CN117008607A - 基于clf与cbf的移动机器人在线导航与避障方法 - Google Patents

基于clf与cbf的移动机器人在线导航与避障方法 Download PDF

Info

Publication number
CN117008607A
CN117008607A CN202310830133.0A CN202310830133A CN117008607A CN 117008607 A CN117008607 A CN 117008607A CN 202310830133 A CN202310830133 A CN 202310830133A CN 117008607 A CN117008607 A CN 117008607A
Authority
CN
China
Prior art keywords
mobile robot
obstacle
control
function
cbf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310830133.0A
Other languages
English (en)
Inventor
刘之涛
黄继昊
苏宏业
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN202310830133.0A priority Critical patent/CN117008607A/zh
Publication of CN117008607A publication Critical patent/CN117008607A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本发明公开了一种基于CLF与CBF的移动机器人在线导航与避障方法。本发明针对的对象为由线速度和角速度控制的单车模型的移动机器人,通过构建CLF函数来实现导航功能以及基于后轴轴心坐标来表示圆心位置坐标构建CBF函数实现避障功能,并基于QP形式构建优化控制问题进行在线求解,完成将机器人导航至终点位置并与障碍物之间实现碰撞避免。本发明克服了传统基于CBF设计避障控制器难以直接控制所有的控制量来进行碰撞避免的问题以及设计了在极端情况下仍能实现导航功能的CLF约束条件,最后通过构建CLF‑CBF‑QP的优化问题,保证了问题的在线求解。

Description

基于CLF与CBF的移动机器人在线导航与避障方法
技术领域
本发明属于人工智能与机器人领域的一种移动机器人导航与避障控制方法,具体涉及一种基于控制李雅普诺夫函数的导航控制与基于控制障碍函数的避障控制方法。
背景技术
机器人技术已经得到了快速的发展,在物流、自动驾驶以及营救作业等多种场合得到了广泛的应用。因此,为移动机器人设计一个安全关键控制器十分重要,如果机器人的控制器不能保证机器人在作业中的安全操作,那么会带来不可逆转的毁灭影响。安全关键控制器,代表控制器将保证机器人的作业安全凌驾于其他指标之上,如轨迹跟踪等等,始终将机器人安全作业为首要控制目标。
机器人的安全保证在实际应用中主要体现为避免与障碍物发生碰撞,常用的方法包括模型预测控制(Model Predictive Control,MPC)、人工势场法、可达性分析和神经网络等方法。最近,基于控制障碍函数(Control Barrier Function,CBF)的方法在安全关键控制中得到了广泛的应用。该类方法往往通过二次规划(Quadratic Program,QP)来构建一个连续时域内的优化控制问题,并将CBF以及控制李雅普诺夫函数(Control LyapunovFunction,CLF)作为约束加入到该优化控制问题中(CLF-CBF-QP)。通过快速求解QP优化控制问题可以在线获得移动机器人的最优控制指令,实现关键安全控制。
但是基于上述优化控制问题形式的现有方法难以直接应用到单车模型的移动机器人上,因为安全关键控制器往往不能直接控制所有的控制量来实现移动机器人的安全行驶,往往只能控制移动机器人的线速度,而不能控制其角速度。因此一些研究基于高阶控制障碍函数(High Order Control Barrier Function,HOCBF)来设计控制器,但是HOCBF的引入导致只能控制角速度来实现避障,线速度在这个情况下需要变为固定值。还有一些方法将CBF与MPC结合来克服连续时域下的缺陷,在离散时域内求解移动机器人的最优控制指令,但是当障碍物数目变多时,在离散时域中求解难以满足实时性的需求。因此,实现单车模型的移动机器人的在线安全关键控制仍然是一个充满挑战性的问题。
发明内容
有鉴于此,为了解决背景技术中存在的问题,本发明提出了一种基于CLF与CBF的移动机器人在线导航与避障方法,通过基于单车模型特性的移动机器人的后轴轴心来设计CBF函数,实现优化控制问题(CLF-CBF-QP)能在连续时域内同时控制移动机器人的线速度和角速度进行避障控制,并最终行驶到机器人的终点位置处。
为了实现以上目的,本发明采用的技术方案如下:
步骤1:收集环境内所有障碍物的信息并保存在移动机器人的地图信息内,以及确定移动机器人的当前位置与终点位置;
步骤2:确定移动机器人模型,并将移动机器人模型转换为仿射控制形式;
步骤3:根据移动机器人的当前位置与终点位置以及地图内的障碍物信息,分别构建保证机器人向终点移动的CLF约束和保证移动机器人避免与障碍物碰撞的CBF约束;
步骤4:确定优化控制问题的目标函数,结合保证机器人向终点移动的CLF约束、保证移动机器人避免与障碍物碰撞的CBF约束以及控制量的物理约束,构建获得优化控制问题;
步骤5:求解优化控制问题后,获得最优控制量并发送给移动机器人的控制系统,结合仿射控制形式的移动机器人模型,控制移动机器人进行运动;
步骤6:检测移动机器人是否到达终点,如果未到达终点,则重复步骤3-步骤5,直至移动机器人抵达终点。
所述步骤1中,所有障碍物均为圆形障碍物,每个障碍物的信息包括其圆心位置、半径以及移动速度;移动机器人的形状为圆形,将移动机器人的后轴轴心坐标作为移动机器人的位置。
所述步骤2中,移动机器人模型的公式如下:
其中,xp,yp表示移动机器人的后轴轴心x,y轴坐标值,θ表示移动机器人的航向角;v和ω分别代表控制移动机器人行进的线速度和角速度;
移动机器人模型对应的仿射控制系统公式如下:
u=[v,w]T
其中,分别表示移动机器人的后轴轴心x,y轴坐标值的微分以及航向角的微分,u为控制量,T表示转置操作,/>表示状态量的微分,f(x)表示控制状态函数,g(x)表示控制输入函数。
所述步骤3具体为:
步骤3.1:基于移动机器人的当前位置与终点位置构建控制李雅普诺夫函数V(x),再基于控制李雅普诺夫函数V(x)构建保证机器人向终点移动的CLF约束;
步骤3.2:基于移动机器人的当前位置与地图内的障碍物信息构建控制障碍函数,然后基于控制障碍函数构建保证移动机器人避免与障碍物碰撞的CBF约束。
所述步骤3.1中,控制李雅普诺夫函数V(x)的公式如下:
e=[xp-xg,yp-yg,θ-θg]T
其中,e代表当前位置和终点位置之间的差异,T表示转置操作,R为误差权重矩阵,a1,a2,a3分别为对角线上的第一-第三权重,b1、b2分别为第一交叉项和第二交叉项;
所述保证机器人向终点移动的约束的公式如下:
其中,f(x)表示控制状态函数,g(x)表示控制输入函数,u为控制量,γ代表类K函数。
所述步骤3.2中,控制障碍函数的公式如下:
其中,hi(x)表示移动机器人关于第i个障碍物的控制障碍函数,和/>代表障碍物Oi的x,y轴坐标值,r和/>分别代表移动机器人和障碍物的半径。
所述步骤3.2中,当所述障碍物为静态障碍物时,保证移动机器人避免与第i个障碍物Oi碰撞的约束,公式如下:
其中,f(x)表示控制状态函数,g(x)表示控制输入函数,u为控制量,α代表类K函数。
所述步骤3.2中,当障碍物为动态障碍物时,保证移动机器人避免与第i个障碍物Oi碰撞的约束,公式如下:
其中,hi(x,t)表示移动机器人关于第i个障碍物的时变控制障碍函数,代表动态障碍物位置改变对控制量的影响,/>表示动态障碍物的位置信息,f(x)表示控制状态函数,g(x)表示控制输入函数,u为控制量,α代表类K函数。
所述步骤4中,优化控制问题的公式如下:
umin≤u≤umax
其中,H表示控制量的权重矩阵,p表示松弛变量的权重系数,δ为松弛变量,Rm+1表示优化变量的维度为m+1维,M表示障碍物的数量;umin,umax分别为控制量u的最小值和最大值。
所述步骤6中,如果移动机器人超过最大控制时间还未到达终点,则移动机器人原路返回至起点。
本发明的有益效果为:
本发明基于CLF-CBF-QP的优化控制问题形式,可以保证在线快速求解该优化控制问题,保证了实时性;同时本发明基于机器人的后轴轴心来构建CBF函数,可以保证同时控制线速度和角速度来实现碰撞避免;本发明为了实现移动机器人的导航功能,还设计了一个含有位置信息误差和航向角误差之间交叉项的CLF函数,保证在任何情况下控制器均能同时控制线速度和角速度来实现导航功能。
附图说明
图1为本发明方法的流程图。
图2为本发明所针对的单车模型的移动机器人示意图。
图3为本发明在存在静态障碍物下的导航仿真结果。
图4为本发明在存在动态障碍物下的导航仿真结果。
具体实施方式
下面结合附图以及具体实施例对本发明作进一步的说明,但本发明的保护范围并不限于此。
图1表示了本发明方法的流程图,下面将对该流程图进行详细的解释。
步骤1:收集环境内所有障碍物的信息(包括障碍物的尺寸、移动速度等)并保存在移动机器人的地图信息内,以及确定移动机器人的当前位置与终点位置,与地图信息一起发送给移动机器人的控制器;设定所有障碍物均为圆形障碍物,每个障碍物的信息包括其圆心位置、半径大小以及移动速度等信息。同样设定移动机器人的形状为圆形,将移动机器人的后轴轴心坐标作为移动机器人的位置。即给定的移动机器人的当前位置(xp,yp,θ)和终点位置(xg,yg,θg)均代表机器人的后轴轴心坐标,并非该圆形机器人的中心坐标,中心坐标与后轴轴心坐标存在如下的转换关系,如图2所示:
Xc=xp+l cosθ
yc=yp+l sinθ
其中,xc和yc分别代表圆形机器人的圆心位置的x,y轴坐标值,xp和yp分别代表圆形机器人的后轴轴心的x,y轴坐标值,l表示圆形机器人后轴轴心与圆心之间的轴向距离,θ表示移动机器人的航向角,即移动机器人的当前朝向与水平方向x轴之间的夹角。
步骤2:确定移动机器人的单车模型,并将移动机器人的单车模型转换为仿射控制形式;
步骤2中,移动机器人的单车模型的公式如下:
其中,xp,yp表示移动机器人的后轴轴心x,y轴坐标值,θ表示移动机器人的航向角;v和w分别代表控制移动机器人行进的线速度和角速度;
移动机器人的单车模型对应的仿射控制系统公式如下:
u=[v,w]T
其中,分别表示移动机器人的后轴轴心x,y轴坐标值的微分以及航向角的微分,x∈Rn,u∈Rm,Rn和Rm分别表示移动机器人的状态量维度为n维和控制量维度为m维,均需要固定在合理范围内。u为控制量,即为控制机器人行进的线速度v和角速度ω,T表示转置操作,/>表示状态量的微分,f(x)表示控制状态函数,g(x)表示控制输入函数。
步骤3:根据移动机器人的当前位置与终点位置以及地图内的障碍物信息,分别构建保证机器人向终点移动的CLF约束和保证移动机器人避免与障碍物碰撞的CBF约束;
步骤3具体为:
步骤3.1:基于移动机器人的当前位置与终点位置构建控制李雅普诺夫函数(Control Lyapunov Function,CLF)V(x),再基于控制李雅普诺夫函数V(x)构建保证机器人向终点移动的CLF约束;
步骤3.2:基于移动机器人的当前位置与地图内的障碍物信息(具体是基于机器人中心位置与障碍物位置通过欧式距离)构建控制障碍函数(Control Barrier Function,CBF)hi(x),其中hi(x)表示移动机器人关于第i个障碍物构建的CBF函数,然后基于该控制障碍函数构建保证移动机器人避免与第i个障碍物碰撞的CBF约束。
步骤3.1中,本发明添加了关于位置坐标误差和航向角误差之间的两个交叉项b1、b2,从而保证在极端情况下本发明也可以导航机器人至其终点,控制李雅普诺夫函数V(x)的形式如下:
e=[xp-xg,yp-yg,θ-θg]T
其中,e代表当前位置和终点位置之间的差异,T表示转置操作,P为误差权重矩阵,要求其正定,a1,a2,a3分别为对角线上的第一-第三权重,b1、b2分别为第一交叉项和第二交叉项,通过添加这两个交叉项可以保证在极端情况下本发明也可以导航机器人至其终点;
保证机器人向终点移动的约束的公式如下:
其中,γ代表类K函数,这里取其为正实数。只要保证控制量能够满足上述的约束,那么便能保证机器人向终点移动。
步骤3.2中,控制障碍函数的公式如下:
其中,hi(x)表示移动机器人关于第i个障碍物的控制障碍函数,和/>代表障碍物Oi的x,y轴坐标值,本发明使用/>来表示障碍物的位置信息,r和/>分别代表移动机器人和障碍物的半径;
因此只要保证hi(x)>0,便可以保证机器人实现碰撞避免。然后本发明基于此CBF函数构建保证移动机器人避免与第i个障碍物Oi碰撞的约束,公式如下:
其中,α代表类K函数,这里取正实数。只要保证控制量能够满足上述约束,便可以保证移动机器人与障碍物实现碰撞避免。
同时本发明可以实现移动机器人与动态障碍物之间的碰撞避免,本发明使用来表示动态障碍物的位置信息,其中/>和/>分别表示障碍物Oi在t时刻的位置。然后本发明基于时变CBF函数来构建与动态障碍物实现碰撞避免的约束:
其中,代表动态障碍物位置改变对控制量的影响,如果该障碍物为静态障碍物,那么/>因此面对动态障碍物,只要控制量满足上述约束,便可以与动态障碍物实现碰撞避免。
本发明通过基于后轴轴心来表示机器人的圆心位置,继而通过欧式距离来与障碍物构建CBF,可以保证基于CBF构建的约束能够同时控制机器人的线速度和角速度来实现碰撞避免。
同时本发明构造的CBF函数可以避免奇异性,即能保证保证了CBF函数的有效性。反之,如果xp和yp代表的为机器人的圆心位置,则会出现一定的奇异性,难以保证CBF函数的有效性。另外,如果采用高阶CBF函数,则只能控制角速度来实现碰撞避免,因为此时线速度固定为一个常数,控制性能受到了一定的限制。
步骤4:确定优化控制问题的目标函数,结合保证机器人向终点移动的CLF约束、保证移动机器人避免与障碍物碰撞的CBF约束以及添加控制量的物理约束,构建获得优化控制问题(CLF-CBF-QP);
当障碍物为静态障碍物时,优化控制问题的形式如下:
umin≤u≤umax
其中,H表示控制量的权重矩阵,p表示松弛变量的权重系数,δ为松弛变量,且δ∈R,控制量、松弛变量共同组成优化变量,Rm+1表示优化变量的维度为m+1维,N表示障碍物的数量;当CBF约束和CLF约束发生冲突时,优先满足CBF约束,因此添加松弛变量δ来放宽CLF约束;umin,umax分别为控制量u的最小值和最大值,代表对控制量的约束,满足umin=[vmin,wmin]T,umax
[vmax,wmax]T;目标函数包括两部分:一部分希望控制量尽可能地小,另一部分代表约束不可以被放宽太多;
步骤5:求解优化控制问题后,获得最优控制量并发送给移动机器人的控制系统,确定仿真步长,结合仿射控制形式的移动机器人的单车模型,控制移动机器人进行运动;本发明实际上将整体的优化控制问题拆分为多个QP问题进行在线求解。
步骤6:检测移动机器人是否到达终点,如果未到达终点,则重复步骤3-步骤5,直至移动机器人抵达终点。
如果移动机器人超过最大控制时间还未到达终点,则移动机器人原路返回至起点。具体实施中,移动机器人超过最大控制时间还未到达终点,则终止控制过程,仿真结束。
本发明经由仿真实验进行了验证,设定最大控制时间为30s,仿真步长为0.1s,仿真结果如图3、图4的(a)-图4的(d)所示,其中图3是针对环境中只有静态的障碍物,图4是针对环境中存在动态的障碍物。障碍物均使用边缘为虚线的黑色圆形来表示,边缘为实线的黑色圆形表示当前机器人的位置,灰色的圆形表示机器人的起始和目标终点位置,黑色的实线代表了机器人的过去运动轨迹,动态障碍物的运动轨迹使用黑色的虚线表示。图3的仿真结果显示本发明的方法可以实现由线速度和角速度控制的单车模型的移动机器人与静态障碍物的碰撞避免并导航移动机器人到其终点位置;图4的仿真结果展示了整个控制过程中四个不同时刻的仿真结果,通过观察四个时刻的仿真结果可以发现本发明实现了移动机器人与动态障碍物的碰撞避免,并控制移动机器人行驶到了终点。
上述实施例用来解释说明本发明,而不是对本发明进行限制,在本发明的精神和权利要求的保护范围内,对本发明做出的任何修改和改变,都落入本发明的保护范围。

Claims (10)

1.一种基于CLF与CBF的移动机器人在线导航与避障方法,其特征在于,包括以下步骤:
步骤1:收集环境内所有障碍物的信息并保存在移动机器人的地图信息内,以及确定移动机器人的当前位置与终点位置;
步骤2:确定移动机器人模型,并将移动机器人模型转换为仿射控制形式;
步骤3:根据移动机器人的当前位置与终点位置以及地图内的障碍物信息,分别构建保证机器人向终点移动的CLF约束和保证移动机器人避免与障碍物碰撞的CBF约束;
步骤4:确定优化控制问题的目标函数,结合保证机器人向终点移动的CLF约束、保证移动机器人避免与障碍物碰撞的CBF约束以及控制量的物理约束,构建获得优化控制问题;
步骤5:求解优化控制问题后,获得最优控制量并发送给移动机器人的控制系统,结合仿射控制形式的移动机器人模型,控制移动机器人进行运动;
步骤6:检测移动机器人是否到达终点,如果未到达终点,则重复步骤3-步骤5,直至移动机器人抵达终点。
2.根据权利要求1所述的一种基于CLF与CBF的移动机器人在线导航与避障方法,其特征在于,所述步骤1中,所有障碍物均为圆形障碍物,每个障碍物的信息包括其圆心位置、半径以及移动速度;移动机器人的形状为圆形,将移动机器人的后轴轴心坐标作为移动机器人的位置。
3.根据权利要求1所述的一种基于CLF与CBF的移动机器人在线导航与避障方法,其特征在于,所述步骤2中,移动机器人模型的公式如下:
其中,xp,yp表示移动机器人的后轴轴心x,y轴坐标值,θ表示移动机器人的航向角;v和ω分别代表控制移动机器人行进的线速度和角速度;
移动机器人模型对应的仿射控制系统公式如下:
u=[v,w]T
其中,分别表示移动机器人的后轴轴心x,y轴坐标值的微分以及航向角的微分,u为控制量,T表示转置操作,/>表示状态量的微分,f(x)表示控制状态函数,g(x)表示控制输入函数。
4.根据权利要求1所述的一种基于CLF与CBF的移动机器人在线导航与避障方法,其特征在于,所述步骤3具体为:
步骤3.1:基于移动机器人的当前位置与终点位置构建控制李雅普诺夫函数V(x),再基于控制李雅普诺夫函数V(x)构建保证机器人向终点移动的CLF约束;
步骤3.2:基于移动机器人的当前位置与地图内的障碍物信息构建控制障碍函数,然后基于控制障碍函数构建保证移动机器人避免与障碍物碰撞的CBF约束。
5.根据权利要求4所述的一种基于CLF与CBF的移动机器人在线导航与避障方法,其特征在于,所述步骤3.1中,控制李雅普诺夫函数V(x)的公式如下:
e=[xp-xg,yp-yg,θ-θg]T
其中,e代表当前位置和终点位置之间的差异,T表示转置操作,P为误差权重矩阵,a1,a2,a3分别为对角线上的第一-第三权重,b1、b2分别为第一交叉项和第二交叉项;xp,yp表示移动机器人位于当前位置的后轴轴心x,y轴坐标值,表示移动机器人位于当前位置的航向角;xg,yg表示移动机器人位于终点的后轴轴心x,y轴坐标值,θg表示移动机器人位于终点的航向角;
所述保证机器人向终点移动的约束的公式如下:
其中,f(x)表示控制状态函数,g(x)表示控制输入函数,u为控制量,γ代表类K函数。
6.根据权利要求4所述的一种基于CLF与CBF的移动机器人在线导航与避障方法,其特征在于,所述步骤3.2中,控制障碍函数的公式如下:
其中,hi(x)表示移动机器人关于第i个障碍物的控制障碍函数,和/>代表障碍物Oi的x,y轴坐标值,xp和yp分别代表移动机器人的后轴轴心的x,y轴坐标值,l表示移动机器人后轴轴心与圆心之间的轴向距离,θ表示移动机器人的航向角,r和/>分别代表移动机器人和障碍物的半径。
7.根据权利要求6所述的一种基于CLF与CBF的移动机器人在线导航与避障方法,其特征在于,所述步骤3.2中,当所述障碍物为静态障碍物时,保证移动机器人避免与第i个障碍物Oi碰撞的约束,公式如下:
其中,f(x)表示控制状态函数,g(x)表示控制输入函数,u为控制量,α代表类K函数。
8.根据权利要求6所述的一种基于CLF与CBF的移动机器人在线导航与避障方法,其特征在于,所述步骤3.2中,当障碍物为动态障碍物时,保证移动机器人避免与第i个障碍物Oi碰撞的约束,公式如下:
其中,hi(x,t)表示移动机器人关于第i个障碍物的时变控制障碍函数,代表动态障碍物位置改变对控制量的影响,/>表示动态障碍物的位置信息,f(x)表示控制状态函数,g(x)表示控制输入函数,u为控制量,α代表类K函数。
9.根据权利要求7所述的一种基于CLF与CBF的移动机器人在线导航与避障方法,其特征在于,所述步骤4中,优化控制问题的公式如下:
umin≤u≤umax
其中,H表示控制量的权重矩阵,p表示松弛变量的权重系数,δ为松弛变量,Rm+1表示优化变量的维度为m+1维,N表示障碍物的数量;umin,umax分别为控制量u的最小值和最大值。
10.根据权利要求1所述的一种基于CLF与CBF的移动机器人在线导航与避障方法,其特征在于,所述步骤6中,如果移动机器人超过最大控制时间还未到达终点,则移动机器人原路返回至起点。
CN202310830133.0A 2023-07-07 2023-07-07 基于clf与cbf的移动机器人在线导航与避障方法 Pending CN117008607A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310830133.0A CN117008607A (zh) 2023-07-07 2023-07-07 基于clf与cbf的移动机器人在线导航与避障方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310830133.0A CN117008607A (zh) 2023-07-07 2023-07-07 基于clf与cbf的移动机器人在线导航与避障方法

Publications (1)

Publication Number Publication Date
CN117008607A true CN117008607A (zh) 2023-11-07

Family

ID=88568196

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310830133.0A Pending CN117008607A (zh) 2023-07-07 2023-07-07 基于clf与cbf的移动机器人在线导航与避障方法

Country Status (1)

Country Link
CN (1) CN117008607A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117472066A (zh) * 2023-12-27 2024-01-30 成都流体动力创新中心 一种航向角速度局部最优的避障控制方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117472066A (zh) * 2023-12-27 2024-01-30 成都流体动力创新中心 一种航向角速度局部最优的避障控制方法
CN117472066B (zh) * 2023-12-27 2024-03-26 成都流体动力创新中心 一种航向角速度局部最优的避障控制方法

Similar Documents

Publication Publication Date Title
Wu et al. Backstepping trajectory tracking based on fuzzy sliding mode control for differential mobile robots
Hashemi et al. Model-based PI–fuzzy control of four-wheeled omni-directional mobile robots
CN110162046B (zh) 基于事件触发型模型预测控制的无人车路径跟随方法
Boukens et al. Design of an intelligent optimal neural network-based tracking controller for nonholonomic mobile robot systems
CN111665855B (zh) 一种机器人预设性编队控制方法
CN112757306A (zh) 一种机械臂逆解多解选择和时间最优轨迹规划算法
CN117008607A (zh) 基于clf与cbf的移动机器人在线导航与避障方法
CN111552296B (zh) 一种基于弯曲柱坐标系的局部平滑轨迹规划方法
CN114721275B (zh) 一种基于预设性能的视觉伺服机器人自适应跟踪控制方法
CN111522351A (zh) 水下机器人三维编队及避障方法
Chen et al. Real-time predictive sliding mode control method for AGV with actuator delay
Yang et al. Predictive control strategy based on extreme learning machine for path-tracking of autonomous mobile robot
CN113848905B (zh) 基于神经网络和自适应控制的移动机器人轨迹跟踪方法
Singh et al. Control of closed-loop differential drive mobile robot using forward and reverse kinematics
Liu et al. Trajectory tracking control of agricultural vehicles based on disturbance test
Zhang et al. Motion planning and tracking control of a four-wheel independently driven steered mobile robot with multiple maneuvering modes
Samodro et al. Artificial potential field path planning algorithm in differential drive mobile robot platform for dynamic environment
Muñoz-Vázquez et al. Adaptive fuzzy velocity field control for navigation of nonholonomic mobile robots
Prasad et al. Multi-agent Polygon Formation using Reinforcement Learning.
Yallala et al. Path tracking of differential drive mobile robot using two step feedback linearization based on backstepping
Obaid et al. Time varying backstepping control for trajectory tracking of mobile robot
Yang et al. Path-generating regulator along a straight passage for two-wheeled mobile robots
Shang et al. Fuzzy adaptive control of coal gangue sorting parallel robot with variable load
Cai et al. Robust Navigation with Cross-Modal Fusion and Knowledge Transfer
CN117850433B (zh) 受扰通信受限移动机器人避撞编队控制方法和系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination