CN116966321A - 一种具有斑块靶向功能的纳米颗粒及其制备方法和在制备抗动脉粥样硬化药物中的应用 - Google Patents

一种具有斑块靶向功能的纳米颗粒及其制备方法和在制备抗动脉粥样硬化药物中的应用 Download PDF

Info

Publication number
CN116966321A
CN116966321A CN202310986093.9A CN202310986093A CN116966321A CN 116966321 A CN116966321 A CN 116966321A CN 202310986093 A CN202310986093 A CN 202310986093A CN 116966321 A CN116966321 A CN 116966321A
Authority
CN
China
Prior art keywords
nanoparticle
targeting function
plaque
arginine
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310986093.9A
Other languages
English (en)
Inventor
张龙江
盛洁
祖梓悦
戚建晨
吴浩光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CN202310986093.9A priority Critical patent/CN116966321A/zh
Publication of CN116966321A publication Critical patent/CN116966321A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6949Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit inclusion complexes, e.g. clathrates, cavitates or fullerenes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0052Thermotherapy; Hyperthermia; Magnetic induction; Induction heating therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/542Carboxylic acids, e.g. a fatty acid or an amino acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/61Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule the organic macromolecular compound being a polysaccharide or a derivative thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6927Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores
    • A61K47/6929Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle
    • A61K47/6931Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer
    • A61K47/6935Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer the polymer being obtained otherwise than by reactions involving carbon to carbon unsaturated bonds, e.g. polyesters, polyamides or polyglycerol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Nanotechnology (AREA)
  • Immunology (AREA)
  • Urology & Nephrology (AREA)
  • Vascular Medicine (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明提供了一种具有斑块靶向功能的纳米颗粒及其制备方法和在制备抗动脉粥样硬化药物中的应用,属于复合纳米材料技术领域。本发明提供的具有斑块靶向功能的纳米颗粒包括内核和壳层,所述内核为负载新吲哚菁绿的ZIF‑8纳米颗粒,壳层为精氨酸修饰的聚多巴胺;所述壳层表面修饰有透明质酸。本发明提供的具有斑块靶向功能的纳米颗粒可以通过同时干预多通路来调节脂质水平,并提供抗炎作用,保护受损的内皮细胞,能够实现低温(42~45℃)光热治疗联合抗nlrp3,通过调节PCSK9通路诱导的脂质积累和修复损伤的内皮细胞来治疗动脉粥样硬化。

Description

一种具有斑块靶向功能的纳米颗粒及其制备方法和在制备抗 动脉粥样硬化药物中的应用
技术领域
本发明涉及复合纳米材料技术领域,特别涉及一种具有斑块靶向功能的纳米颗粒及其制备方法和在制备抗动脉粥样硬化药物中的应用。
背景技术
动脉粥样硬化(AS)性心血管疾病是一个重要的全球性公共卫生问题。在临床实践中,降脂仍是动脉粥样硬化药物治疗的主要方向。其中,他汀类药物是应用最广泛的一种降脂药物,它是一种HMG-CoA还原酶抑制剂。虽然他汀类药物治疗可以通过降低血浆中的LDL水平来减缓AS的进展,但它不足以减轻AS斑块。
原蛋白转化酶枯草杆菌素/kexin9型(PCSK9)广泛表达于肝脏和AS斑块区,通过降解低密度脂蛋白受体(LDLr)来促进胆固醇的积累,从而影响胆固醇稳态。与抑制HMB-CoA还原酶的他汀类药物相比,PCSK9抑制剂通过阻止LDLr的降解发挥作用,在临床实践中取得了喜人的效果。例如,PCSK9单克隆抗体(mAB)已被美国食品和药物管理局(FDA)批准用于临床。使用小干扰RNA(siRNA)作为PCSK9的抑制剂也在3期临床试验中显示出了很高的应用价值。
PCSK9受多种途径调控,其中研究最广泛的是与代谢和炎症相关的通路。纳米颗粒是一种调节细胞信号通路的有效工具,具有较高的时空精确度。由于细胞独特的物理和化学性质,已经开发出光学、电学和磁学等方法来调节细胞信号。光学刺激,特别是利用近红外(NIR)光的刺激,能够以最小的衰减和对细胞的光损伤深入生物组织,因此具有明显的优势。
除了代谢调节脂质外,炎症和脂质的关系最近也引起了研究人员们的极大关注。其具体的生理病理过程表现为,巨噬细胞受到受损血管内皮招募,吞噬脂质形成泡沫细胞,泡沫细胞进一步释放炎症因子,形成恶性循环,这个过程加重了动脉粥样硬化。NOD样受体pyrin结构域含蛋白3(NLRP3)炎症小体是细胞内先天免疫的经典受体,其能够调节炎症反应,在AS病变发生发展中起着至关重要的作用。最近研究也证明了SREBP2/PCSK9和NLRP3之间的独立相关性。因此,减少NLRP3的表达也能够有效降低PCSK9的表达。
此外,内皮细胞(ECs)功能障碍是AS发展过程中的始动步骤。内皮一氧化氮合酶(eNOS)的功能障碍和随之而来的一氧化氮(NO)减少是引起EC功能障碍的主要原因。
近年来,基于纳米颗粒的光热疗法(PTT)作为一种潜在的治疗动脉粥样硬化的方法,受到了极大的关注。光热疗法(PTT)将光转化为局部高温(T>50℃),诱导巨噬细胞和泡沫细胞凋亡或坏死,最终导致斑块消融。然而,高温(T>50℃)会对照射部位周围的组织和血管造成不可逆的损伤。高温PTT诱导的泡沫细胞过度凋亡可导致坏死核心扩大,最终使斑块不稳定,并促进急性心血管事件。
发明内容
有鉴于此,本发明目的在于提供一种具有斑块靶向功能的纳米颗粒及其制备方法和在制备抗动脉粥样硬化药物中的应用。本发明提供的具有斑块靶向功能的纳米颗粒能够实现低温(42~45℃)光热治疗联合抗nlrp3,通过调节PCSK9通路诱导的脂质积累和修复损伤的内皮细胞来治疗动脉粥样硬化。
为了实现上述发明目的,本发明提供以下技术方案:
本发明提供了一种具有斑块靶向功能的纳米颗粒,包括内核和壳层,所述内核为负载新吲哚菁绿的ZIF-8纳米颗粒,所述壳层为精氨酸修饰的聚多巴胺;所述壳层表面修饰有透明质酸。
优选的,所述具有斑块靶向功能的纳米颗粒的粒径为140~180nm。
优选的,所述具有斑块靶向功能的纳米颗粒中,新吲哚菁绿的质量含量为10~40%;聚多巴胺的质量含量为25~35%;精氨酸的质量含量为25~35%。
本发明提供了上述具有斑块靶向功能的纳米颗粒的制备方法,包括以下步骤:
将新吲哚菁绿、水、可溶性锌盐与2-甲基咪唑混合,进行配位反应,得到负载新吲哚菁绿的ZIF-8纳米颗粒;
将所述负载新吲哚菁绿的ZIF-8纳米颗粒与盐酸多巴胺、缓冲溶液混合,进行自聚合反应,得到聚多巴胺包裹的纳米颗粒;
将所述聚多巴胺包裹的纳米颗粒与精氨酸、缓冲溶液混合,进行第一偶联反应,得到修饰精氨酸的纳米颗粒;
将所述修饰精氨酸的纳米颗粒与透明质酸、缓冲溶液混合,进行第二偶联反应,得到具有斑块靶向功能的纳米颗粒。
优选的,所述可溶性锌盐与2-甲基咪唑的质量比为0.05~0.15:1;
所述新吲哚菁绿与2-甲基咪唑的质量比为0.01~0.04:1。
优选的,所述盐酸多巴胺与负载新吲哚菁绿的ZIF-8纳米颗粒的质量比为5~10:5~10。
优选的,所述精氨酸与聚多巴胺包裹的纳米颗粒的质量比为5~10:5~10。
优选的,所述透明质酸与修饰精氨酸的纳米颗粒的质量比为5~10:5~10。
本发明提供了上述具有斑块靶向功能的纳米颗粒在制备抗动脉粥样硬化药物中的应用。
优选的,所述具有斑块靶向功能的纳米颗粒的工作温度为42~45℃。
本发明提供了一种具有斑块靶向功能的纳米颗粒(HA-PLIZ,简写为HPLIZ),包括内核和壳层,所述内核为负载新吲哚菁绿(IR820)的ZIF-8纳米颗粒,所述壳层为精氨酸(LA)修饰的聚多巴胺(PDA);所述壳层表面修饰有透明质酸(HA)。本发明提供的具有斑块靶向功能的纳米颗粒可以通过同时干预多通路来调节脂质水平,并提供抗炎作用,并保护受损的内皮细胞(ECs)。具体的,斑块区域受损的内皮细胞及斑块内的泡沫细胞都高表达CD44,而CD44能够与HA特异性结合,因此本发明提供的HPLIZ纳米颗粒可以特异性地结合到斑块区域;精氨酸修饰的聚多巴胺有强大的抗氧化作用,能够消除局部ROS,降低NLRP3表达,而NLRP3水平的降低对脂质调节有影响,最终导致斑块部位PCSK9的表达降低;HPLIZ内含有IR820和PDA,其作为光热转化剂,在近红外光刺激下,泡沫细胞的温度上升至42~45℃,TRPV1通道打开,导致Ca2+内流,随后AMPK/SREBP2/PCSK9通路激活。上述两种途径均能导致PCSK9表达下调,最终导致脂质清除。
此外,本发明提供的HPLIZ内掺杂有LA,LA能够在活性氧和近红外的激发下产生NO,在42~45℃温和的温度下,HPLIZ释放NO,从而激活eNOS/NO通路以保护内皮细胞。此外,温和的温度导致HSP90的高表达,这有助于维持eNOS的表达。相比传统的PTT通过促进泡沫细胞的凋亡来减轻AS容易导致局部炎症和斑块破裂的缺陷,本发明基于HPLIZ温和PTT策略可以通过调节脂质代谢和修复受损的内皮细胞来有效对抗AS,实现同步降脂、抗炎、保护损伤内皮的强大功效。
本发明提供了上述具有斑块靶向功能的纳米颗粒的制备方法,此法操作简单,成本低廉,易于实现工业化批量生产。
附图说明
图1为具有斑块靶向功能的纳米颗粒的制备流程及应用示意图;
图2为几种纳米颗粒的TEM图;
图3为几种纳米颗粒的粒径大小;
图4为几种纳米颗粒的zeta电位;
图5为几种纳米颗粒的紫外可见光光谱图;
图6为几种纳米颗粒的pxrd结果图;
图7为IR820在IZ、PIZ、PLIZ和HPLIZ中的重量百分比结果;
图8为LA在PLIZ和HPLIZ中的重量百分比结果;
图9为水、IZ、PIZ、PLIZ和HPLIZ在808nm,0.5W/cm2近红外光照射下的热图和相应的温度变化曲线;
图10为RAW 264.7细胞在808nm照射下的RAW 264.7细胞的热图及其对应的温度变化曲线;
图11为RAW 264.7细胞经不同处理后,通过DCFH-DA上测得的ROS水平的代表性共聚焦图像;
图12为不同处理后,对RAW 264.7细胞进行ORO染色的代表性照片;
图13为RAW 264.7细胞在不同处理后Dil-ox-LDL摄取的代表性共聚焦图像;
图14为采用Fluo-4 AM流式细胞仪检测不同处理条件后泡沫细胞中Ca2+水平的浓度;
图15为不同处理后RAW 264.7细胞中PCSK9、SREBP2和NLRP3表达的Westernblot图像;
图16为不同方式处理的HUVECs的划痕实验代表性结果图;
图17为通过DAF-FM DA法测得的NO流式图;
图18为HSP90和eNOS的WB结果图;
图19为在注射三种纳米以后不同的时间点,小鼠主动脉的离体荧光图像;
图20为动脉粥样硬化小鼠染色结果;
图21为不同组的NLRP3、IL-1β、PCSK9、ABCA1和eNOS抗体染色的主动脉弓根处的代表性免疫组化图像;
图22为抗CD68和CD31染色的主动脉弓根部代表性免疫荧光图像。
具体实施方式
本发明提供了一种具有斑块靶向功能的纳米颗粒,包括内核和壳层,所述内核为负载新吲哚菁绿的ZIF-8纳米颗粒,壳层为精氨酸修饰的聚多巴胺;所述壳层表面修饰有透明质酸。
在本发明中,所述内核的粒径优选为100~120nm。在本发明中,所述具有斑块靶向功能的纳米颗粒的粒径优选为140~180nm,更优选为150~160nm。
在本发明中,所述具有斑块靶向功能的纳米颗粒中,新吲哚菁绿的质量含量优选为10~40%,更优选为20~30%,所述新吲哚菁绿的含量通过元素分析硫质量百分比测得;所述聚多巴胺的质量含量优选为25~35%,更优选为30%,所述聚多巴胺的含量通过紫外测得;所述精氨酸的质量含量优选为25~35%,更优选为30%,所述精氨酸的含量通过茚三酮反应测得。
在本发明中,IR820是吲哚菁绿的衍生物,可作为光热剂和荧光剂,已获得了FDA批准用于临床。ZIF-8是一种金属有机框架材料,它可以包裹IR820(称为IZ),与单独的IR820相比,IZ能够提高光热转换效率。且ZIF-8本身能够诱导泡沫细胞自噬,进而激活ABCA1依赖性胆固醇流出,降低脂质水平。
聚多巴胺(PDA)是一种天然黑色素的人工类似物,具有良好的生物相容性。本发明以聚多巴胺作为壳层材料,其具有抗NLRP3活性,能够进一步导致PCSK9表达降低。此外,IZ上的PDA涂层增强了其生物相容性,并作为另一种光热剂,能够提高IZ的光热转化的效率。此外,PDA上存在大量官能团,可以进行广泛的化学修饰,并增强对各种表面的粘附力。
L-精氨酸(LA)已被证实可以维持eNOS,并在与活性氧(ROS)和一氧化氮合酶反应后产生NO,从而改善内皮功能和减少氧化应激。
透明质酸(HA)能够与斑块区域受损的内皮细胞及斑块内的泡沫细胞高表达的CD44特异性结合,从而使HPLIZ纳米颗粒特异性地结合到斑块区域。
本发明提供了上述具有斑块靶向功能的纳米颗粒的制备方法,包括以下步骤:
将新吲哚菁绿、水、可溶性锌盐与2-甲基咪唑混合,进行配位反应,得到负载新吲哚菁绿的ZIF-8纳米颗粒;
将所述负载新吲哚菁绿的ZIF-8纳米颗粒与盐酸多巴胺、缓冲溶液混合,进行自聚合反应,得到聚多巴胺包裹的纳米颗粒;
将所述聚多巴胺包裹的纳米颗粒与精氨酸、缓冲溶液混合,进行第一偶联反应,得到修饰精氨酸的纳米颗粒;
将所述修饰精氨酸的纳米颗粒与透明质酸、缓冲溶液混合,进行第二偶联反应,得到具有斑块靶向功能的纳米颗粒。
如无特殊说明,本发明所用原料的来源均为市售。
本发明将新吲哚菁绿、水、可溶性锌盐与2-甲基咪唑混合,进行配位反应,得到负载新吲哚菁绿的ZIF-8纳米颗粒(IR820@ZIF-8,简写为IZ)。在本发明中,所述可溶性锌盐优选为Zn(NO3)3,更优选为Zn(NO3)3·6H2O。在本发明中,所述可溶性锌盐与2-甲基咪唑的质量比优选为0.05~0.15:1,更优选为0.1:1;所述新吲哚菁绿与2-甲基咪唑的质量比为0.01~0.04:1,更优选为0.02~0.03:1。
在本发明中,所述混合的方式优选为:将新吲哚菁绿水溶液加至可溶性锌盐水溶液中搅拌混合,再加入2-甲基咪唑水溶液。在本发明中,所述搅拌混合的时间优选为5~10min。
在本发明中,所述配位反应的温度优选为室温,时间优选为10~15min,更优选为12~14min。在本发明中,所述配位反应的过程中,可溶性锌盐与2-甲基咪唑生成沸石咪唑酸框架-8(ZIF-8)纳米颗粒,新吲哚菁绿负载于ZIF-8纳米颗粒的内部孔隙。
在本发明中,所述配位反应后,本发明优选对所得反应产物进行离心、洗涤和干燥。在本发明中,所述离心的速率优选为10000~20000rpm,更优选为15000rpm;时间优选为30~60min,更优选为40~60min。在本发明中,所述洗涤使用的洗涤剂优选为水或甲醇,所述洗涤的次数优选为3~5次。在本发明中,所述干燥的温度优选为60~180℃,更优选为100~150℃,时间优选为6~24h,更优选为12~18h。
得到所述负载新吲哚菁绿的ZIF-8纳米颗粒后,本发明将所述负载新吲哚菁绿的ZIF-8纳米颗粒与盐酸多巴胺、缓冲溶液混合,进行自聚合反应,得到聚多巴胺包裹的纳米颗粒(PDA@IZ,简写为PIZ)。在本发明中,所述缓冲溶液优选为Trils-HCl缓冲液,所述缓冲溶液的pH优选为8.5。
在本发明中,所述盐酸多巴胺与负载新吲哚菁绿的ZIF-8纳米颗粒的质量比为5~10:5~10,更优选为6~8:5~10。在本发明中,所述负载新吲哚菁绿的ZIF-8纳米颗粒的质量与缓冲溶液的体积比优选为5~10mg:5~10mL。
在本发明中,所述自聚合反应优选在超声条件下进行,所述超声的功率优选为80~300W,更优选为100~200W。
在本发明中,所述自聚合反应的温度优选为室温,时间优选为40~120min,更优选为60~100min。所述自聚合反应过程中,盐酸多巴胺自聚合为聚多巴胺,同时通过配位相互作用与Zn离子结合,包裹在负载新吲哚菁绿的ZIF-8纳米颗粒表面。
所述自聚合反应后,本发明优选对所得反应产物进行离心、洗涤和干燥。在本发明中,所述离心的速率优选为10000~20000rpm,更优选为15000rpm;时间优选为30~60min,更优选为40~60min。在本发明中,所述洗涤使用的洗涤剂优选为水或甲醇,所述洗涤的次数优选为3~5次。在本发明中,所述干燥的温度优选为60~180℃,更优选为100~150℃,时间优选为6~24h,更优选为12~18h。
得到所述聚多巴胺包裹的纳米颗粒后,本发明将所述聚多巴胺包裹的纳米颗粒与精氨酸、缓冲溶液混合,进行第一偶联反应,得到修饰精氨酸的纳米颗粒(LA@PIZ,简写为PLIZ)。在本发明中,所述缓冲溶液优选为Trils-HCl缓冲液,所述缓冲溶液的pH优选为8.5。
在本发明中,所述精氨酸与聚多巴胺包裹的纳米颗粒的质量比优选为5~10:5~10,更优选为6~8:5~10。在本发明中,所述聚多巴胺包裹的纳米颗粒的质量与缓冲溶液的体积比优选为5~10mg:5~10mL。
在本发明中,所述第一偶联反应的温度优选为室温,时间优选为24h。在本发明中,所述第一偶联反应的过程中,精氨酸的氨基与聚多巴胺发生Schiff碱和/或Michael加成反应,使精氨酸修饰到聚多巴胺壳层表面。
所述第一偶联反应后,本发明优选对所得反应产物进行离心、洗涤和干燥。在本发明中,所述离心的速率优选为10000~20000rpm,更优选为15000rpm;时间优选为30~60min,更优选为40~60min。在本发明中,所述洗涤使用的洗涤剂优选为水或甲醇,所述洗涤的次数优选为3~5次。在本发明中,所述干燥的温度优选为60~180℃,更优选为100~150℃,时间优选为6~24h,更优选为12~18h。
得到所述修饰精氨酸的纳米颗粒后,本发明将所述修饰精氨酸的纳米颗粒与透明质酸、缓冲溶液混合,进行第二偶联反应,得到具有斑块靶向功能的纳米颗粒(HA-PLIZ,简写为HPLIZ)。在本发明中,所述缓冲溶液优选为Trils-HCl缓冲液,所述缓冲溶液的pH优选为8.5。
在本发明中,所述透明质酸与修饰精氨酸的纳米颗粒的质量比优选为5~10:5~10,更优选为6~8:5~10。在本发明中,所述修饰精氨酸的纳米颗粒的质量与缓冲溶液的体积比优选为5~10mg:5~10mL。
在本发明中,所述第二偶联反应的温度优选为室温,时间优选为6~36h,更优选为12~24h。在本发明中,所述第二偶联反应的过程中,透明质酸与聚多巴胺、精氨酸发生氢键相互作用,从而修饰在精氨酸修饰的聚多巴胺壳层表面。
所述第二偶联反应后,本发明优选对所得反应产物进行离心、洗涤和干燥。在本发明中,所述离心的速率优选为10000~20000rpm,更优选为15000rpm;时间优选为30~60min,更优选为40~60min。在本发明中,所述洗涤使用的洗涤剂优选为水或甲醇,所述洗涤的次数优选为3~5次。在本发明中,所述干燥的温度优选为60~180℃,更优选为100~150℃,时间优选为6~24h,更优选为12~18h。
本发明提供了上述具有斑块靶向功能的纳米颗粒在制备抗动脉粥样硬化药物中的应用。本发明提供的具有斑块靶向功能的纳米颗粒的核心为沸石咪唑酸框架-8(ZIF-8)纳米颗粒装载新吲哚菁绿(IR820),外壳为L-精氨酸(LA)修饰的聚多巴胺(PDA),然后通过透明质酸(HA)修饰,以靶向CD44,CD44在泡沫细胞和损伤的内皮细胞中高表达。
对于泡沫细胞,给予材料并在NIR照射下,温度升高到42~45℃,并且TRPV1通道被打开,导致Ca2+流入,随后激活AMPK/SREBP2/PCSK9通路,降低了PCSK9的表达。此外,PDA通过降低NLRP3的表达而表现出强大的抗炎特性,而NLRP3则同时下调了PCSK9的水平。
对于损伤的内皮细胞,由于LA的掺杂,HPLIZ积累并激活了eNOS/NO通路,从而修复了损伤的ECs。此外,温和的PTT增加了HSP90的表达,这反过来有助于促进eNOS稳定表达。
在本发明中,所述具有斑块靶向功能的纳米颗粒的工作温度优选为42~45℃。
在本发明中,具有斑块靶向功能的纳米颗粒的制备流程及应用示意图如图1所示。
下面结合实施例对本发明提供的具有斑块靶向功能的纳米颗粒及其制备方法和在制备抗动脉粥样硬化药物中的应用进行详细的说明,但是不能把它们理解为对本发明保护范围的限定。
实施例1
IR820@ZIF-8(IZ)纳米颗粒的合成:将32mg IR820先溶于4mL去离子水中。然后将IR820原液逐滴液滴加入到0.1g Zn(NO3)3·6H2O溶液中。搅拌5min后,将混合溶液滴加入1g2-MI溶液中,再剧烈搅拌10min。然后离心(10000rpm,30min),用水或甲醇洗涤3次,65℃真空干燥24h。
PDA@IZ(PIZ)纳米颗粒的合成:按照文献报道过的方法,将8mg上一步合成好的IZ分散在8mL Trils-HCl缓冲液中(pH=8.5)。再称取8mg盐酸多巴胺,加入上述溶液中。超声60min后,离心(10000rpm,30min),用水或甲醇洗涤3次,65℃真空干燥24h。
LA@PIZ(PLIZ)纳米颗粒的合成:将8mg PIZ分散于8mL Tris-HCl缓冲液(pH=8.5)中。称取8mg LA加入上述溶液。搅拌24h后,离心(10000rpm,30min),用水或甲醇洗涤3次,65℃真空干燥24h。
HA-PLIZ(HPLIZ)纳米颗粒的合成:称取10mg PLIZ,分散于10mL Tris-HCl缓冲液(pH=8.5)。称取10mg HA加入上述溶液。搅拌24h后,离心(10000rpm,30min),用水或甲醇洗涤3次,65℃真空干燥24h。
对比例1
ZIF-8纳米颗粒的合成:首先将0.1g Zn(NO3)3·6H2O溶于0.1mL去离子水中,将1g2-MI溶于8mL去离子水中。然后将Zn(NO3)3·6H2O原液滴入2-MI溶液中,搅拌10min。将所制备的ZIF-8纳米颗粒在10000rpm下离心30min,用水或甲醇洗涤3次,65℃真空干燥24h。
几种纳米颗粒的TEM图如图2所示。图2中,(a)~(e)分别为ZIF-8、IZ、PIZ、PLIZ和HPLIZ的TEM图,图2的标尺为200nm。
几种纳米颗粒的粒径大小如图3所示。可以看出,ZIF-8、IZ、PIZ、PLIZ和HPLIZ的平均尺寸分别为131.6nm、137nm、143nm、153.4nm和160.8nm。
几种纳米颗粒的zeta电位如图4所示。可以看出,ZIF-8和IZ在纯水中显示出正的ζ电位值,分别为21.69mV和19.68mV。PIZ、PLIZ和HPLIZ的表面ζ电位,分别为-32.81mV、-20.025mV和-21.208mV。
几种纳米颗粒的紫外可见光光谱图如图5所示。紫外-可见(UV-vis)吸收光谱提示,IZ、PIZ、PLIZ和HPLIZ的吸收峰约在860nm左右,表明IR820的成功负载。
使用粉末X射线衍射(PXRD)测量五种纳米颗粒的晶体结构,几种纳米颗粒的pxrd结果图如图6所示。可以看出,所有颗粒都具有高结晶度,与已公布的晶体结构数据一致。
通过元素分析IR820中特异性的硫元素来分析IR820在IZ、PIZ、PLIZ和HPLIZ中的重量百分比,IR820在IZ、PIZ、PLIZ和HPLIZ中的重量百分比结果如图7所示。结果提示,IR820的重量百分比分别为23.1%、20.0%、12.4%和10.8%。
采用茚三酮比色法对PLIZ和HPLIZ中掺杂LA的定性和定量检测进行了分析,LA在PLIZ和HPLIZ中的重量百分比结果如图8所示,其重量百分比分别为34.5%和28.5%。
实施例2纳米颗粒的光热转化性能
首先,将浓度均为50μg/mL,体积为180μL的IR820、IZ、PIZ、PLIZ和HPLIZ加入到200μL的EP管中。选择去离子水(DI水)作为阴性对照。然后,在808nm下以0.5W/cm2辐照溶液5min。热红外成像仪用于监测5min期间的温度变化。
水、IZ、PIZ、PLIZ和HPLIZ在808nm,0.5W/cm2近红外光照射下的热图和相应的温度变化曲线如图9所示。可以看出,与DI水相比,所有实验组的温度都随着时间的推移而升高。IZ、PIZ、PLIZ和HPLIZ的温度分别升高了20.5、27.8、38.8和32.3℃。PDA的涂层提高了IZ的光热转换效率。此外,PLIZ中LA的存在也显著提高了温度,这是由于PDA-LA中供体-受体微结构的构建,并通过增加自由基浓度来减少非热辐射跃迁过程。与PLIZ相比,HA的修饰略微降低了HPLIZ的光热转换效率,但仍高于PIZ。这些结果表明,HPLIZ可以作为一种极好的光热转换制剂,用于体外和体内的进一步PTT研究。
实施例3细胞温控结果
将RAW 264.7细胞以1×106个/mL的密度接种于六孔板,培养24h后,每孔加入50μg/mL的PIZ,PLIZ和HPLIZ,继续培养24h。随后PBS清洗细胞3次,消化,用250μL的PBS重悬成细胞悬液;然后,在808nm下以0.5W/cm2辐照溶液5min。热红外成像仪用于监测5min期间的温度变化。
采集的RAW 264.7细胞在808nm照射下的RAW 264.7细胞的热图及其对应的温度变化曲线如图10所示。可以看出,三种纳米颗粒处理的细胞温度均能达到42℃,PLIZ和HPLIZ处理后的细胞温度甚至可以达到45℃,表明体外轻度PTT的能力良好。
实施例4光热纳米药物对泡沫细胞活性氧的影响
用2,7-二氯荧光素二乙酸酯(DCFH-DA)检测试剂盒检测ROS的清除。将RAW 264.7细胞以每孔5×105/mL的密度接种于6孔板中,每组设置6个平行样本。然后,用100~500ng/mL的脂多糖LPS(或不含LPS,作为阴性对照)(脂多糖)刺激细胞,然后用PIZ、PLIZ、HPLIZ处理24h。24h后,每组随机选择3个样本进行光照,光照条件如上。随后,在共聚焦显微镜下对细胞进行观察并拍照。
RAW 264.7细胞经不同处理后,通过DCFH-DA上测得的ROS水平的代表性共聚焦图像如图11所示。试验结果表明,HPLIZ能够很好的清除LPS刺激巨噬细胞产生的活性氧。同时,增加光照并不会刺激细胞产生更多的活性氧,提示低温光照对细胞是安全的。
实施例5光热纳米药物对泡沫细胞脂质含量的影响
为了确定不同治疗后,巨噬细胞中的脂质沉积,本发明进行了ORO染色,同时检测Dil-ox-LDL的摄取。ORO染色的实验步骤如下:将RAW264.7细胞(2.0mL,5×105)接种于6孔板中。然后以RAW 264.7细胞为阴性对照。用ox-LDL(80μg/mL)和LPS(500ng/mL)处理24h的RAW 264.7细胞作为阳性对照。其他组分别用ox-LDL(80μg/mL)和LPS(500ng/mL)以及50μg/mL PIZ、PLIZ和HPLIZ同样处理24h、3组给药组各设置2个空。24h后,随意挑选PIZ、PLIZ和HPLIZ各一个孔,分别用NIR激光(0.5W/cm2,808nm)照射5分钟。随后用PBS洗涤,所有细胞用4%多聚甲醛固定15min,用60%异丙醇洗涤,用油红O染脂滴。用荧光显微镜观察泡沫细胞并拍照(奥林巴斯,日本)。所得结果如图12所示(图12中比例尺为50μm)。结果表明,HPLIZ+NIR能够使得细胞红染的面积减少,即清除泡沫细胞中的脂质。
Dil-ox-LDL摄取实验步骤如下:将RAW 264.7细胞以2×105个/mL,1mL接种于共聚焦小皿(35mm)。然后以RAW 264.7细胞为阴性对照。以LPS(500ng/mL)处理的RAW 264.7细胞作为阳性对照组。然后,用LPS(500ng/mL)和不同纳米颗粒(PIZ、PLIZ和HPLIZ,50μg/mL)处理细胞,作为实验组,每组设置2个孔。培养24h后,随意挑选PIZ、PLIZ和HPLIZ各一个孔,分别用NIR激光(0.5W/cm2,808nm)照射5分钟。然后用DiI-ox-LDL(40μg/mL)再处理细胞4小时,随后,在共聚焦显微镜下对细胞进行观察并拍照,结果如图13所示(图13中比例尺为50μm)。结果表明,HPLIZ+NIR能够有效抑制ox-LDL的摄取,即抑制泡沫细胞的形成。
实施例6纳米药物调节炎症和脂质的机制研究
本发明通过测定Ca2+含量来判断TRPV1通道打开与否。细胞处理如上,处理完成后用Fluo-4AM染色剂对细胞进行染色,完成后流式上机检测FITC通道。采用Fluo-4 AM流式细胞仪检测不同处理条件后泡沫细胞中Ca2+水平的浓度如图14所示。结果显示,3个光照组的Ca2+含量显著高于非光照组,提示低温光热确实能够打开TRPV1通道。
用WB进行NLRP3、PCSK9、SREBP2表达量的检测。细胞处理如上,处理完成后,用RIPA裂解RAW264.7。然后,采用标准的BCA测定法检测每个样品的总蛋白浓度。获得的相同浓度的蛋白样品通过4-12%的Bis-Tris凝胶分离,并转移到0.22μm的PVDF膜上。然后,用不同抗体(抗NLRP3,PCSK9,SREBP2)4℃孵育过夜。然后将获得的PVDF膜与相应的的二抗孵育2小时。目的蛋白通过化学发光成像系统(Tanon,中国)进行检测。不同处理后RAW 264.7细胞中PCSK9、SREBP2和NLRP3表达的Westernblot图像如图15所示。可以看出,LPS和ox-LDL处理后,RAW264.7细胞中的NLRP3、SREBP2、PCSK9水平显著升高。各实验组的NLRP3,SREBP2,PCSK9水平均低于LPS和ox-LDL处理组。此外,HPLIZ+NIR处理组的NLRP3、SREBP2、PCSK9表达量最高。提示HPLIZ+NIR的低温光热疗法能够降低NLRP3,PCSK9和SREBP2,从而达到抗炎和降脂的效果。
实施例7纳米药物通过eNOS/NO通路改善内皮细胞功能
为了验证纳米颗粒对内皮细胞的保护功能,我们进行了细胞划痕实验。将2×105/mL HUVEC细胞在6孔板中培养,培养24h。用200μL的枪头尖端划过细胞,然后用显微镜(奥林巴斯)对损伤区域进行拍照。然后将阳性对照组的细胞培养基替换为不含LPS(500ng/mL)的新鲜培养基的细胞培养基。将其他组的细胞培养基替换为含有LPS(500ng/mL)和不同纳米药物(50μg/mL PIZ、PLIZ和HPLIZ)的新鲜培养基,每组2孔。继续培养24h后,随机选择PIZ、PLIZ和HPLIZ各一孔分别用近红外光(0.5W/cm2,808nm)照射5min。4小时后,用显微镜拍照。不同方式处理的HUVECs的划痕实验代表性结果图如图16所示。可以看出,所有实验组均观察到HUVECs愈合,HPLIZ+NIR组伤口愈合程度最高,表明HPLIZ+NIR能够有效促进内皮细胞修复。
采用标准DAF-FM DA法检测NO产生能力。将2×105/mL HUVEC细胞接种于6孔板中,培养24h。然后,将阳性对照组的培养基替换为含LPS(500ng/mL)的新鲜培养基。同时,将其他各组的培养基替换为含有LPS(500ng/mL)和不同纳米药物(50μg/mL PIZ、PLIZ和HPLIZ)的新鲜培养基,每组2孔。再过24小时后,随机选择PIZ、PLIZ和HPLIZ组进行NIR照射(0.5W/cm2,5min)。照射完4小时后,细胞用DAF-FM DA探针染色,以进行流式细胞术分析。通过DAF-FM DA法测得的NO流式图如图17所示。结果显示:与LPS组相比,PLIZ+NIR和HPLIZ+NIR处理组的NO水平显著增高,提示掺杂的LA能够被ROS和NO激发成NO,促进内皮细胞修复。
用WB进行eNOS和HSP90表达量的检测。细胞处理如上,处理完成后,用RIPA裂解HUVECs。然后,采用标准的BCA测定法检测每个样品的总蛋白浓度。获得的相同浓度的蛋白样品通过4-12%的Bis-Tris凝胶分离,并转移到0.22μm的PVDF膜上。然后,用不同抗体(抗enos、抗hsp90)4℃孵育过夜。然后将获得的PVDF膜与相应的的二抗孵育2小时。目的蛋白通过化学发光成像系统(Tanon,中国)进行检测。结果提示:LPS处理后,HUVECs中的eNOS水平显著降低。各实验组的eNOS水平均高于LPS处理组。此外,PLIZ+NIR和HPLIZ+NIR处理组的eNOS表达量最高,这与NO释放水平一致。有趣的是,我们还观察到,即使在没有通常产生eNOS和NO的LA时,PIZ+NIR处理的细胞也比PIZ处理的细胞表现出更高的NO水平和eNOS表达。因此,本发明推测NIR照射诱导温度轻度升高,导致HSP90表达上调,而HSP90是稳定eNOS的关键分子间伴侣蛋白。HSP90和eNOS的WB结果图如图18所示。结果显示,NIR照射组的HSP90表达水平明显高于非辐照组。因此证明,轻度PTT可诱导HSP90上调,进一步增加并维持eNOS和NO水平。
实施例8纳米药物抗炎在动脉粥样硬化小鼠中的特异性摄取
高脂饮食喂养ApoE-/-小鼠构建动脉粥样硬化模型。野生型小鼠正常饮食作为健康对照组。通过尾静脉注射PIZ、PLIZ和HPLIZ,每组所含IR820(新吲哚菁绿,一种荧光染料,用于可视化材料在主动脉中的富集区域和富集多少)的剂量为1mg/kg。分别在注射6h和24h后处死小鼠,收集主动脉进行离体的荧光图像拍摄,拍摄完成后固定于4%的多聚甲醛中进行大体油红O染色确定斑块区域。在注射三种纳米以后不同的时间点,小鼠主动脉的离体荧光图像如图19中的上图所示。可以看出,注射6h和24h后,注射HPLIZ的WT小鼠的主动的荧光信号可忽略不计,AS小鼠的主动脉均显示出明显的红色荧光。无论哪个时间点,注射HPLIZ小鼠的主动脉荧光信号最强,PLIZ次之,PIZ最弱。
随后为了确定斑块位置与荧光位置是否存在一一对应关系,本发明还对取出的主动脉进行了ORO染色。结果提示,WT组小鼠没有产生任何斑块,而三组AS小鼠,斑块面积无统计学差异。拍摄完上图离体荧光后,进行的ORO染色照片(比例尺:3mm)如图19中的下图所示,AS小鼠的荧光强度和斑块面积一一对应。其中,注射24h后,HPLIZ组的荧光强度/斑块面积最大,证明其拥有最强的靶向性能。
实施例9纳米药物对动脉粥样硬化小鼠脂质总量,胶原总量和斑块的影响
高脂喂养ApoE-/-小鼠12周以建立AS模型。然后将AS小鼠随机分为4组(每组n=8),研究其治疗效果:(1)给予PBS治疗(空白对照组);(2)口服阿托伐他汀组(ATST);(3)尾静脉注射HPLIZ组;(d)尾静脉注射HPLIZ并用808nm(1W,5min)激光照射组(HPLIZ+NIR组)。治疗每3天进行一次,持续3周,期间维持高脂肪饮食。在治疗结束时,处死小鼠。随机选择4只小鼠进行大体油红染色,以反应整体的治疗效果。其余4只在治疗结束后对主动脉切片,进行ORO,HE和马松三色染色,分别反应脂质含量,总斑块面积和胶原纤维含量。动脉粥样硬化小鼠染色结果如图20所示。其中,大体油红染色结果示意图如图20的上图所示(比例尺:2mm)。结果显示,HPLIZ+NIR组与其他各组相比,斑块面积占主动脉面积减少最多。
治疗结束后,HE,ORO,马松三染色结果示意图如图20的下图所示(比例尺:100μm)。HE染色可见,HPLIZ+NIR治疗组与其他各组相比,斑块面积减少,坏死核心变小;ORO染色可见,HPLIZ+NIR治疗组与其他各组相比,能够减少动脉粥样硬化小鼠的脂质含量;马松三色染色结果可见,HPLIZ+NIR治疗组与其他各种相比,胶原含量升高,斑块更加稳定。
实施例10纳米药物对动脉粥样硬化小鼠治疗机制的影响
治疗结束后,将选取小鼠的主动脉用4%多聚甲醛固定,切片,用抗NLRP3、IL-1β、PCSK9、ABCA1、eNOS的抗体一起孵育,用于免疫组化分析。同时对其他主动脉切片,用CD68和CD31的抗体进行孵育,进行免疫荧光染色。不同组的NLRP3、IL-1β、PCSK9、ABCA1和eNOS抗体染色的主动脉弓根处的代表性免疫组化图像如图21所示(比例尺:100μm),抗CD68和CD31染色的主动脉弓根部代表性免疫荧光图像如图22所示(比例尺:100μm)。
结果显示,HPLIZ+NIR组,NLRP3,IL-1β,PCSK9,CD68等与炎症,脂质积累相关的指标降低;与胆固醇转运相关的指标ABCA1增高,与内皮细胞功能相关的指标eNOS,CD31增高。表明HPLIZ+NIR通过NLRP3-IL1β通路,PCSK9通路,eNOS通路降低炎症,脂质积累,修复内皮细胞,从而达到抗AS的作用。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种具有斑块靶向功能的纳米颗粒,包括内核和壳层,所述内核为负载新吲哚菁绿的ZIF-8纳米颗粒,所述壳层为精氨酸修饰的聚多巴胺;所述壳层表面修饰有透明质酸。
2.根据权利要求1所述的具有斑块靶向功能的纳米颗粒,其特征在于,所述具有斑块靶向功能的纳米颗粒的粒径为140~180nm。
3.根据权利要求1或2所述的具有斑块靶向功能的纳米颗粒,其特征在于,所述具有斑块靶向功能的纳米颗粒中,新吲哚菁绿的质量含量为10~40%;聚多巴胺的质量含量为25~35%;精氨酸的质量含量为25~35%。
4.权利要求1~3所述的具有斑块靶向功能的纳米颗粒的制备方法,包括以下步骤:
将新吲哚菁绿、水、可溶性锌盐与2-甲基咪唑混合,进行配位反应,得到负载新吲哚菁绿的ZIF-8纳米颗粒;
将所述负载新吲哚菁绿的ZIF-8纳米颗粒与盐酸多巴胺、缓冲溶液混合,进行自聚合反应,得到聚多巴胺包裹的纳米颗粒;
将所述聚多巴胺包裹的纳米颗粒与精氨酸、缓冲溶液混合,进行第一偶联反应,得到修饰精氨酸的纳米颗粒;
将所述修饰精氨酸的纳米颗粒与透明质酸、缓冲溶液混合,进行第二偶联反应,得到具有斑块靶向功能的纳米颗粒。
5.根据权利要求4所述的制备方法,其特征在于,所述可溶性锌盐与2-甲基咪唑的质量比为0.05~0.15:1;
所述新吲哚菁绿与2-甲基咪唑的质量比为0.01~0.04:1。
6.根据权利要求4所述的制备方法,其特征在于,所述盐酸多巴胺与负载新吲哚菁绿的ZIF-8纳米颗粒的质量比为5~10:5~10。
7.根据权利要求4所述的制备方法,其特征在于,所述精氨酸与聚多巴胺包裹的纳米颗粒的质量比为5~10:5~10。
8.根据权利要求4所述的制备方法,其特征在于,所述透明质酸与修饰精氨酸的纳米颗粒的质量比为5~10:5~10。
9.权利要求1~3任意一项所述的具有斑块靶向功能的纳米颗粒或权利要求4~8任意一项所述制备方法制备得到的具有斑块靶向功能的纳米颗粒在制备抗动脉粥样硬化药物中的应用。
10.根据权利要求9所述的应用,其特征在于,所述具有斑块靶向功能的纳米颗粒的工作温度为42~45℃。
CN202310986093.9A 2023-08-04 2023-08-04 一种具有斑块靶向功能的纳米颗粒及其制备方法和在制备抗动脉粥样硬化药物中的应用 Pending CN116966321A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310986093.9A CN116966321A (zh) 2023-08-04 2023-08-04 一种具有斑块靶向功能的纳米颗粒及其制备方法和在制备抗动脉粥样硬化药物中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310986093.9A CN116966321A (zh) 2023-08-04 2023-08-04 一种具有斑块靶向功能的纳米颗粒及其制备方法和在制备抗动脉粥样硬化药物中的应用

Publications (1)

Publication Number Publication Date
CN116966321A true CN116966321A (zh) 2023-10-31

Family

ID=88471265

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310986093.9A Pending CN116966321A (zh) 2023-08-04 2023-08-04 一种具有斑块靶向功能的纳米颗粒及其制备方法和在制备抗动脉粥样硬化药物中的应用

Country Status (1)

Country Link
CN (1) CN116966321A (zh)

Similar Documents

Publication Publication Date Title
Li et al. Photothermal therapy-induced immunogenic cell death based on natural melanin nanoparticles against breast cancer
Wang et al. Antibody-conjugated liposomes loaded with indocyanine green for oral targeted photoacoustic imaging-guided sonodynamic therapy of Helicobacter pylori infection
WO2023061194A1 (zh) 一种光敏剂分子及其在提高肿瘤滞留时间增强大体积肿瘤治疗中的应用
Wang et al. Dual-targeted nanoformulation with Janus structure for synergistic enhancement of sonodynamic therapy and chemotherapy
Wang et al. A Self‐Adaptive Pyroptosis Inducer: Optimizing the Catalytic Microenvironment of Nanozymes by Membrane‐Adhered Microbe Enables Potent Cancer Immunotherapy
Chai et al. Near Infrared Light‐Activatable Platelet‐Mimicking NIR‐II NO Nano‐Prodrug for Precise Atherosclerosis Theranostics
Dong et al. Highly Efficient Drug Delivery Nanosystem via L‐Phenylalanine Triggering Based on Supramolecular Polymer Micelles
Li et al. Developing Hypoxia‐Sensitive System via Designing Tumor‐Targeted Fullerene‐Based Photosensitizer for Multimodal Therapy of Deep Tumor
CN106668871A (zh) 一种抑制乳腺癌细胞生长的光敏型磁性纳米粒体系的制备方法及应用
CN110840860B (zh) 一种纳米药物及其制备方法和应用
CN116966321A (zh) 一种具有斑块靶向功能的纳米颗粒及其制备方法和在制备抗动脉粥样硬化药物中的应用
US6452037B1 (en) Multioligonanilinated fullerenes
CN112057618A (zh) 一种Fe(III)-ART纳米粒子、其制备方法及应用
CN114432264B (zh) 一种基于二茂铁和金丝桃素的复合纳米材料、制备方法及应用
CN114099673A (zh) 一种异质结功能化小球藻及其制备方法与应用
CN113230419A (zh) 一种基于藻蓝胆素的新型靶向纳米颗粒及其制备方法
CN113350506A (zh) 一种再生丝素蛋白结合光敏剂的纳米颗粒制备方法
CN113304280A (zh) 一种稀土上转换复合纳米材料用于肿瘤治疗
CN115317447B (zh) 一种共载吲哚菁绿和索拉非尼胶束及其制备方法与应用
CN112402632A (zh) 一种放疗增敏用纳米级配位聚合物及其制备方法和用途
Zhang et al. An Oxidative Stress Nano‐Amplifier for Improved Tumor Elimination and Combined Immunotherapy
Gao et al. Enhanced Osteosarcoma Immunotherapy via CaCO3 Nanoparticles: Remodelling Tumour Acidic and Immune Microenvironment for Photodynamic Therapy
CN115252580B (zh) 一种载药红细胞膜纳米粒及其制备方法和应用
CN114933904B (zh) 一种用于光学诊疗的超薄壳层手性硒化镉/硫化镉材料及其制备方法与应用
CN117883593B (zh) ICG/N@hCNx-HA-FA纳米组合物及其合成方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination