CN117096357A - 一种单少层Ti3C2Tx负载Fe-N-C氧还原催化剂及其制备方法 - Google Patents

一种单少层Ti3C2Tx负载Fe-N-C氧还原催化剂及其制备方法 Download PDF

Info

Publication number
CN117096357A
CN117096357A CN202311103370.3A CN202311103370A CN117096357A CN 117096357 A CN117096357 A CN 117096357A CN 202311103370 A CN202311103370 A CN 202311103370A CN 117096357 A CN117096357 A CN 117096357A
Authority
CN
China
Prior art keywords
few
layer
oxygen reduction
reduction catalyst
supported
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311103370.3A
Other languages
English (en)
Inventor
高书燕
王云凤
魏旬
古慧宾
杨天芳
陈野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan Normal University
Original Assignee
Henan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan Normal University filed Critical Henan Normal University
Priority to CN202311103370.3A priority Critical patent/CN117096357A/zh
Publication of CN117096357A publication Critical patent/CN117096357A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种单少层Ti3C2Tx负载Fe‑N‑C氧还原催化剂及其制备方法,该方法通过在通过表面工程策略实现了Fe‑N‑C高活性位点暴露于MXene表面的构建,采用简单的静电自组装的方法,合成了一种单少层Ti3C2Tx负载Fe‑N‑C衍生碳材料,并作为高效阴极ORR催化剂。该催化剂具有非常高的比表面积和优良的催化性能,本发明中单少层Ti3C2Tx与Fe‑N‑C协同耦合显著提高了ORR催化剂的活性,在实际应用中具有替代Pt催化剂的潜力。

Description

一种单少层Ti3C2Tx负载Fe-N-C氧还原催化剂及其制备方法
技术领域
本发明属于非贵金属掺杂碳氧还原催化剂的合成技术领域,具体涉及一种单少层Ti3C2Tx负载Fe-N-C氧还原及其制备方法。
背景技术
随着人类文明和工业的快速发展,环境污染和能源危机日益严重。传统化石能源已经不能满足当代社会的发展需求,能源消费结构清洁化、低碳化将成为世界能源体系发展的必然趋势。开发高效清洁的新能源技术势在必行,锌空气电池在推动能源结构绿色化、低碳化中发挥着举足轻重的作用。以锌空气电池为代表的绿色能源转换和储存装置具有安全、零污染、高能量、大功率、低成本等优点,在未来具有广阔的发展空间。然而,阴极氧还原反应(Oxygen reduction reaction,ORR)作为锌空气电池中最重要的半反应之一,直接决定了电池的性能。由于其反应能垒过高,动力学缓慢,必须使用催化剂以加快其反应动力学。Pt/C作为一种广泛应用的商业ORR催化剂,催化活性高、稳定性好,但具有价格高、储量少的局限性。所以,如何在减少Pt用量甚至取代Pt的前提下保持高催化活性和稳定性是一个重大挑战。
近年来,负载在氮掺杂碳上的过渡金属(M-N-C,M为过渡金属,如Fe、Co、Ni等)因具有和Pt/C相似的含氧中间体吸脱附特性,表现出较好的氧还原活性和循环稳定性,有望成为代替贵金属催化剂的候选者之一。其中,Fe-N-C和Co-N-C催化剂因其温和的含氧中间体吸脱附性能,表现出优异的ORR性能。杂原子掺杂Fe-N-C催化剂成为理想的非贵金属催化剂,M-Nx-C催化剂的催化位点包括非金属部分和金属部分,相比于非金属部分(C-Nx),含金属部分MNx被认为是M-Nx-C催化剂高活性的来源。因此,寻求一种能够牢牢锚定Fe并精细调节活性位点的电子状况的基底,将有望提高Fe-N-C碳材料催化剂的ORR性能。
MXene是一类二维过渡金属碳化物/氮化物材料,由其前驱体MAX相材料中选择性刻蚀掉A层而形成。MAX相是一个三元碳化物和氮化物体系,由于其组成而被命名为Mn+1AXn,其中M为早期过渡金属元素(如Ti、Mo、V等),A主要为IIIA族或IVA族元素(如Al、Si、P等),X为C和/或N元素,n=1、2、3。其中,M-X是共价键和离子键,M-A键是金属键,所以相比于以范德华力为主要结合力的石墨烯层状材料,MAX相中的键强更强,且M-A键比M-X键具有更强的化学活性,可以在不破坏M-X键的情况下,通过化学手段选择性地刻蚀A层,形成Mn+1Xn,即MXene。MXene作为一个新兴的二维金属碳化物、氮化物和碳氮化物家族,因其优异的导电性、独特的层状结构和丰富的功能表面基团而受到了广泛的研究。Ti3C2Tx-MXene作为研究最广泛的基团,通常通过氢氟酸(HF)或氟化蚀刻剂从层状三元过渡金属碳化物Ti3AlC2 MAX(对于MAX,“M”表示早期过渡金属,“A”表示A族元素,“X”表示碳和/或氮)选择性蚀刻铝层来生成。在蚀刻过程中,在溶解铝层后,将大块Ti3AlC2剥离成单层或多层超薄Ti3C2Tx-MXene;这种处理在MXene表面留下了丰富的端基“T”,包括-O、-OH和-F基团,已知这些端基有助于吸附金属前体。同样重要的是,一些相邻的钛原子也被取出。单少层Ti3C2Tx因其金属导电性、元素组成多样性、亲水性以及良好的机械性能等特性具有广阔的发展前景,其表面具有-OH、-O、-F等负价官能团,这些负价官能团可以与Fe离子耦合,经进一步碳化形成具有丰富Fe-Nx活性位点的多孔碳材料。该类材料具有优于Pt/C的氧还原性能。
发明内容
本发明为解决上述技术问题采用如下技术方案, 一种单少层Ti3C2Tx负载Fe-N-C氧还原催化剂的制备方法,具体过程为:
步骤S1:将单少层Ti3C2Tx、卟啉铁、C3N4和L-谷氨酸分散在二甲基亚砜中得到分散液,常温搅拌后经离心、洗涤和真空干燥后得到物料A;
步骤S2:将物料A在惰性气体保护下加热并保温,然后自然冷却至室温得到所述单少层Ti3C2Tx负载Fe-N-C氧还原催化剂。
进一步,所述单少层Ti3C2Tx是通过原位刻蚀法得到的、所述C3N4是通过三聚氰胺烧结形成的。
进一步,步骤S1中所述单少层Ti3C2Tx加入量为0~0.05g,三聚氰胺烧结形成的C3N4和L-谷氨酸的投料配比为4:1,卟啉铁加入量为0.4~0.7g。
进一步,步骤S2中所述惰性气体为氮气或氩气中的一种。
进一步,具体步骤为:
步骤S1:将0.05g 单少层Ti3C2Tx分散在25mL的二甲基亚砜溶液中,超声波超声2h,得到分散液I;
步骤S2:将60mg 卟啉铁,250mg C3N4,62.5mg L-谷氨酸到分散液I,得到均匀溶液II;
步骤S3:将溶液II常温搅拌24h,所得产物用超纯水离心洗涤3-4次,于60℃真空干燥12h得到物料A;
步骤S4:将物料A转移至刚玉舟,置于管式炉中,在惰性气体氛围中以3~5℃ min-1的升温速率升温至900℃,保持2h,然后自然冷却到室温后得到所述单少层Ti3C2Tx负载Fe-N-C氧还原催化剂。
本发明提供一种单少层Ti3C2Tx负载Fe-N-C氧还原催化剂,采用如上述的方法制备得到。
本发明还提供一种上述的单少层Ti3C2Tx负载Fe-N-C氧还原催化剂作为ORR电催化剂的应用。
有益效果
1、本发明提供了一种单少层Ti3C2Tx负载Fe-N-C氧还原催化剂的制备方法,该方法通过通过表面工程策略实现了Fe-N-C高活性位点暴露于MXene表面的构建,采用简单的静电自组装的方法,使Fe正价离子与Ti3C2Tx片表面的-OH、-O、-F等负价官能团耦合,从而将Fe-N-C负载到Ti3C2片上。Fe具有高比表面积和优良的催化性能,可以加速ORR反应的进行。
2、卟啉基框架通常表现出更高的活性和稳定性。本发明选择卟啉铁可以更好地实现金属离子在MXene基底上的锚定,提高其稳定性,已达到更好的氧还原电催化。卟啉铁在MXene上的均匀自组装形成了良好稳定结构,向其中引入碳源三聚氰胺烧结成的C3N4,富N网络金属中心之间的相互作用使C3N4显示出突出的电催化活性。
3、二甲基亚枫溶液作为溶剂在卟啉铁溶解度上起着至关重要的作用,它提高了卟啉铁的分散性,还增加了单少层MXene的层间距,还可以增大Ti3C2Tx层间距,有效防止Ti3C2Tx片层堆叠,提高活性位点的暴露程度、促进催化过程中活性物质的高效传输,从而提高催化活性。Ti3C2Tx可以通过其导电性质提高电子传输性能,使反应速率加快,提高电催化活性。因此,单少层Ti3C2Tx负载Fe-N-C衍生碳材料,具有很高的电催化活性,以及极大的应用潜力。
4、我们选择了导电性更强的MXene为基底,并且采用液相法混合,最后通过热解法制备出催化剂,其特点是操作可行性好,可重复率高,单少层Ti3C2Tx因其金属导电性、元素组成多样性、亲水性和卟啉铁自组装耦合,碳化形成具有丰富Fe-Nx活性位点的多孔碳材料。
5、该专利证明铁-氮-碳(Fe-N-C)电催化剂为取代氧还原反应(ORR)的贵金属基电催化剂提供了很大的前景。有机盐卟啉铁自组装在到电性极强的MXene基底上共同构建ORR电催化剂能够解决氧还原催化剂活性不足、电导率低和耐用性差的阻碍。Fe-N-C牢牢固定在单少层MXene上,不仅作为导电衬底可以缓解移动的崩溃和团聚的热解,还调节活性FeNx的电子性能网站提高电催化活性和稳定性。结果表明,所制备的单少层Ti3C2Tx负载Fe-N-C催化剂在碱性和酸性电解质中均表现出极好的ORR活性,在碱性(0.1M KOH)电解液中表现出优异的ORR活性,半波电位达到0.86V。
附图说明
图1为原位刻蚀法得到的单少层Ti3C2Tx的扫描电镜图;
图2为实施例1制备的产物B1的扫描电镜图;
图3为实施例1~6制备的产物B1~B6的X射线衍射图;
图4为实施例1~6制备的产物B1~B6的循环伏安曲线图;
图5为实施例1~6制备的产物B1~B6的线性扫描曲线图。
具体实施方式
以下通过实施例对本发明的上述内容做进一步详细说明,但不应该将此理解为本发明上述主题的范围仅限于以下的实施例,凡基于本发明上述内容实现的技术均属于本发明的范围。
实施例1
步骤S1:将0.05g 单少层Ti3C2Tx分散在25mL的二甲基亚砜溶液中,超声波超声2h,得到分散液I;将60mg 卟啉铁,250mg C3N4,62.5mg L-谷氨酸到分散液I,得到均匀溶液II;将溶液II常温搅拌24h,所得产物用超纯水离心洗涤3-4次,于60℃真空干燥12h得到物料A1;
步骤S2:将物料A1转移至刚玉舟,置于管式炉中,在惰性气体氛围中以5℃ min-1的升温速率升温至900℃,保持2h,然后自然冷却到室温后得到目标产物MXene负载Fe-N-C碳材料B1。
实施例2
步骤S1:将0.05g 多层Ti3C2Tx分散在25mL的二甲基亚砜溶液中,超声波超声2h,得到分散液I;将60mg 卟啉铁,250mg C3N4,62.5mg L-谷氨酸到分散液I,得到均匀溶液II;将溶液II常温搅拌24h,所得产物用超纯水离心洗涤3-4次,于60℃真空干燥12h得到物料A2;
步骤S2:将物料A1转移至刚玉舟,置于管式炉中,在惰性气体氛围中以5℃ min-1的升温速率升温至900℃,保持2h,然后自然冷却到室温后得到目标产物MXene负载Fe-N-C碳材料B2。
实施例3
步骤S1:将0.05g单少层Ti3C2Tx分散在25mL的二甲基亚砜溶液中,超声波超声2h,得到分散液I;将60mg氯化镍,250mg C3N4,62.5mg L-谷氨酸到分散液I,得到均匀溶液II;将溶液II常温搅拌24h,所得产物用超纯水离心洗涤3-4次,于60℃真空干燥12h得到物料A3;
步骤S2:将物料A1转移至刚玉舟,置于管式炉中,在惰性气体氛围中以5℃ min-1的升温速率升温至900℃,保持2h,然后自然冷却到室温后得到目标产物MXene负载Fe-N-C碳材料B3。
实施例4
步骤S1:将60mg 卟啉铁,250mg C3N4,62.5mg L-谷氨酸到25ml 超纯水,得到均匀溶液I;将溶液I常温搅拌24h,所得产物用超纯水离心洗涤3-4次,于60℃真空干燥12h得到物料A4;
步骤S2:将物料A4转移至刚玉舟,置于管式炉中,在惰性气体氛围中以5℃ min-1的升温速率升温至900℃,保持2h,然后自然冷却到室温后得到目标产物Fe-N-C碳材料B4。
实施例5
步骤S1:将60mg 无水氯化铁,250mg C3N4,62.5mg L-谷氨酸到25ml 二甲基亚砜溶液,得到均匀溶液I;将溶液I常温搅拌24h,所得产物用超纯水离心洗涤3-4次,于60℃真空干燥12h得到物料A5;
步骤S2:将物料A4转移至刚玉舟,置于管式炉中,在惰性气体氛围中以5℃ min-1的升温速率升温至900℃,保持2h,然后自然冷却到室温后得到目标产物Fe-N-C碳材料B5。
实施例6
步骤S1:将60mg 卟啉铁,250mg C3N4,62.5mg L-谷氨酸到25ml 二甲基亚砜溶液,得到均匀溶液I;将溶液I常温搅拌24h,所得产物用超纯水离心洗涤3-4次,于60℃真空干燥12h得到物料A6;
步骤S2:将物料A6转移至刚玉舟,置于管式炉中,在惰性气体氛围中以5℃ min-1的升温速率升温至900℃,保持2h,然后自然冷却到室温后得到目标产物Fe-N-C碳材料B6。
实施例7
用电子天平称取一定量研磨成粉末状的单少层Ti3C2Tx负载Fe-N-C碳材料B1衍生碳材料催化剂样品B1,将其和5 wt%的Nafion及50 wt%乙醇(乙醇:水=1:1)以1:10:190的比例混合均匀,得到均匀的墨水状(分散液);用移液枪移取适量超声均匀的墨水状活性物质滴于清洗干净的玻璃碳电极上,然后室温自然晾干,即制备成工作电极。用同样的方法制备B2、B3、B4、B5、B6进行对照。所有的电化学测试均采用三电极体系。线性扫描伏安(LSV)测试时,采用玻璃碳作为工作电极(直径为5mm),其表面涂有一定体积、一定浓度活性物质(即制备好的墨水状分散液),Hg/HgO电极和铂片分别作为参比电极和对电极,电解液是N2/O2饱和的0.1M KOH水溶液,测试时扫描速度是10mV·s-1,旋转速度为1600rpm,扫描范围是-0.8V~0.4V。循环伏安(CV)测试时,除工作直径是3mm且涂有一定体积、一定浓度活性物质(上述制备好的墨水分散液)的玻璃碳电极,扫描范围是-0.8V~0.2V外,参比电极、对电极、电解液以及其他测试条件和上述LSV条件相同。
所有实施例中样品的催化性能如下:如图4所示,为实施例1-6所得样品B1、B2、B3、B4、B5、B6的循环伏安曲线,峰电位分别为0.891V、0.832V、0.841V、0.831V、0.834V和0.816V。如图5所示,为1600rpm时得到的旋转圆盘电极线性扫描曲线下的所有实施例1-6所得样品B1、B2、B3、B4、B5、B6的半波电位,分别对应为0.856V、0.805V、0.809V、0.781V、0.779V和0.806。由此可得单少层Ti3C2Tx负载Fe-N-C碳材料B1衍生碳材料催化性能最好。
以上实施例描述了本发明的基本原理、主要特征及优点,本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中的只是说明本发明的原理,在不脱离本发明原理的范围下,本发明还会有各种变化和改进,这些变化和改进均落入本发明保护的范围内。

Claims (7)

1.一种单少层Ti3C2Tx负载Fe-N-C氧还原催化剂的制备方法,其特征在于,具体过程为:
步骤S1:将单少层Ti3C2Tx、卟啉铁、C3N4和L-谷氨酸分散在二甲基亚砜中得到分散液,常温搅拌后经离心、洗涤和真空干燥后得到物料A;
步骤S2:将物料A在惰性气体保护下加热并保温,然后自然冷却至室温得到所述单少层Ti3C2Tx负载Fe-N-C氧还原催化剂。
2.如权利要求1所述的一种单少层Ti3C2Tx负载Fe-N-C氧还原催化剂的制备方法,其特征在于,所述单少层Ti3C2Tx是通过原位刻蚀法得到的、所述C3N4是通过三聚氰胺烧结形成的。
3.如权利要求1所述的一种单少层Ti3C2Tx负载Fe-N-C氧还原催化剂的制备方法,其特征在于,步骤S1中所述单少层Ti3C2Tx加入量为0~0.05g,三聚氰胺烧结形成的C3N4和L-谷氨酸的投料配比为4:1,卟啉铁加入量为0.4~0.7g。
4.如权利要求1所述的一种单少层Ti3C2Tx负载Fe-N-C氧还原催化剂的制备方法,其特征在于,步骤S2中所述惰性气体为氮气或氩气中的一种。
5.如权利要求1所述的一种单少层Ti3C2Tx负载Fe-N-C氧还原催化剂的制备方法,其特征在于,具体步骤为:
步骤S1:将0.05g 单少层Ti3C2Tx分散在25mL的二甲基亚砜溶液中,超声波超声2h,得到分散液I;
步骤S2:将60mg 卟啉铁,250mg C3N4,62.5mg L-谷氨酸到分散液I,得到均匀溶液II;
步骤S3:将溶液II常温搅拌24h,所得产物用超纯水离心洗涤3-4次,于60℃真空干燥12h得到物料A;
步骤S4:将物料A转移至刚玉舟,置于管式炉中,在惰性气体氛围中以3~5℃ min-1的升温速率升温至900℃,保持2h,然后自然冷却到室温后得到所述单少层Ti3C2Tx负载Fe-N-C氧还原催化剂。
6.一种单少层Ti3C2Tx负载Fe-N-C氧还原催化剂,其特征在于,采用如权利要求1-5所述的方法制备得到。
7.一种权利要求6所述的单少层Ti3C2Tx负载Fe-N-C氧还原催化剂作为ORR电催化剂的应用。
CN202311103370.3A 2023-08-30 2023-08-30 一种单少层Ti3C2Tx负载Fe-N-C氧还原催化剂及其制备方法 Pending CN117096357A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311103370.3A CN117096357A (zh) 2023-08-30 2023-08-30 一种单少层Ti3C2Tx负载Fe-N-C氧还原催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311103370.3A CN117096357A (zh) 2023-08-30 2023-08-30 一种单少层Ti3C2Tx负载Fe-N-C氧还原催化剂及其制备方法

Publications (1)

Publication Number Publication Date
CN117096357A true CN117096357A (zh) 2023-11-21

Family

ID=88771228

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311103370.3A Pending CN117096357A (zh) 2023-08-30 2023-08-30 一种单少层Ti3C2Tx负载Fe-N-C氧还原催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN117096357A (zh)

Similar Documents

Publication Publication Date Title
Liu et al. Identification of pH-dependent synergy on Ru/MoS 2 interface: a comparison of alkaline and acidic hydrogen evolution
CN109701572B (zh) FeCo/MXene复合物及其制备方法和应用
Tian et al. PtRu alloy nanoparticles supported on nanoporous gold as an efficient anode catalyst for direct methanol fuel cell
Liu et al. Controlled synthesis of FeP nanorod arrays as highly efficient hydrogen evolution cathode
Ji et al. Synergistic effect of the bifunctional polydopamine–Mn 3 O 4 composite electrocatalyst for vanadium redox flow batteries
Geng et al. Ni–Pt/C as anode electrocatalyst for a direct borohydride fuel cell
Ramos-Sánchez et al. PdNi electrocatalyst for oxygen reduction in acid media
Singh et al. Perovskite-type La2− xSrxNiO4 (0≤ x≤ 1) as active anode materials for methanol oxidation in alkaline solutions
EP1509929A2 (en) Conducting polymer-grafted carbon material for fuel cell applications
JP7368853B2 (ja) 多機能電極添加剤
Elbasri et al. Synthesis of carbon nanofibers/poly (para-phenylenediamine)/nickel particles nanocomposite for enhanced methanol electrooxidation
Sun et al. Bi‐Functional Fe3O4/Au/CoFe‐LDH Sandwich‐Structured Electrocatalyst for Asymmetrical Electrolyzer with Low Operation Voltage
JP2011195351A (ja) 含窒素カーボンアロイ及びそれを用いた炭素触媒
US20040144961A1 (en) Metallized conducting polymer-grafted carbon material and method for making
JP5126864B1 (ja) 燃料電池用触媒層及びその用途
Wang et al. Methanol electrooxidation reaction in alkaline medium on glassy carbon electrode modified with ordered mesoporous Ni/Al2O3
Liu et al. C/N-co-doped Pd coated Ag nanowires as a high-performance electrocatalyst for hydrogen evolution reaction
Jin et al. Fluorine-decorated graphene nanoribbons for an anticorrosive polymer electrolyte membrane fuel cell
Tamboli et al. Polyaniline-wrapped MnMoO 4 as an active catalyst for hydrogen production by electrochemical water splitting
WO2012160957A1 (ja) 電極触媒及びその製造方法
Shi et al. The key roles of trace iron for nitrogen, sulfur dual-doped carbon nanospheres as high efficient oxygen reduction catalyst
Kim et al. A facile approach to improve the performance of alkaline anion exchange membrane fuel cells by reducing ionic resistance
Singh et al. Oxidation of methanol on perovskite-type La2-xSrxNiO4 (0≤ x≤ 1) film electrodes modified by dispersed nickel in 1 M KOH
Yavari et al. SrFeO3-δ assisting with Pd nanoparticles on the performance of alcohols catalytic oxidation
Raoof et al. Nickel particles dispersed into poly (o-anisidine) and poly (o-anisidine)/multi-walled carbon nanotube modified glassy carbon electrodes for electrocatalytic oxidation of methanol

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination