隔可能会延迟治疗,错过最佳治疗时机,甚至导致LN患者肾功能不全的发展。而且,该技术受医疗技术的限制,很多基层单位由于该技术缺陷,可能延误患者的病情。该技术价格相对昂贵,因此还受患者经济条件的限制。
目前,多种因素导致狼疮肾损害,包括补体、自身抗体、环境和遗传。许多临床和实验室参数,如尿蛋白和自身抗体等,已被探索作为评估狼疮肾炎的指标,但它们缺乏预测和区分增殖LN和非增殖LN的能力。由于LN的异质性和复杂的表型,单一指标不能有效预测狼疮肾炎病理分型。狼疮肾炎病理分层(增殖LN和非增殖LN)的正确评估需要综合分析多个参数,而不是单一的参数。但临床医生对哪些参数重要并不总是一致,也没有有效的方法来评估一些有争议的参数。
因此本发明的目的就是寻找替代肾活检,能够早期预测增殖和非增殖LN的临床和实验室指标,并开发预测模型,有助于临床及时判断疾病进展和调整治疗方案,改善SLE患者的预后。
发明内容
基于以上问题,本发明的第一目的在于提供一种建立预测增殖或非增殖狼疮肾炎模型的方法,该方法能准确地建立起一种预测增殖或非增殖狼疮肾炎的模型。
本发明实现其第一发明目的所采用的技术方案是,建立预测增殖或非增殖狼疮肾炎模型的方法,其步骤包括:
S1、将预定数量狼疮肾炎患者的临床和实验室指标作为训练队列,用最小绝对收缩和选择算子LASSO回归算法筛选出特征指标变量;
S2、设发生增殖狼疮肾炎的概率为P,则非增殖狼疮肾炎的概率为1-P,则优势比OR= P/(1-P),定义Logit P为OR的对数,即Logit P = ln P/(1-P),利用步骤S1中筛选出来的所述特征指标变量进行逻辑回归模型拟合,得到拟合后的Logit P逻辑回归模型;
S3、根据拟合后的Logit P逻辑回归模型绘制ROC曲线,其横坐标为假阳性率,即1-特异度,纵坐标为真阳性率,即灵敏度,约登指数等于灵敏度+特异度-1,在ROC曲线上约登指数最大值即为最佳阈值。
进一步,步骤S1中,所述最小绝对收缩和选择算子LASSO回归算法内部采用十折交叉验证。
进一步,步骤S1中,所述特征指标变量包括性别、血压收缩压(单位,mmHg)、血压舒张压(单位,mmHg)、红细胞压积(单位,L/L)、中性分叶核粒细胞百分率(单位,%)、血红蛋白(单位,g/L)、二氧化碳结合力(单位,mmol/L)、血清钾(单位,mmol/L)、血清氯(单位,mmol/L)、红细胞计数(单位,1012/L)、尿酸碱度、尿沉渣红细胞、尿沉渣白细胞;
其中:
性别为两分类变量,取值为1、2,其中1代表女性、2代表男性;
尿沉渣红细胞为两分类变量,取值为1、2,其中1代表正常、2代表高,当尿沉渣红细胞>11cell/μL时为高,当尿沉渣红细胞≤11cell/μL时为正常;
尿沉渣白细胞为两分类变量,取值为1、2,其中1代表正常、2代表高,当尿沉渣白细胞>11cell/μL时为高,当尿沉渣白细胞≤11cell/μL时为正常;
其中,红细胞压积、中性分叶核粒细胞百分率、血红蛋白、红细胞计数为血细胞分析指标。
更进一步,所述Logit P逻辑回归模型为:
Logit P=-5.2485+1.0393*性别+0.0125*血压收缩压+0.0298*血压舒张压-8.6097*红细胞压积+0.0257*中性分叶核粒细胞百分率-0.0080*血红蛋白-0.0566*二氧化碳结合力+0.6664*血清钾+0.0582*血清氯-0.1588*红细胞计数-0.5981*尿酸碱度+0.9399*尿沉渣红细胞+0.9783*尿沉渣白细胞;
模型中各变量单位或取值如前所述。
进一步,步骤S2中,得到拟合后的Logit P逻辑回归模型后,还根据所述Logit P逻辑回归模型,将各个特征指标变量对结局变量的贡献度绘制成列线图。
本发明的第二目的在于提供一种预测增殖或非增殖狼疮肾炎的方法,该方法无创安全、无禁忌症、成本低且能及时快速预测狼疮肾炎分型。
本发明实现其第二发明目的所采用的第一种技术方案是,预测增殖狼疮肾炎和非增殖狼疮肾炎的方法,其步骤包括:
S1、将待预测患者的实际特征指标值代入上述建立预测增殖或非增殖狼疮肾炎模型的方法得到的所述Logit P逻辑回归模型,计算得到Logit P值,再转换计算得到该患者发生增殖狼疮肾炎的概率P=1/(1+exp(-Logit P));
S2、若计算得到的概率P大于等于所述的最佳阈值,则预测结果为增殖狼疮肾炎;若概率P小于所述的最佳阈值,则预测结果为非增殖狼疮肾炎。
本发明实现其第二发明目的所采用的第二种技术方案是,预测增殖狼疮肾炎和非增殖狼疮肾炎的方法,其步骤包括:
S1、将待预测患者的实际特征指标值代入上述建立预测增殖或非增殖狼疮肾炎模型的方法得到的所述列线图,根据其每个特征指标变量的值对应列线图最上方的得分Points,得到该特征指标变量得分,将该患者的所有特征指标变量得分加总,得到总得分Total Points,再根据总得分Total Points对应列线图最下方的风险risk,得出该患者发生增殖狼疮肾炎的概率P;
S2、若得到的概率P大于等于所述的最佳阈值,则预测结果为增殖狼疮肾炎;若概率P小于所述的最佳阈值,则预测结果为非增殖狼疮肾炎。
本发明的有益效果为:
一、本发明属于无创技术,无并发症,普遍性强;
二、本发明无禁忌症,条件范围宽;
三、本发明在LN的进展过程中,有利于动态监测患者的病理进展情况,及时掌握患者的分型转变,从而调整患者的治疗方案,改善患者的预后;
四、本发明预测LN患者病理分型所需要的时间间隔短,有利于患者病情及时治疗和改善;
五、本发明筛选出来的指标普及性强,不受医疗技术的限制,基层单位也可以适用;
六、本发明应用中价格相对较低,可以减轻患者的经济负担。
附图说明
图1为本发明实施例1方法步骤流程图;
图2为本发明实施例2方法步骤流程图;
图3为本发明实施例3方法步骤流程图;
图4为本发明实施例基于十折交叉验证的LASSO筛选变量图;
图5为LASSO调优参数λ与偏回归系数图;
图6为LASSO解释偏差百分比与偏回归系数图;
图7为本发明实施例训练队列ROC曲线最佳阈值图;
图8为本发明实施例根据所述Logit P逻辑回归模型得到的列线图;
图9为本发明实施例训练队列ROC曲线图;
图10为本发明实施例验证队列ROC曲线图;
图11为本发明实施例训练队列校准曲线图;
图12为本发明实施例验证队列校准曲线图;
图13为本发明实施例训练队列临床决策曲线图;
图14为本发明实施例验证队列临床决策曲线图。
实施方式
为了能够更清楚地理解本发明的上述目的、特征和优点,下面结合附图和具体实施方式对本发明进行进一步的详细描述。
实施例1 建立预测增殖或非增殖狼疮肾炎模型的方法
图1示出本发明的一种具体实施方式,建立预测增殖或非增殖狼疮肾炎模型的方法,其步骤包括:
S1、将预定数量狼疮肾炎患者的临床和实验室指标作为训练队列,用最小绝对收缩和选择算子LASSO回归算法筛选出特征指标变量;
LASSO回归算法内部采用十折交叉验证。本实施例中,总共基于2011年至2021年四川大学华西医院的狼疮肾炎患者777例,收集所有患者的临床和实验室指标,选取其中70%患者共545例(415例增殖LN,130例非增殖LN)作为训练队列,使用LASSO回归算法筛选特征指标变量,剩余30%患者共232例(177例增殖LN,55例非增殖LN)作为验证队列。
图4~图6示出LASSO回归算法筛选特征指标变量的过程:通过正则化技术,在残差平方和(RSS)最小化的过程中,加入一个正则化项,此正则化项被称为收缩惩罚,这个收缩惩罚项包含λ及对偏回归系数βi和权重的规范化,最终的目标是使残差平方和与收缩惩罚之和最小化(即RSS+λ(sum|βi|最小化)。通过正则化技术对于高维数据,可以对偏回归系数βi进行限制甚至缩减为0,达到筛选变量的目的,从而避免变量间多重共线性问题的出现,同时,由于增加了正则化项,可以有效避免过拟合的发生。
其中,图4横坐标是λ的对数值,纵坐标是不同λ下的模型偏差,图形上方的横坐标是自变量的数目。两条竖虚线分别表示偏差最小时对应的λ对数值,以及距离最小偏差一个标准误差时对应λ的对数值。选择距离最小偏差一个标准误差所对应λ为0.04020。
图5横坐标是λ的对数值,纵坐标是各个变量的偏回归系数βi。随着λ的增大,偏回归系数βi绝对值不断减小甚至为0,以达到筛选变量的目的。
图6横坐标是解释偏差百分比,纵坐标是各个变量的偏回归系数βi。随着解释偏差百分比的增大,偏回归系数βi绝对值不断增大。
本实施例中,筛选出来的Logit P逻辑回归模型使用到的特征指标变量包括性别、血压收缩压(单位,mmHg)、血压舒张压(单位,mmHg)、红细胞压积(单位,L/L)、中性分叶核粒细胞百分率(单位,%)、血红蛋白(单位,g/L)、二氧化碳结合力(单位,mmol/L)、血清钾(单位,mmol/L)、血清氯(单位,mmol/L)、红细胞计数(单位,1012/L)、尿酸碱度、尿沉渣红细胞、尿沉渣白细胞;
其中:
性别为两分类变量,取值为1、2,其中1代表女性、2代表男性;
尿沉渣红细胞为两分类变量,取值为1、2,其中1代表正常、2代表高,标准参考值为0-11cell/μL,当尿沉渣红细胞>11cell/μL时为高,当尿沉渣红细胞≤11cell/μL时为正常;
尿沉渣白细胞为两分类变量,取值为1、2,其中1代表正常、2代表高,标准参考值为0-11cell/μL,当尿沉渣白细胞>11cell/μL时为高,当尿沉渣白细胞≤11cell/μL时为正常;
其中,红细胞压积、中性分叶核粒细胞百分率、血红蛋白、红细胞计数为血细胞分析指标。
S2、设发生增殖狼疮肾炎的概率为P,则非增殖狼疮肾炎的概率为1-P,则优势比OR= P/(1-P),定义Logit P为OR的对数,即Logit P = ln P/(1-P),利用步骤S1中筛选出来的所述特征指标变量进行逻辑回归模型拟合,得到拟合后的Logit P逻辑回归模型;
本实施例中,所述Logit P逻辑回归模型为:
Logit P=-5.2485+1.0393*性别+0.0125*血压收缩压+0.0298*血压舒张压-8.6097*红细胞压积+0.0257*中性分叶核粒细胞百分率-0.0080*血红蛋白-0.0566*二氧化碳结合力+0.6664*血清钾+0.0582*血清氯-0.1588*红细胞计数-0.5981*尿酸碱度+0.9399*尿沉渣红细胞+0.9783*尿沉渣白细胞;
模型中各变量单位或取值如前所述。
由逻辑回归结果可得,男性、血压收缩压、血压舒张压、中性分叶核粒细胞百分率、血清钾、血清氯、尿沉渣红细胞、尿沉渣白细胞是增殖LN的危险因素;而红细胞压积、血红蛋白、二氧化碳结合力、红细胞计数、尿酸碱度是增殖LN的保护因素。以P<0.05为有显著性差异,在模型中,性别、红细胞压积、中性分叶核粒细胞百分率、血清钾、血清氯、尿酸碱度、尿沉渣红细胞、尿沉渣白细胞的系数显著的不为0。
S3、根据拟合后的Logit P逻辑回归模型绘制ROC曲线,其横坐标为假阳性率,即1-特异度,纵坐标为真阳性率,即灵敏度,约登指数等于灵敏度+特异度-1,在ROC曲线上约登指数最大值即为最佳阈值。
图7为训练队列ROC曲线及最佳阈值图。在该ROC曲线上可利用约登指数找最佳阈值,对本实施例的最佳阈值为0.772,对应此阈值点模型的灵敏度为0.757,特异度为0.808。
本实施例中,步骤S2中,得到拟合后的Logit P逻辑回归模型后,还根据所述LogitP逻辑回归模型,将各个特征指标变量对结局变量的贡献度绘制成列线图,预测发生增殖狼疮肾炎的风险概率P。
列线图是按照模型拟合的函数关系用图绘制在同一平面上,把复杂的数学关系转为可视化的图形,更加直观简便。
图8表示出本实施例根据所述Logit P逻辑回归模型得到的列线图。
列线图分为四个部分:
一、用于预测模型的自变量:每一个自变量的线段上都有相应的标尺,表示该自变量的取值范围,而线段的长度则反映了该自变量对因变量的贡献大小。
二、自变量相应的得分:根据自变量的取值对应列线图最上方的Points,可得出每个自变量取不同值时所对应的得分,所有自变量得分加总,即总得分Total Points。
三、总得分Total Points:所有自变量相应得分的总和,用于推算因变量的概率大小,即预测事件的发生风险。
四、事件的发生风险,即列线图最下方的risk:根据Total Points对应risk,即可得到事件的发生风险。
实施例2 预测增殖狼疮肾炎和非增殖狼疮肾炎的方法
图2示出本发明的第二种具体实施方式,预测增殖狼疮肾炎和非增殖狼疮肾炎的方法,其步骤包括:
S1、将待预测患者的实际特征指标值代入上述建立预测增殖或非增殖狼疮肾炎模型的方法得到的所述Logit P逻辑回归模型,计算得到Logit P值,再转换计算得到该患者发生增殖狼疮肾炎的概率P=1/(1+exp(-Logit P));
本实施例中,特征指标变量包括性别、血压收缩压(单位,mmHg)、血压舒张压(单位,mmHg)、红细胞压积(单位,L/L)、中性分叶核粒细胞百分率(单位,%)、血红蛋白(单位,g/L)、二氧化碳结合力(单位,mmol/L)、血清钾(单位,mmol/L)、血清氯(单位,mmol/L)、红细胞计数(单位,1012/L)、尿酸碱度、尿沉渣红细胞、尿沉渣白细胞;
其中:
性别为两分类变量,取值为1、2,其中1代表女性、2代表男性;
尿沉渣红细胞为两分类变量,取值为1、2,其中1代表正常、2代表高,标准参考值为0-11cell/μL,当尿沉渣红细胞>11cell/μL时为高,当尿沉渣红细胞≤11cell/μL时为正常;
尿沉渣白细胞为两分类变量,取值为1、2,其中1代表正常、2代表高,标准参考值为0-11cell/μL,当尿沉渣白细胞>11cell/μL时为高,当尿沉渣白细胞≤11cell/μL时为正常;
其中,红细胞压积、中性分叶核粒细胞百分率、血红蛋白、红细胞计数为血细胞分析指标。
本实施例中,所述Logit P逻辑回归模型为:
Logit P=-5.2485+1.0393*性别+0.0125*血压收缩压+0.0298*血压舒张压-8.6097*红细胞压积+0.0257*中性分叶核粒细胞百分率-0.0080*血红蛋白-0.0566*二氧化碳结合力+0.6664*血清钾+0.0582*血清氯-0.1588*红细胞计数-0.5981*尿酸碱度+0.9399*尿沉渣红细胞+0.9783*尿沉渣白细胞。
S2、若计算得到的概率P大于等于所述的最佳阈值,则预测结果为增殖狼疮肾炎;若概率P小于所述的最佳阈值,则预测结果为非增殖狼疮肾炎。
本实施例的最佳阈值为0.772。
实施例3 预测增殖狼疮肾炎和非增殖狼疮肾炎的方法
图3示出本发明的第三种具体实施方式,预测增殖狼疮肾炎和非增殖狼疮肾炎的方法,其步骤包括:
S1、将待预测患者的实际特征指标值代入上述建立预测增殖或非增殖狼疮肾炎模型的方法得到的所述列线图,根据其每个特征指标变量的值对应列线图最上方的得分Points,得到该特征指标变量得分,将该患者的所有特征指标变量得分加总,得到总得分Total Points,再根据总得分Total Points对应列线图最下方的风险risk,得出该患者发生增殖狼疮肾炎的概率P;
本实施例中,特征指标变量包括性别、血压收缩压(单位,mmHg)、血压舒张压(单位,mmHg)、红细胞压积(单位,L/L)、中性分叶核粒细胞百分率(单位,%)、血红蛋白(单位,g/L)、二氧化碳结合力(单位,mmol/L)、血清钾(单位,mmol/L)、血清氯(单位,mmol/L)、红细胞计数(单位,1012/L)、尿酸碱度、尿沉渣红细胞、尿沉渣白细胞;
其中:
性别为两分类变量,取值为1、2,其中1代表女性、2代表男性;
尿沉渣红细胞为两分类变量,取值为1、2,其中1代表正常、2代表高,标准参考值为0-11cell/μL,当尿沉渣红细胞>11cell/μL时为高,当尿沉渣红细胞≤11cell/μL时为正常;
尿沉渣白细胞为两分类变量,取值为1、2,其中1代表正常、2代表高,标准参考值为0-11cell/μL,当尿沉渣白细胞>11cell/μL时为高,当尿沉渣白细胞≤11cell/μL时为正常;
其中,红细胞压积、中性分叶核粒细胞百分率、血红蛋白、红细胞计数为血细胞分析指标。
图8表示出本实施例根据所述Logit P逻辑回归模型得到的列线图。
列线图分为四个部分:
(一)用于预测模型的自变量:每一个自变量的线段上都有相应的标尺,表示该自变量的取值范围,而线段的长度则反映了该自变量对因变量的贡献大小。
(二)自变量相应的得分:根据自变量的取值对应列线图最上方的得分Points,可得出每个自变量取不同值时所对应的得分,所有自变量得分加总,即总得分Total Points。
本实施例的列线图中,例如,性别等于2代表男性,其对应得分为34分;血压收缩压等于100mmHg时,其对应得分为8分;血清钾等于4mmol/L时,其对应得分为33分;以此类推,可以对应出所有自变量相应的得分。
(三)总得分Total Points:所有自变量相应得分的总和,用于推算因变量的概率大小,即预测事件的发生风险。
(四)事件的发生风险,即列线图最下方的risk:根据Total Points对应risk,即可得到事件的发生风险也即概率。
本实施例的列线图中,例如,当总得分Total Points为347时,对应的预测风险risk也即概率P为0.5;当总得分Total Points为375时,对应的预测风险risk也即概率P为0.7;以此类推。
S2、若得到的概率P大于等于所述的最佳阈值,则预测结果为增殖狼疮肾炎;若概率P小于所述的最佳阈值,则预测结果为非增殖狼疮肾炎。
本实施例的最佳阈值为0.772。
模型验证:
为了对本发明的Logit P逻辑回归模型性能进行验证,对训练队列和验证队列分别进行验证,验证方法包括ROC曲线、校准曲线和临床决策曲线(DCA)分析。
一、ROC曲线分析
ROC曲线的横坐标为假阳性率,即1-特异度,纵坐标为真阳性率,也称灵敏度。它能反映模型在选取不同阈值时其灵敏度和特异度的趋势走向。ROC曲线的优势:当正负样本的分布发生变化时,其形状稳健性较高;能降低不同测试集带来的干扰,更加客观的衡量模型本身的性能。通常计算ROC曲线下面积(area under roc curve,AUC)表示预测模型的好坏。AUC为0.5时,即完全随机,说明该模型没有预测作用;AUC为1时,完全一致,说明模型的预测结果与实际结果完全一致。AUC在0.5~1之间,值越大,模型的准确性越高。
图9为本发明实施例训练队列ROC曲线图,其AUC=0.873;
图10为本发明实施例验证队列ROC曲线图,其AUC=0.861;
训练队列和验证队列的AUC均大于0.85,说明模型有较高的准确性。
二、校准曲线分析
Calibration校准曲线就是关于实际发生率和预测发生率的散点图。实质上,Calibration校准曲线是把Hosmer-Lemeshow拟合优度检验的结果可视化,它用来评价模型的一致性,即预测值与实际值之间的差异。基本原理:首先利用模型预测每位研究对象的预测值,并将其按从低到高的顺序排列,根据四分位数将队列分为4组(或者根据其他分位数分组),然后分别计算每组研究对象预测值和相应实际值的均值,并将两者结合起来作图得到4个校准点,最后将这4个校准点连接起来得到预测校准曲线。
图11为本发明实施例训练队列校准曲线图;
图12为本发明实施例验证队列校准曲线图;
图中未校正曲线表示预测值与实际值的拟合情况,校正曲线表示校正之后的预测值和实际值的拟合情况。若校正曲线或未校正曲线越接近参考线,说明预测值和实际值的一致性越高,若校正曲线或未校正曲线越偏离参考线,说明预测值和实际值的一致性越差。
从图11、图12可以看出,训练队列和验证队列预测值和实际值的一致性较好。
三、临床决策曲线分析
在临床决策(DCA)曲线中,横坐标为阈概率,纵坐标是净获益率。在DCA曲线中,有两条极端的曲线。横的那条表示所有样本都是阴性(None),所有人都没干预,净获益为0;斜的曲线表示所有样本都是阳性(All),所有人都接受了干预,净获益是一条斜率为负的斜线。若DCA曲线和两条极端曲线很接近,则说明DCA曲线没什么应用价值。若在一个很大的横坐标区间范围内,DCA曲线的净获益率都比极端曲线高,则说明DCA曲线其有一定的应用价值。
图13为本发明实施例训练队列临床决策曲线图;
图14为本发明实施例验证队列临床决策曲线图;
从图13看出,训练队列的临床决策曲线,阈概率在0.03-0.98都是有临床价值的;
从图14看出,验证队列的临床决策曲线,阈概率在0.05-0.95、0.99都是有临床价值的;
本模型的最佳阈值为0.772,可以看到在训练和验证队列净获益率都是明显大于极端曲线的,本模型在训练和验证队列的DCA曲线都有应用价值。
模型验证结论:通过对训练队列和验证队列的ROC曲线、校准曲线和临床决策曲线分析,本模型综合评价比较好,可以作为肾活检的补充或者替代应用于临床预测增殖LN的发生风险。
本发明的上述实施例仅仅是为说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其他不同形式的变化和变动。这里无法对所有的实施方式予以穷举。凡是属于本发明的技术方案所引申出的显而易见的变化或变动仍处于本发明的保护范围之列。

Claims (4)

1.建立预测增殖或非增殖狼疮肾炎模型的方法,其特征在于,包括下述步骤:
S1、将预定数量狼疮肾炎患者的临床和实验室指标作为训练队列,用最小绝对收缩和选择算子LASSO回归算法筛选出特征指标变量;所述最小绝对收缩和选择算子LASSO回归算法内部采用十折交叉验证;
S2、设发生增殖狼疮肾炎的概率为P,则非增殖狼疮肾炎的概率为1-P,则优势比 OR=P/(1-P),定义Logit P为OR的对数,即Logit P = ln P/(1-P),利用步骤S1中筛选出来的所述特征指标变量进行逻辑回归模型拟合,得到拟合后的Logit P逻辑回归模型;
所述Logit P逻辑回归模型为:
Logit P=-5.2485+1.0393*性别+0.0125*血压收缩压+0.0298*血压舒张压-8.6097*红细胞压积+0.0257*中性分叶核粒细胞百分率-0.0080*血红蛋白-0.0566*二氧化碳结合力+0.6664*血清钾+0.0582*血清氯-0.1588*红细胞计数-0.5981*尿酸碱度+0.9399*尿沉渣红细胞+0.9783*尿沉渣白细胞;
S3、根据拟合后的Logit P逻辑回归模型绘制ROC曲线,其横坐标为假阳性率,即1-特异度,纵坐标为真阳性率,即灵敏度,约登指数等于灵敏度+特异度-1,在ROC曲线上约登指数最大值即为最佳阈值;
步骤S1中,所述特征指标变量包括性别、血压收缩压、血压舒张压、红细胞压积、中性分叶核粒细胞百分率、血红蛋白、二氧化碳结合力、血清钾、血清氯、红细胞计数、尿酸碱度、尿沉渣红细胞、尿沉渣白细胞;
其中:
性别为两分类变量,取值为1、2,其中1代表女性、2代表男性;
尿沉渣红细胞为两分类变量,取值为1、2,其中1代表正常、2代表高,当尿沉渣红细胞>11cell/μL时为高,当尿沉渣红细胞≤11cell/μL时为正常;
尿沉渣白细胞为两分类变量,取值为1、2,其中1代表正常、2代表高,当尿沉渣白细胞>11cell/μL时为高,当尿沉渣白细胞≤11cell/μL时为正常。
2.根据权利要求1所述的建立预测增殖或非增殖狼疮肾炎模型的方法,其特征在于:步骤S2中,得到拟合后的Logit P逻辑回归模型后,还根据所述Logit P逻辑回归模型,将各个特征指标变量对结局变量的贡献度绘制成列线图。
3.预测增殖狼疮肾炎和非增殖狼疮肾炎的方法,其特征在于,包括下述步骤:
S1、将待预测患者的实际特征指标值代入根据权利要求1所述建立预测增殖或非增殖狼疮肾炎模型的方法得到的所述Logit P逻辑回归模型,计算得到Logit P值,再转换计算得到该患者发生增殖狼疮肾炎的概率P=1/(1+exp(-Logit P));
S2、若计算得到的概率P大于等于所述的最佳阈值,则预测结果为增殖狼疮肾炎;若概率P小于所述的最佳阈值,则预测结果为非增殖狼疮肾炎。
4.预测增殖狼疮肾炎和非增殖狼疮肾炎的方法,其特征在于,包括下述步骤:
S1、将待预测患者的实际特征指标值代入根据权利要求2所述建立预测增殖或非增殖狼疮肾炎模型的方法得到的所述列线图,根据其每个特征指标变量的值对应列线图最上方的得分Points,得到该特征指标变量得分,将该患者的所有特征指标变量得分加总,得到总得分Total Points,再根据总得分Total Points对应列线图最下方的风险risk,得出该患者发生增殖狼疮肾炎的概率P;
S2、若得到的概率P大于等于所述的最佳阈值,则预测结果为增殖狼疮肾炎;若概率P小于所述的最佳阈值,则预测结果为非增殖狼疮肾炎。
CN202311374534.6A 2023-10-23 2023-10-23 建立预测增殖或非增殖狼疮肾炎模型的方法及预测方法 Active CN117116471B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311374534.6A CN117116471B (zh) 2023-10-23 2023-10-23 建立预测增殖或非增殖狼疮肾炎模型的方法及预测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311374534.6A CN117116471B (zh) 2023-10-23 2023-10-23 建立预测增殖或非增殖狼疮肾炎模型的方法及预测方法

Publications (2)

Publication Number Publication Date
CN117116471A CN117116471A (zh) 2023-11-24
CN117116471B true CN117116471B (zh) 2024-01-23

Family

ID=88800555

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311374534.6A Active CN117116471B (zh) 2023-10-23 2023-10-23 建立预测增殖或非增殖狼疮肾炎模型的方法及预测方法

Country Status (1)

Country Link
CN (1) CN117116471B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103619880A (zh) * 2011-04-29 2014-03-05 百时美施贵宝公司 Ip-10抗体剂量递增方法
CN108291330A (zh) * 2015-07-10 2018-07-17 西弗吉尼亚大学 卒中和卒中严重性的标志物
CN112851793A (zh) * 2019-11-28 2021-05-28 北京肿瘤医院(北京大学肿瘤医院) 一种用于早期体腔内感染性并发症诊断的标记物及方法
WO2021231713A2 (en) * 2020-05-14 2021-11-18 Ampel Biosolutions, Llc Methods and systems for machine learning analysis of single nucleotide polymorphisms in lupus
CN114613510A (zh) * 2022-03-08 2022-06-10 深圳市第二人民医院(深圳市转化医学研究院) 一种狼疮性肾炎患者肾小球微血栓形成的模型构建方法
CN115188475A (zh) * 2022-07-21 2022-10-14 南京鼓楼医院 一种狼疮肾炎患者风险预测方法
CN115678984A (zh) * 2022-10-14 2023-02-03 中山大学附属第一医院 狼疮性肾炎疗效评估用标志物及应用
CN116825341A (zh) * 2023-04-17 2023-09-29 南宁市第一人民医院 胎儿生长受限围产期不良结局预测模型的构建方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103619880A (zh) * 2011-04-29 2014-03-05 百时美施贵宝公司 Ip-10抗体剂量递增方法
CN108291330A (zh) * 2015-07-10 2018-07-17 西弗吉尼亚大学 卒中和卒中严重性的标志物
CN112851793A (zh) * 2019-11-28 2021-05-28 北京肿瘤医院(北京大学肿瘤医院) 一种用于早期体腔内感染性并发症诊断的标记物及方法
WO2021231713A2 (en) * 2020-05-14 2021-11-18 Ampel Biosolutions, Llc Methods and systems for machine learning analysis of single nucleotide polymorphisms in lupus
CN114613510A (zh) * 2022-03-08 2022-06-10 深圳市第二人民医院(深圳市转化医学研究院) 一种狼疮性肾炎患者肾小球微血栓形成的模型构建方法
CN115188475A (zh) * 2022-07-21 2022-10-14 南京鼓楼医院 一种狼疮肾炎患者风险预测方法
CN115678984A (zh) * 2022-10-14 2023-02-03 中山大学附属第一医院 狼疮性肾炎疗效评估用标志物及应用
CN116825341A (zh) * 2023-04-17 2023-09-29 南宁市第一人民医院 胎儿生长受限围产期不良结局预测模型的构建方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
87例难治性狼疮肾炎影响因素的病例对照研究;周军;《中国优秀硕士学位论文全文数据库 医药卫生科技辑》(第1期);第8-9、13-15、22、26页 *
Autoantigen microarrays reveal autoantibodies associated with proliferative nephritis and active disease in pediatric systemic lupus erythematosus;D. James Haddon 等;《Arthritis Research & Therapy》;第1-12页 *
周军.87例难治性狼疮肾炎影响因素的病例对照研究.《中国优秀硕士学位论文全文数据库 医药卫生科技辑》.2021,(第1期),第8-9、13-15、22、26页. *
成人肾病综合征并发肺血栓栓塞的临床特征及危险因素分析;冯炜;王一锋;唐榕蔚;廖蕴华;;天津医药(03);第353-356页 *
抗dsDNA抗体和抗Sm抗体阳性SLE患者临床及实验室特点研究;苏向珠 等;《国际检验医学杂志》;第41卷(第23期);第2862-2866页 *
狼疮性肾炎疾病活动度预测指标的探讨;丁秋燕;《中国优秀硕士学位论文全文数据库 医药卫生科技辑》;第E065-29页 *

Also Published As

Publication number Publication date
CN117116471A (zh) 2023-11-24

Similar Documents

Publication Publication Date Title
CN109480780B (zh) 一种脑卒中预警系统的评估方法及系统
CN114898873A (zh) 一种糖尿病前期患者心血管疾病风险的预测方法及系统
Danthurebandara et al. Diagnostic accuracy of glaucoma with sector-based and a new total profile–based analysis of neuroretinal rim and retinal nerve fiber layer thickness
CN107545133A (zh) 一种用于鉴别诊断慢性支气管炎的高斯模糊聚类计算方法
CN116825341A (zh) 胎儿生长受限围产期不良结局预测模型的构建方法
Wu et al. Native T1 mapping in assessing kidney fibrosis for patients with chronic glomerulonephritis
CN117116471B (zh) 建立预测增殖或非增殖狼疮肾炎模型的方法及预测方法
Phu et al. The Frontloading Fields Study: the impact of false positives and seeding point errors on visual field reliability when using SITA-Faster
CN111341452B (zh) 多系统萎缩失能预测方法、模型建立方法、装置及设备
Shi et al. Relationships between quantitative retinal microvascular characteristics and cognitive function based on automated artificial intelligence measurements
CN113160985A (zh) 一种covid-19临床不良预后风险的预测方法及系统
CN117012390A (zh) 一种结核性脑膜炎死亡风险评估模型、构建方法、系统和装置
CN116646080A (zh) 一种ET患者进展为post-ETMF的风险预测模型构建方法及系统
CN115188475A (zh) 一种狼疮肾炎患者风险预测方法
CN117409963A (zh) 早产儿喂养不耐受风险预测方法及系统
Li et al. Development and validation of a routine blood parameters-based model for screening the occurrence of retinal detachment in high myopia in the context of PPPM
CN114974562A (zh) 一种基于机器学习的重症胰腺炎的临床预测模型构建方法
CN115116570A (zh) 一种孕早期子痫前期筛查方法
Rodrigues et al. Obstructive sleep apnea diagnosis: the Bayesian network model revisited
JP2023540651A (ja) マルチモーダルデータに基づく両眼円錐角膜の検査方法
CN112908467A (zh) 多变量动态列线图预测模型及其应用
CN114464310A (zh) 一种用于提高痛风患者分型判断准确率的方法
Yördan et al. Hybrid AI-Based Chronic Kidney Disease Risk Prediction
Dash et al. Enhancing Disease Diagnosis: Statistical Analysis of Haematological Parameters in Sickle Cell Patients, Integrating Predictive Analytics
CN113034434B (zh) 一种预测covid-19严重程度的多因素人工智能分析方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant