CN116949090A - TaMYB1基因用于提高植株对Cd耐受的应用 - Google Patents
TaMYB1基因用于提高植株对Cd耐受的应用 Download PDFInfo
- Publication number
- CN116949090A CN116949090A CN202310482821.2A CN202310482821A CN116949090A CN 116949090 A CN116949090 A CN 116949090A CN 202310482821 A CN202310482821 A CN 202310482821A CN 116949090 A CN116949090 A CN 116949090A
- Authority
- CN
- China
- Prior art keywords
- tamyb1
- gene
- wheat
- plants
- plant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 108090000623 proteins and genes Proteins 0.000 title claims abstract description 44
- 230000030279 gene silencing Effects 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 14
- 102000004169 proteins and genes Human genes 0.000 claims description 5
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 4
- 239000002773 nucleotide Substances 0.000 claims description 4
- 125000003729 nucleotide group Chemical group 0.000 claims description 4
- 241000700605 Viruses Species 0.000 claims description 3
- 230000006801 homologous recombination Effects 0.000 claims description 3
- 238000002744 homologous recombination Methods 0.000 claims description 3
- 239000013603 viral vector Substances 0.000 claims description 3
- 241000196324 Embryophyta Species 0.000 abstract description 73
- 241000209140 Triticum Species 0.000 abstract description 56
- 235000021307 Triticum Nutrition 0.000 abstract description 47
- 240000004808 Saccharomyces cerevisiae Species 0.000 abstract description 27
- 238000001086 yeast two-hybrid system Methods 0.000 abstract description 7
- 238000009825 accumulation Methods 0.000 abstract description 6
- 238000011160 research Methods 0.000 abstract description 6
- 239000001963 growth medium Substances 0.000 abstract description 5
- 238000005516 engineering process Methods 0.000 abstract description 4
- 230000004044 response Effects 0.000 abstract description 4
- 230000003938 response to stress Effects 0.000 abstract description 4
- 238000004458 analytical method Methods 0.000 abstract description 3
- 238000012795 verification Methods 0.000 abstract description 3
- 230000028604 virus induced gene silencing Effects 0.000 abstract description 3
- 239000000463 material Substances 0.000 abstract description 2
- 238000003766 bioinformatics method Methods 0.000 abstract 1
- 150000002500 ions Chemical class 0.000 abstract 1
- 230000035882 stress Effects 0.000 description 30
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 25
- 230000012010 growth Effects 0.000 description 20
- 239000002299 complementary DNA Substances 0.000 description 12
- 230000000694 effects Effects 0.000 description 10
- WSMYVTOQOOLQHP-UHFFFAOYSA-N Malondialdehyde Chemical compound O=CCC=O WSMYVTOQOOLQHP-UHFFFAOYSA-N 0.000 description 9
- 102000003992 Peroxidases Human genes 0.000 description 9
- 102000019197 Superoxide Dismutase Human genes 0.000 description 9
- 108010012715 Superoxide dismutase Proteins 0.000 description 9
- 238000012226 gene silencing method Methods 0.000 description 9
- 229940118019 malondialdehyde Drugs 0.000 description 9
- 108040007629 peroxidase activity proteins Proteins 0.000 description 9
- 229930002875 chlorophyll Natural products 0.000 description 7
- 235000019804 chlorophyll Nutrition 0.000 description 7
- ATNHDLDRLWWWCB-AENOIHSZSA-M chlorophyll a Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 ATNHDLDRLWWWCB-AENOIHSZSA-M 0.000 description 7
- 229910001385 heavy metal Inorganic materials 0.000 description 7
- 239000002609 medium Substances 0.000 description 7
- 239000013612 plasmid Substances 0.000 description 7
- 239000013598 vector Substances 0.000 description 7
- 238000001514 detection method Methods 0.000 description 6
- 238000012216 screening Methods 0.000 description 6
- 230000014509 gene expression Effects 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000002028 Biomass Substances 0.000 description 4
- 240000007594 Oryza sativa Species 0.000 description 3
- 235000007164 Oryza sativa Nutrition 0.000 description 3
- 238000011529 RT qPCR Methods 0.000 description 3
- 108091023040 Transcription factor Proteins 0.000 description 3
- 102000040945 Transcription factor Human genes 0.000 description 3
- 239000003963 antioxidant agent Substances 0.000 description 3
- 230000003078 antioxidant effect Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 235000015097 nutrients Nutrition 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 238000010839 reverse transcription Methods 0.000 description 3
- 235000009566 rice Nutrition 0.000 description 3
- 238000012163 sequencing technique Methods 0.000 description 3
- 241001290235 Ceratobasidium cereale Species 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 238000004440 column chromatography Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 238000009616 inductively coupled plasma Methods 0.000 description 2
- ZNJFBWYDHIGLCU-HWKXXFMVSA-N jasmonic acid Chemical compound CC\C=C/C[C@@H]1[C@@H](CC(O)=O)CCC1=O ZNJFBWYDHIGLCU-HWKXXFMVSA-N 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000002018 overexpression Effects 0.000 description 2
- 230000004792 oxidative damage Effects 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 108010085238 Actins Proteins 0.000 description 1
- 241000589158 Agrobacterium Species 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 240000008564 Boehmeria nivea Species 0.000 description 1
- 244000077283 Distichlis palmeri Species 0.000 description 1
- 235000005422 Distichlis palmeri Nutrition 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 101710147844 Myb protein Proteins 0.000 description 1
- 101000963839 Oryza sativa subsp. japonica Myb family transcription factor MPH1 Proteins 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- 238000002123 RNA extraction Methods 0.000 description 1
- 102000018120 Recombinases Human genes 0.000 description 1
- 108010091086 Recombinases Proteins 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000031018 biological processes and functions Effects 0.000 description 1
- 230000004790 biotic stress Effects 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 230000005779 cell damage Effects 0.000 description 1
- 208000037887 cell injury Diseases 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000002481 ethanol extraction Methods 0.000 description 1
- XTLNYNMNUCLWEZ-UHFFFAOYSA-N ethanol;propan-2-one Chemical compound CCO.CC(C)=O XTLNYNMNUCLWEZ-UHFFFAOYSA-N 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 238000012215 gene cloning Methods 0.000 description 1
- 238000010362 genome editing Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- ZNJFBWYDHIGLCU-UHFFFAOYSA-N jasmonic acid Natural products CCC=CCC1C(CC(O)=O)CCC1=O ZNJFBWYDHIGLCU-UHFFFAOYSA-N 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 238000009630 liquid culture Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 108700021654 myb Genes Proteins 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 238000005502 peroxidation Methods 0.000 description 1
- 230000029553 photosynthesis Effects 0.000 description 1
- 238000010672 photosynthesis Methods 0.000 description 1
- 230000035479 physiological effects, processes and functions Effects 0.000 description 1
- 238000003976 plant breeding Methods 0.000 description 1
- 230000008635 plant growth Effects 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 230000001323 posttranslational effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 238000003753 real-time PCR Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000001743 silencing effect Effects 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000004383 yellowing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/415—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8216—Methods for controlling, regulating or enhancing expression of transgenes in plant cells
- C12N15/8218—Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A40/00—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
- Y02A40/10—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
- Y02A40/146—Genetically Modified [GMO] plants, e.g. transgenic plants
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- Microbiology (AREA)
- Plant Pathology (AREA)
- Cell Biology (AREA)
- Virology (AREA)
- Botany (AREA)
- Gastroenterology & Hepatology (AREA)
- Medicinal Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
本申请涉及农业生物技术领域,具体涉及TaMYB1基因用于提高植株对Cd耐受的应用。本申请以酵母和小麦为研究材料,通过在酵母培养基中加入不同浓度的Cd离子筛选Cd胁迫小麦根系酵母双杂交文库,获得小麦Cd胁迫应答相关基因TaMYB1,利用病毒诱导的基因沉默技术对相关基因进行功能验证和表型分析,并对TaMYB1进行生物信息学分析,为TaMYB1响应Cd胁迫的功能研究和低积累Cd小麦新品种的培育奠定基础。
Description
技术领域
本申请涉及农业生物技术领域,具体涉及TaMYB1基因用于提高植株对Cd耐受的应用。
背景技术
重金属是影响农用地土壤环境质量的主要污染物。Cd在植物中过量积累会严重影响植物的正常生长,导致氧化损伤、光合和呼吸作用被抑制、矿质营养元素吸收减弱,使植株叶片枯黄、根尖褐化、生长迟缓,严重时甚至导致植株死亡。
近年来部分小麦主产区的Cd污染日趋严重。挖掘植物Cd耐受基因,利用植物育种的方法培育低Cd积累品种或耐Cd品种是实现小麦粮食安全的重要且可持续的手段,具有重要的现实意义和应用价值。
植物在长期的进化和发育过程中,进化出了一系列响应Cd胁迫的转录调控和翻译后调控网络,转录因子在其中发挥着重要作用。MYB家族是参与调控各种生物学过程的重要转录因子。根据MYB转录因子的数量、位置及高度保守结构域,MYB家族可分为四类:1R-MYB/MYB-related、R2R3-MYB、R1R2R3-MYB和4R-MYB。
MYB家族的不同成员在不同植物中的功能存在差异。例如,水稻R2R3类型成员OsMYB49过表达植株显著增加Cd积累,而Osmyb49突变体则减少Cd积累。水稻R2R3-MYB蛋白OsMYB45受重金属Cd诱导表达,突变体Osmyb45降低了水稻对Cd胁迫的耐受;苎麻1R-MYB蛋白BnMYB2正调控Cd耐受和积累。
然而,关于小麦MYB基因的研究不多,主要集中在响应生物胁迫方面,如过表达R2R3-MYB成员TaRIM1增强小麦对禾谷丝核菌的抗性;过表达R2R3-MYB成员TaMYB391正调控小麦对条锈菌的抗性;MYB蛋白TaPIMP2受真菌诱导表达,并上调水杨酸和茉莉酸的水平。而目前小麦MYB家族成员在响应Cd胁迫方面的研究未见报道。
发明内容
本发明的目的是提供TaMYB1基因用于提高植株对Cd耐受的应用。
本发明的再一目的是提供一种提高植株对Cd耐受的方法。
本发明提供了TaMYB1基因用于提高植株对Cd耐受的应用,其中,所述TaMYB1基因编码氨基酸序列如SEQ ID No:1所示的蛋白质。
SEQ ID No:1
MCSMQAEHCQYMTEPEQMYHQQQQQFHDHRQHMSSRPSLSPENKFFMKGQGGAGAGGGG
DAGLILSTDAKPRLKWTPELHERFADAVKKLGGPDKATPKAIMRVMGIPGLTLYHLKSHLQKF
RLSKNLQAQANAVHAKNVYGFGTATDKACEGRGSPADHLNRETNTSRSMHINDALQMQIEVQ
RRLHEQIEVQRHLQLRIEAQGKYLHSVLEKAQEALGKQHVVAGLEAAEPTQRLPELASSVRRG
LLQNDGSADDSCLTASEDILSMGLSASATRRGCGAPFETSASASREEDGECYLFLGKPEGRREVRRDGCSGGAAFGTAAELDLSIGVVAASSRRRPDGGERLDLNGSGWN。
根据本发明的技术方案,所述TaMYB1基因的核苷酸序列如SEQ ID No:2所示。ATGTGCAGCATGCAGGCAGAGCATTGCCAGTACATGACGGAGCCTGAGCAGATGTATCACCAGCAGCAGCAGCAGTTCCACGATCACAGGCAGCACATGTCCTCGAGGCCTAGCTTGTCCCCGGAGAATAAGTTCTTCATGAAAGGCCAAGGAGGGGCAGGAGCAGGAGGAGGAGGAGATGCGGGGCTCATCCTGTCGACGGATGCGAAGCCTCGGCTCAAGTGGACTCCTGAGCTGCACGAGCGTTTTGCGGATGCGGTGAAGAAGCTAGGAGGGCCTGACAAAGCTACGCCGAAGGCGATCATGAGGGTCATGGGAATCCCGGGACTAACTCTGTACCATCTCAAGAGCCATCTCCAGAAATTCAGACTTAGCAAGAATCTCCAAGCGCAAGCTAATGCCGTCCATGCAAAAAATGTTTATGGCTTCGGCACAGCGACAGATAAAGCATGTGAAGGGCGTGGATCACCAGCTGATCACCTGAACAGAGAGACGAACACTAGCAGGTCTATGCACATAAACGACGCTCTCCAAATGCAAATTGAGGTCCAGAGACGACTGCATGAGCAAATAGAGGTACAAAGGCACCTGCAGCTCCGGATCGAAGCCCAGGGGAAGTACCTGCACTCCGTGCTGGAGAAGGCGCAGGAGGCGCTCGGGAAGCAGCACGTCGTCGCCGGCCTCGAAGCGGCGGAGCCCACGCAGCGGCTGCCGGAGCTAGCCTCGTCGGTGAGACGAGGCCTGCTCCAGAACGACGGTTCGGCCGACGACAGCTGCCTGACCGCGTCCGAGGACATCCTCTCCATGGGTCTCTCCGCCTCTGCCACCCGGAGAGGCTGCGGCGCGCCGTTCGAAACTTCGGCGAGCGCGAGCCGCGAGGAGGATGGGGAGTGCTACCTGTTTCTCGGCAAGCCTGAGGGGCGGCGTGAGGTCAGGAGGGACGGGTGCAGCGGTGGCGCGGCGTTCGGGACGGCGGCGGAGCTGGACCTCAGCATCGGCGTCGTCGCCGCGAGCAGCAGGCGGCGGCCGGACGGCGGCGAGAGGCTTGACCTGAACGGATCAGGCTGGAACTGA。
根据本发明的技术方案,通过沉默植株中的所述TaMYB1基因提高植株对Cd耐受。
根据本发明的提高植株对Cd耐受的方法,所述方法包括沉默植株中的TaMYB1基因的步骤,其中,所述TaMYB1基因编码氨基酸序列如SEQ ID No:1所示的蛋白质。
根据本发明的提高植株对Cd耐受的方法,所述TaMYB1基因的核苷酸序列如SEQ IDNo:2所示。
根据本发明的提高植株对Cd耐受的方法,采用同源重组的方法将TaMYB1基因CDS区域的529-728bp构建至病毒载体,然后将病毒接种植株,从而沉默TaMYB1基因。
本申请通过酿酒酵母筛选小麦耐Cd胁迫酵母菌株,提取酵母质粒测序分析获得小麦Cd胁迫应答基因TaMYB1,病毒诱导TaMYB1基因沉默试验结果表明,在Cd胁迫下对照植株生长受到抑制,然而,TaMYB1基因沉默植株的生长状态明显优于对照植株,且TaMYB1基因沉默植株根系和叶片的Cd含量显著低于对照植株,表明TaMYB1基因正调控小麦对重金属Cd响应。此外,本申请在构建TaMYB1基因沉默载体时,选择的沉默区域(529bp-728bp),该序列所编码的结构域对于TaMYB1基因功能是必需的。
本申请检测了TaMYB1基因沉默植株和对照植株在正常生长条件和Cd胁迫下的叶绿素含量、SOD、POD活性和MDA含量,TaMYB1基因沉默植株增强了对Cd耐受,相对于对照植株,其叶绿素含量、SOD和POD活性均显著上升(P=0.01),而MDA含量则显著下降(P=0.01),表明TaMYB1基因的沉默降低了MDA的含量,增强了小麦的抗氧化酶系,降低了Cd对小麦的毒害损伤。综上所述,本申请为小麦MYB家族响应重金属Cd胁迫的功能研究奠定基础,后续将利用基因编辑技术获得TaMYB1的编辑植株,为重金属Cd污染的农田土壤修复提供借鉴。
附图说明
图1显示Cd胁迫小麦表型检测,A:Cd胁迫小麦植株表型(左侧植株为对照,右侧植株为Cd胁迫),B:Cd胁迫小麦植株根长,C:Cd胁迫小麦植株地上部长度,D:Cd胁迫小麦植株生物量;
图2显示构建Cd胁迫小麦根系酵母双杂交文库质量检测,A:Cd胁迫小麦根系总RNA,B:利用SMART技术获得高质量cDNA,C:柱层析纯化后的cDNA,D-E:酵母文库插入片段检测;
图3显示转化子在添加不同Cd浓度的培养基上生长情况,A:0.002mol/LCdCl2,B:0.003mol/LCdCl2;C:0.004mol/LCdCl2;
图4显示酵母菌落在添加氯化Cd条件下生长曲线,A:酵母菌在正常条件下的生长曲线,B:酵母菌在高Cd培养基中的生长曲线;
图5显示沉默TaMYB1基因增强小麦对Cd耐受,A:TaMYB1基因沉默和对照植株在正常条件和Cd胁迫后的表型,左侧两颗植株为正常处理,右侧两颗植株为Cd胁迫处理,B:TaMYB1基因沉默植株的表达量检测,C:TaMYB1基因沉默和对照植株Cd胁迫后植株的Cd含量,**代表在P=0.01水平上差异显著;
图6显示TaMYB1基因沉默和对照植株在正常条件和Cd胁迫后的生理指标检测,A:小麦叶片的叶绿素含量,B:小麦叶片的MDA含量,C:小麦叶片的SOD活性,D:小麦叶片的POD活性,**代表在P=0.01水平上差异显著。
具体实施方式
实施例1
1.Cd胁迫野生型小麦
植物材料为周麦26,小麦种子表面消毒后,放置于光照16h(25℃)/黑暗8h(15℃)、湿度60%的人工气候箱中,水培至一叶一心期后,挑选长势一致的小麦幼苗,部分幼苗作为对照在Hoagland全营养液中培养,部分幼苗在Hoagland全营养液中加入不同浓度Cd进行处理,10d后,观察小麦生长状态,并对不同处理植株的根长、茎长和生物量进行测量。
周麦26小麦幼苗在含有40mg/LCd的Hoagland全营养液中培养10d后,结果发现Cd胁迫小麦植株的根长与对照植株相比表现出明显差异,地上部分未见明显变化,Cd胁迫植株的根长与对照植株相比显著缩短,表明Cd胁迫明显抑制小麦根长的生长(图1,A和B),同时对其生物量进行分析发现,Cd胁迫减少了小麦植株的生物量(图1,D)。以上结果表明,镉胁迫主要抑制小麦根系的发育。
2.小麦根系总RNA提取和cDNA反转录
取Cd处理的小麦根系,清水洗干净后在液氮中速冻,放置于-80℃冰箱。利用TRIzol试剂(Invitrogen公司)提取高质量小麦RNA,部分RNA参照cDNA反转录试剂盒说明书合成cDNA,用于基因克隆和实时荧光定量PCR反应。
采用TRIzol试剂提取高质量的Cd胁迫小麦根系RNA(图2,A),然后采用SMART技术反转录获得高纯度的cDNA(图2,B),并利用柱层析法纯化cDNA(图2,C),构建了Cd胁迫小麦根系酵母双杂交cDNA文库。对酵母文库克隆计数发现,小麦cDNA文库滴度为4.6×107cfu/mL。随机挑取32个酵母克隆进行PCR检测,均可扩增出条带,且插入片段长度分布在300bp~大于3kbp,重组率约为99%(图2,D,E),表明构建的cDNA文库质量较好。
3.Cd胁迫小麦根系酵母双杂交文库的构建及筛选
取Cd胁迫后高质量小麦RNA,使用酵母双杂交文库构建试剂盒构建Cd胁迫的小麦根系酵母双杂交文库,并对文库质量进行检测。同时将空载体pGADT7转化入野生型酵母菌株Y187中,作为后续文库筛选的对照。
通过对转化有pGADT7空载体的酵母Y187进行Cd临界浓度筛选的结果发现,转化pGADT7空载体的酵母在含0.002mol/LCd培养基上不能生长,因此采用0.002mol/LCd作为临界浓度对酵母文库进行筛选,在含0.002mol/L、0.003mol/L和0.004mol/LCd培养基上共筛选18个阳性耐Cd转化子(图3),对其提取酵母质粒、测序并比对,共获得4个候选基因,其中5个转化子均编码转录因子TaMYB1,选取TaMYB1作为目标基因并对其进行功能验证。进一步检测了转化pGADT7和pGADT7-TaMYB1的酵母分别在正常培养基和高Cd培养基(0.004mol/L)中的生长曲线,结果发现在正常培养基中两种酵母生长速率相当(图4,A)。在高Cd培养基中,转化pGADT7的对照菌株其生长速率明显受到抑制,而转化pGADT7-TaMYB1的酵母菌株则生长良好,表明TaMYB1的表达提高了酵母的耐Cd能力(图4,B)。
4.小麦Cd胁迫应答相关基因的筛选及生长曲线测定
首先在酵母培养基SD-Leu中加入不同浓度的Cd,对转化有pGADT7空载体的酵母Y187进行临界浓度筛选,筛选到转化pGADT7空载体酵母不能生长的临界浓度后,将Cd诱导小麦根系酵母双杂交文库涂布在临界Cd浓度的培养基上,30℃培养3-5d,利用玻璃珠液氮法提取酵母质粒,并对质粒进行测序和序列比对分析。此外,挑取pGADT7空载体酵母菌落和耐Cd胁迫的酵母菌落于添加0.004mol/L氯化Cd的SD-Leu液体培养基中,30℃,220rpm/min摇菌,每隔12h取菌液,取样到60h,测OD600,并记录数据。
5.Cd胁迫应答基因功能验证
将获得的酵母质粒在NCBI中进行BLAST比对获得目的基因,下载TaMYB1(AccessionNo.XM_020305596.1)的CDS序列,设计病毒诱导基因沉默(virus-inducedgenesilencing,VIGS)引物并进行PCR扩增。将PCR产物纯化后,利用同源重组酶(Novoprotein,NR005)构建至病毒载体pYL156,送至生物公司测序,将阳性重组载体TRV:TaMYB1和pYL156空载体分别转化至农杆菌GV3101,并对小麦种子进行侵染。
表1引物序列
。
6.小麦Cd含量检测
转有TRV:TaMYB1重组质粒和对照质粒的农杆菌侵染16d后的小麦植株和对照植株根系浇灌40mg/L的Cd溶液,10d后分别取对照植株和TaMYB1瞬时沉默植株的根系和叶片,清水洗干净后,在105℃烘箱中杀青30min,80℃烘干至恒重,分别取0.2g根系和叶片送至农业农村部农产品质量监督检验测试中心,采用电感耦合等离子体质谱仪进行Cd含量检测。
7.小麦生理指标检测
植物在受到重金属胁迫后会造成活性氧的激增,进而损伤植物细胞,经过长期进化,植物激活抗氧化系统清除过量的活性氧,避免对植物细胞的毒害作用。同时,MDA是Cd胁迫引起植物膜脂过氧化的主要产物之一,可加剧细胞的损伤,是研究抗性生理的参考指标。研究发现,植物可以通过提高SOD、POD活性来抵抗重金属Cd胁迫造成的氧化伤害。
选取正常生长和Cd处理的对照植株和TaMYB1沉默植株不同株系的叶片,叶绿素含量测定采用丙酮—乙醇提取法,按照试剂盒说明测定丙二醛(MDA)含量、SOD活性、POD活性。
8.qRT-PCR
提取上述“7”剩余的小麦根系和叶片的RNA,反转录成cDNA后稀释10-20倍,进行qRT-PCR反应,分析TaMYB1的相对表达量。以Actin基因(AccessionNo.KC775780)作为内参基因,使用相对定量法2-ΔΔCt进行RNA转录本变化分析。
采用同源重组的方法将TaMYB1基因CDS区域的529-728bp构建至TRV病毒载体pYL156,TRV病毒接种小麦16d后分别进行Cd胁迫处理10d,结果发现正常生长条件下,TaMYB1沉默植株(TRV:TaMYB1)和对照植株(TRV:00)均正常生长,然而,40mg/LCd胁迫处理的TRV:00植株生长受到严重抑制,植株矮小,根系总根长显著缩短,叶片枯萎发黄,TRV:TaMYB1植株受到Cd胁迫后生长良好,与正常条件下的TaMYB1沉默植株和对照植株生长态势相似(图5,A)。qRT-PCR结果表明,与对照相比,TRV:TaMYB1植株的根系和叶片中TaMYB1的表达量显著下降,表明沉默效果良好(图5,B)。采用电感耦合等离子体质谱仪对TRV:00和TRV:TaMYB1植株根系和叶片中的Cd含量进行检测,结果表明,TRV:00植株的根系和叶片Cd含量均显著高于TRV:TaMYB1植株,且根系Cd含量远高于叶片Cd含量(图5,B)。此外,分别对TRV:00和TRV:TaMYB1植株叶片中的叶绿素含量、抗氧化酶类SOD(superoxide dismutase)活性、POD(Peroxidase)活性和MDA(malondialdehyde)含量等生理指标进行检测,结果发现,受到Cd胁迫后,TRV:00植株的叶绿素含量、SOD和POD活性均明显低于TRV:TaMYB1植株(图6,A、B和C),而TRV:00植株的MDA含量则显著高于TRV:TaMYB1植株(图6,D)。表明沉默TaMYB1可能通过提高叶绿素含量、SOD和POD活性抵抗Cd对植物的毒害,从而降低小麦植株地上部和根系的Cd含量。
以上实施例仅用于解释本申请的技术方案,不限定本申请的保护范围。
Claims (7)
1.TaMYB1基因用于提高植株对Cd耐受的应用,其特征在于,所述TaMYB1基因编码氨基酸序列如SEQ ID No:1所示的蛋白质。
2.根据权利要求1所述的应用,其特征在于,通过沉默植株中的所述TaMYB1基因提高植株对Cd耐受。
3.根据权利要求2所述的应用,其特征在于,沉默所述TaMYB1基因CDS区域的529-728bp。
4.根据权利要求1所述的应用,其特征在于,所述TaMYB1基因的核苷酸序列如SEQ IDNo:2所示。
5.一种提高植株对Cd耐受的方法,其特征在于,所述方法包括沉默植株中的TaMYB1基因的步骤,其中,所述TaMYB1基因编码氨基酸序列如SEQ ID No:1所示的蛋白质。
6.根据权利要求5所述的提高植株对Cd耐受的方法,其特征在于,采用同源重组的方法将TaMYB1基因CDS区域的529-728bp构建至病毒载体,然后将病毒接种植株,从而沉默TaMYB1基因。
7.根据权利要求5所述的提高植株对Cd耐受的方法,其特征在于,所述TaMYB1基因的核苷酸序列如SEQ ID No:2所示。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310482821.2A CN116949090A (zh) | 2023-05-03 | 2023-05-03 | TaMYB1基因用于提高植株对Cd耐受的应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310482821.2A CN116949090A (zh) | 2023-05-03 | 2023-05-03 | TaMYB1基因用于提高植株对Cd耐受的应用 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116949090A true CN116949090A (zh) | 2023-10-27 |
Family
ID=88453698
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310482821.2A Pending CN116949090A (zh) | 2023-05-03 | 2023-05-03 | TaMYB1基因用于提高植株对Cd耐受的应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116949090A (zh) |
-
2023
- 2023-05-03 CN CN202310482821.2A patent/CN116949090A/zh active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11066677B2 (en) | Plants with enhanced tolerance to multiple abiotic stresses | |
CN115161339B (zh) | 一种高温诱导SlWRKY3基因增强番茄耐热性的方法 | |
CN115612695B (zh) | GhGPX5和GhGPX13基因在提高植物盐胁迫耐受性中的应用 | |
CN115896045A (zh) | 杜梨E3泛素连接酶基因PbrATL18在植物抗干旱和炭疽病遗传改良中的应用 | |
CN116589545B (zh) | Onac096基因在控制水稻抗旱性中的应用 | |
Juan et al. | Agrobacterium-mediated transformation of tomato with the ICE1 transcription factor gene | |
CN115873084B (zh) | 一种灰杨金属转运蛋白、基因及其应用 | |
CN116496373A (zh) | MYBHv33转录因子在植物抗盐性中的应用 | |
CN113584047B (zh) | 大麦HvNAT2基因及其用途 | |
CN105925593B (zh) | 一种液泡膜氢离子焦磷酸酶基因AlVP1、其编码的蛋白及其应用 | |
CN116949090A (zh) | TaMYB1基因用于提高植株对Cd耐受的应用 | |
CN115838734A (zh) | C2h2型锌指蛋白基因hstl在调控水稻耐盐性中的应用 | |
CN111454340B (zh) | 长穗偃麦草外整流钾通道蛋白及其编码基因与应用 | |
CN116622769A (zh) | TaZFP2基因用于提高植株对Cd耐受的应用 | |
CN112608938A (zh) | OsAO2基因在控制水稻抗旱性中的应用 | |
CN111303260B (zh) | 一种植物抗逆性相关蛋白OsC3HC4及编码基因与应用 | |
CN117327711A (zh) | 萝卜RsPDR8重金属转运蛋白在降低镉累积方面的应用 | |
CN118325952B (zh) | 利用红三叶TpLHCA1编码基因提高拟南芥在铅胁迫下抗性的应用 | |
CN117402909B (zh) | 紫花苜蓿MsMYB58基因调控植物抗旱性的应用 | |
CN116574719B (zh) | AsMIPS1基因克隆、表达载体构建和应用 | |
CN117700508B (zh) | 基因PagDR1在提高林木耐旱性上的应用 | |
CN118726387A (zh) | 一种黄花苜蓿耐寒基因MfAP2-12及其应用 | |
CN118006658A (zh) | TaMAT1基因及其用途 | |
Yu et al. | Overexpression of a Malus baccata (L.) Borkh WRKY transcription factor gene MbWRKY65 increased the tolerance to cold and drought in transgenic tomato | |
CN116023453A (zh) | 蛋白质IbRING在调控植物耐盐抗旱性中的应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |