CN116928626A - 一种缓解眼疲劳的照明方法及照明装置、应用 - Google Patents

一种缓解眼疲劳的照明方法及照明装置、应用 Download PDF

Info

Publication number
CN116928626A
CN116928626A CN202311210003.3A CN202311210003A CN116928626A CN 116928626 A CN116928626 A CN 116928626A CN 202311210003 A CN202311210003 A CN 202311210003A CN 116928626 A CN116928626 A CN 116928626A
Authority
CN
China
Prior art keywords
light source
color
white light
illumination
red light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202311210003.3A
Other languages
English (en)
Other versions
CN116928626B (zh
Inventor
曾胜
李文凯
曾骄阳
陈华
醋新科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan Century Heguang Technology Development Co ltd
Original Assignee
Sichuan Century Heguang Technology Development Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan Century Heguang Technology Development Co ltd filed Critical Sichuan Century Heguang Technology Development Co ltd
Priority to CN202311210003.3A priority Critical patent/CN116928626B/zh
Publication of CN116928626A publication Critical patent/CN116928626A/zh
Application granted granted Critical
Publication of CN116928626B publication Critical patent/CN116928626B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S10/00Lighting devices or systems producing a varying lighting effect
    • F21S10/02Lighting devices or systems producing a varying lighting effect changing colors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • F21V23/04Arrangement of electric circuit elements in or on lighting devices the elements being switches
    • F21V23/0442Arrangement of electric circuit elements in or on lighting devices the elements being switches activated by means of a sensor, e.g. motion or photodetectors
    • F21V23/0464Arrangement of electric circuit elements in or on lighting devices the elements being switches activated by means of a sensor, e.g. motion or photodetectors the sensor sensing the level of ambient illumination, e.g. dawn or dusk sensors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • H05B45/12Controlling the intensity of the light using optical feedback
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/20Controlling the colour of the light
    • H05B45/22Controlling the colour of the light using optical feedback
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2113/00Combination of light sources
    • F21Y2113/10Combination of light sources of different colours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

本发明提供一种缓解眼疲劳的照明方法及照明装置、应用,照明光源采用白光光源和红光光源;照明过程中,全色仿生白光光源采用色温静态照明或色温动态照明;宽光谱红光光源采用亮度同步动态照明。全色仿生白光光源提供优异的光源与自然光具有高度的相似度,人眼适应性更强,处于一个自然放松的状态,有利于改善用眼疲劳。同时,本申请将宽光谱红光光源作为一个加强辅助光源,宽光谱红光光源在照明过程中采用同步动态照明,调节视觉感知的光色成像,降低眼部睫状肌向前拉动眼球,控制眼轴变化量;通过提供全色仿生白光光源的照明环境再配合红光的动态照明控制眼轴变化量,能够使各个年龄段人均能达到保护眼睛、减缓眼睛疲劳的效果。

Description

一种缓解眼疲劳的照明方法及照明装置、应用
技术领域
本发明涉及了护眼照明技术领域,具体涉及了一种缓解眼疲劳的照明方法及照明装置、应用。
背景技术
不同颜色光在视网膜上的成像位置是不同的,绿光的成像刚好落在视网膜上,人眼在看绿色的物体时,是一个很自然放松的状态;蓝光的成像是落在视网膜的前侧,为确保焦点落在视网膜上,看蓝光的时候眼睛自然会睁大点,以使眼轴发生变化;红光的成像落在视网膜的前侧,为确保焦点落在视网膜上,看红光的时候眼睛会自然眯起,以使眼轴发生变化。人眼是在自然光照环境中形成和进化的,视觉对自然光的适应性是无可取代的,在自然光的照射下,人眼不会容易感到视觉疲劳。
目前,人们会经常在照明装置下进行照明用眼,照明装置发出的光谱与自然光有着较大的区别,很多照明发光红光光谱缺失严重,蓝光光谱量较高,尤其当人眼在看书或写字时,往往会“聚精会神”或“目不转睛”的盯着被视物体,这样,久视后,眼睛长时间固焦,眼睛易疲劳。
现有技术存在利用减少蓝光量和增加红光光谱的全色仿生白光光源进行符合视觉习性可调眼轴的照明方法,能够有效实现初中生阶段青少年眼睛的视觉保护,缓解眼疲劳。但是,在实际生活中,成年后的青年人、中年人和老年人也同样有长期照明下用眼疲劳的困扰。初中生阶段青少年眼睛发育与成年人眼睛发育状态情况有所不同,研究发现现在技术存在的照明方法对初中生阶段青少年以外的各个年龄段的成年人的护眼效果明显下降。现有技术中不存在适合各个年龄段人的缓解眼疲劳的照明方法。
因此研究出一种适合各个年龄段人的缓解眼疲劳的照明方法具有十分重要的意义。
发明内容
本发明的目的在于:针对现有技术存在缺少适合各个年龄段人的缓解眼疲劳的照明方法的问题,提供一种缓解眼疲劳的照明方法及装置、应用,该照明方法,采用高拟合自然光的全色仿生白光光源和宽光谱红光光源作为照明光源,全色仿生白光光源提供优异的光源与自然光具有高度的相似度,使得用眼照明环境更近似于自然光照环境,全色仿生白光光源照明条件下,人眼适应性更强,处于一个自然放松的状态,会改善用眼疲劳,照明过程中,全色仿生白光光源的色温静态不变或色温动态变化照明。同时,本申请将宽光谱红光光源作为一个加强辅助光源,宽光谱红光光源在照明过程中采用同步动态照明,调节视觉感知的光色成像,降低眼部睫状肌向前拉动眼球,控制眼轴变化量;通过提供全色仿生白光光源的照明环境再配合红光的动态照明控制眼轴变化量,能够使各个年龄段人均能达到保护眼睛、减缓眼睛疲劳的效果。
为了实现上述目的,本发明采用的技术方案为:
一种缓解眼疲劳的照明方法,照明光源采用全色仿生白光光源和宽光谱红光光源;其中, 宽光谱红光光源产生的红光有效波段的波长范围为600nm~710nm,红光波段的光功率大于或等于最大光功率的80%;全色仿生白光光源的光谱为光源辐射功率分布曲线与同色温的自然光谱的近似度达到95%±5%的光谱,且全色仿生白光光源的光谱显色指数大于95,R1~R15均大于90;
照明过程中,全色仿生白光光源的色温静态不变或色温动态变化照明;同时,宽光谱红光光源采用亮度动态变化照明;
红光亮度动态照明时包括以下步骤,首先保持50%以下的亮度值,照明一段时间,然后在0.6s~1.2s内,上升至100%亮度值,保持照明,之后在0.6s~1.2s内下降至50%以下的亮度值,重复循环照明;
其中,红光亮度上升时,全色仿生白光光源色温不变或色温同步下降;红光亮度下降时,全色仿生白光光源色温不变或色温同步上升。
本发明提供了一种缓解眼疲劳的照明方法,采用高拟合自然光的全色仿生白光光源和宽光谱红光光源作为照明光源,全色仿生白光光源提供优异的光源与自然光具有高度的相似度,使得用眼照明环境更近似于自然光照环境,全色仿生白光光源照明条件下,人眼适应性更强,处于一个自然放松的状态,会改善用眼疲劳,全色仿生白光光源在照明过程中,色温静态不变或色温动态变化。同时,本申请将宽光谱红光光源作为一个加强辅助光源,宽光谱红光光源在照明过程中采用同步动态照明,调节视觉感知的光色成像,降低眼部睫状肌向前拉动眼球,控制眼轴变化量;通过提供全色仿生白光光源的照明环境再配合红光的动态照明控制眼轴变化量,能够使各个年龄段人均能达到保护眼睛、减缓眼睛疲劳的效果。
研究发现,全色仿生白光光源的色温可为静态不变或动态变化照明,但是红光光源需亮度动态变化才能解决技术问题。同时研究发现,红光亮度上升时,全色仿生白光光源色温同步上升,以及;红光亮度下降时,全色仿生白光光源色色温同步下降的话,效果明显变差。
进一步的,全色仿生白光光源的光谱为光源辐射功率分布曲线与同色温的自然光谱的近似度达到95%±5%的光谱,且全色仿生白光光源的光谱显色指数大于95,R1~R15均大于90。
进一步的,全色仿生白光光源的光谱中,光源辐射功率分布曲线与同色温的自然光的近似度为Ai/Bi;其中Ai是指全色仿生白光光源的在inm时的辐射量,Bi是同色温的自然光光谱在inm时的辐射量;Ai/Bi=90%~100%,其中380nm≤i≤700nm。
进一步的,当380nm≤i≤480nm时,Ai/Bi为90%~95%;当480nm≤i≤600nm时,Ai/Bi为95%~100%;当600nm≤i≤700nm时, Ai/Bi为90%~100%。
进一步的,照明过程中,全色仿生白光光源色温值保持不变;同时,
宽光谱红光光源采用动态亮度照明,具体包括以下步骤:
步骤1、保持50%以下的亮度值,照明8s~15s;
步骤2、在0.6s~1.2s内,上升至100%亮度值;保持照明3s~4s;
步骤3、之后亮度值在0.6s~1.2s内,下降至50%以下的亮度值;
步骤4、重复所述步骤1~所述步骤3的步骤,进行循环照明。
宽光谱红光光源是在特定时间内完成低亮度至高亮度的切换和高亮度到低亮度的切换,循环渐变亮度值,把静态光变为动态光,宽光谱红光光源动态照明能够调节视觉感知的光色成像,降低眼部睫状肌向前拉动眼球,控制眼轴变化量。在静态照明的全色仿生白光光源以及宽光谱红光光源动态循环照明的相互配合下,取得了意想不到的技术效果,本发明提供的技术方案,能够使各个年龄段人均能达到保护眼睛、减缓眼睛疲劳的效果。
进一步的, 照明过程中;包括以下步骤:
步骤1、全色仿生白光光源保持最高色温值,照明8s~15s;同一时间段内,宽光谱红光光源保持50%以下的亮度值进行同步照明;
步骤2、全色仿生白光光源从最高色温值在0.6s~1.2s内,降至最低色温值;在同一时间段内,宽光谱红光光源逐步上升至100%亮度值;然后全色仿生白光光源和宽光谱红光光源同步保持照明3s~4s;
步骤3、全色仿生白光光源之后最低色温值在0.6s~1.2s内,上升至最高色温值;在同一时间段内,宽光谱红光光源逐步下降至50%以下的亮度值;
步骤4、全色仿生白光光源和宽光谱红光光源分别重复所述步骤1~所述步骤3的步骤,进行循环同步照明;
其中,最高色温值与最低色温值的差值不小于600K。
本发明提供一种缓解眼疲劳的照明方法,照明光源采用全色仿生白光光源和宽光谱的宽光谱红光光源;其中,宽光谱红光光源产生的红光有效波段的波长范围为600nm~710nm,红光波段的光功率大于或等于最大光功率的80%;包括以下步骤:步骤1、全色仿生白光光源保持最高色温值,照明8s~15s;同一时间段内,宽光谱红光光源保持50%以下的亮度值进行同步照明;
步骤2、全色仿生白光光源从最高色温值在0.6s~1.2s内,降至最低色温值;在同一时间段内,宽光谱红光光源逐步上升至100%亮度值;然后全色仿生白光光源和宽光谱红光光源同步保持照明3s~4s;
步骤3、全色仿生白光光源之后最低色温值在0.6s~1.2s内,上升至最高色温值;在同一时间段内,宽光谱红光光源逐步下降至50%以下的亮度值;
步骤4、全色仿生白光光源和宽光谱红光光源分别重复所述步骤1~所述步骤3的步骤,进行循环同步照明;
其中,最高色温值与最低色温值的差值不小于600K。一方面,全色仿生光谱中形成了高饱和度的红光和高饱和度的青光的存在模式,依据颜色在视网膜上的成像原理,全色仿生白光光源照明时有助于视觉成像时,视觉的焦距和眼轴的调节,实现对物体还原颜色的视觉成像,保证视觉的高度适应性和舒适性,有效缓解照明下的用眼疲劳。另一方面,整个照明过程中,全色仿生白光光源在特定时间内完成高色温至低色温的切换和低色温到高色温的切换,循环渐变色温值,把静态光变为动态光,使眼睛眨眼,眼球自主调焦,重置,主动调节眼轴符合视觉习性。同时,在全色仿生白光光源照明过程中,本申请将宽光谱红光光源进行同步照明,且宽光谱红光光源是在特定时间内完成低亮度至高亮度的切换和高亮度到低亮度的切换,循环渐变亮度值,把静态光变为动态光,宽光谱红光光源动态照明能够调节视觉感知的光色成像,降低眼部睫状肌向前拉动眼球,控制眼轴变化量。通过全色仿生白光光源和宽光谱红光光源动态循环照明的相互配合下,取得了意想不到的技术效果,本发明提供的技术方案,能够使各个年龄段人均能达到保护眼睛、减缓眼睛疲劳的效果。
进一步的,所述步骤1中,宽光谱红光光源保持20%-50%的亮度值与全色仿生白光光源同步照明。
进一步的,所述步骤1中,全色仿生白光光源和宽光谱红光光源照明时间为8s~12s。例如,全色光色仿生光源和宽光谱红光光源照明时间为8s、9s、10s、11s、12s。
进一步的,所述步骤2中,全色仿生白光光源色温值变化时间和宽光谱红光光源亮度值变化照明时间均为0.8s~1.1s,例如0.8s、0.9s、1.0s、1.1s;同步保持照明时间为3s~4s,例如3s、4s。
进一步的,所述步骤3中,全色仿生白光光源色温值变化时间和宽光谱红光光源亮度值变化照明时间均为0.8s~1.1s;例如0.8s、0.9s、1.0s、1.1s。
进一步的,照明光源还包括远红外光源,所述远红外光源的有效波段的波长为4μm~25μm;在照明过程中,远红外光源亮度值保持不变与宽光谱红光光源进行同步照明。优选地,所述远红外光源的有效波段的波长为8μm~14μm;所述远红外光源的亮度值为300 Lux~600 Lux。研究发现,添加入远红外光波,能够实现更好的缓解眼疲劳的效果,可能远红外光波的加入,加速了视觉神经细胞的活性,体现出更好的护眼效果。
进一步的,全色仿生白光光源100%的亮度值不低于600Lux,25%~45%的亮度值不大于400Lux;宽光谱红光光源100%的亮度值不低于600Lux,50%以下的亮度值不大于450Lux。选择合适的亮度,可以增加人的舒适度,缓解眼部的疲劳。
本发明的另一目的是为了提供上述缓解眼疲劳的照明方法采用的装置。
一种上述述的缓解眼疲劳的照明方法采用的装置,包括控制模块、驱动电源模块、全色仿生白光光源组模块和宽光谱红光光源组模块;
所述全色仿生白光光源组模块包括低色温全色仿生白光光源组和高色温全色仿生白光光源组,所述宽光谱红光光源组模块包括宽光谱红光光源组;
所述驱动电源模块分别与所述低色温全色仿生白光光源组和高色温全色仿生白光光源组以及宽光谱红光光源组进行电性连接;所述控制模块用于将所述低色温全色仿生白光光源组的电流I1与所述高色温全色仿生白光光源组的电流I2的比例信号以及所述宽光谱红光光源组的电流I3大小信号同时提供给所述驱动电源模块;所述驱动电源模块用于根据接收的电流I1和电流I2的比例关系信号和电流I3大小信号生成电流I1、电流I2和电流I3以分别驱动所述低色温全色仿生白光光源组、所述高色温全色仿生白光光源组以及宽光谱红光光源组,从而实现全色仿生白光光源色温的调整以及宽光谱红光光源组模块的亮度的变化。
本申请提供了一种LED护眼照明的装置,包括控制模块、驱动电源模块、全色仿生白光光源组模块和宽光谱红光光源组模块;所述驱动电源模块分别与所述低色温全色仿生白光光源组和高色温全色仿生白光光源组以及宽光谱红光光源组进行电性连接;所述控制模块用于将所述低色温全色仿生白光光源组的电流I1与所述高色温全色仿生白光光源组的电流I2的比例信号以及所述宽光谱红光光源组的电流I3大小信号同时提供给所述驱动电源模块;所述驱动电源模块用于根据接收的电流I1和电流I2的比例关系信号和电流I3大小信号生成驱动电流I1、I2和I3分别驱动所述低色温全色仿生白光光源组和所述高色温全色仿生白光光源组以及宽光谱红光光源组,从而实现全色仿生白光光源色温的调整以及宽光谱红光光源组模块的亮度的变化。结构简单,使用方便,便于推广。
进一步的,所述控制模块包括光传感器。
进一步的,所述低色温全色仿生白光光源组由若干个低色温全色仿生白光光源串联、并联或串并而成的,所述高色温全色仿生白光光源组由若干个高色温全色仿生白光光源串联、并联或串并而成的;所述低色温宽光谱红光光源组由若干个低色温全色仿生白光光源串联、并联或串并而成的,所述高色温宽光谱红光光源组由若干个高色温全色仿生白光光源串联、并联或串并而成的。
进一步的,所述低色温全色仿生白光光源组的色温值和所述高色温全色仿生白光光源组的色温值为2700K-5600K中两个大小不同的色温值;所述低色温宽光谱红光光源组的色温值和所述高色温宽光谱红光光源组的色温值为2700K-5600K中两个大小不同的色温值。
进一步的,所述低色温全色仿生白光光源组的色温值和所述高色温全色仿生白光光源组的色温值分别位于2700K~3000K、4000K~4200K、4700K~5200K和5500K~6000K中任意两个区间段色温值;所述低色温宽光谱红光光源组的色温值和所述高色温宽光谱红光光源组的色温值分别位于2700K~3000K、4000K~4200K、4700K~5200K和5500K~6000K中任意两个区间段色温值。
进一步的,全色仿生白光光源的色温为2700K-3000K时,全色仿生白光光源的光谱中,380~435nm紫光的绝对光功率值小于0.35;435~475nm蓝光的绝对光功率值大于0.40;475~492nm青光的绝对光功率值大于0.45; 492~577nm绿光的绝对光功率值大于0.50;577~597nm黄光的绝对光功率值大于0.75; 597~622nm橙色光的绝对光功率值大于0.80; 622~700nm红光的绝对光功率值大于0.80。
进一步的,全色仿生白光光源的色温为4000K-4200K时,全色仿生白光光源的光谱中,380~435nm紫光的绝对光功率值小于0.40;435~475nm蓝光的绝对光功率值小于0.65;475~492nm青光的绝对光功率值大于0.60; 492~577nm绿光的绝对光功率值大于0.65; 577~597nm黄光的绝对光功率值大于0.80; 597~622nm橙色光的绝对光功率值大于0.8; 622~700nm红光的绝对光功率值绝对光功率值大于0.80。
进一步的,全色仿生白光光源的色温为5500K-6000K时,全色仿生白光光源的光谱中,380~435nm紫光的绝对光功率值小于0.45;435~475nm蓝光的绝对光功率值小于0.80;475~492nm青光的绝对光功率值大于0.70; 492~577nm绿光的绝对光功率值大于0.80; 577~597nm黄光的绝对光功率值大于0.80; 597~622nm橙色光的绝对光功率值大于0.80; 622~700nm红光的绝对光功率值大于0.70。
光谱功率:一种光源所发射的光谱往往不是单一的波长,而是由许多不同波长的混合辐射所组成。光源的光谱辐射按波长顺序和各波长强度分布称为光源的光谱功率分布。
用于表征光谱功率大小的参数分为绝对光谱功率和相对光谱功率,进而绝对光谱功率分布曲线:以光谱辐射的各种波长光能量绝对值所作的曲线。
相对光谱功率分布曲线:指将光源辐射光谱的各种波长的能量进行相互比较,作归一化处理后使辐射功率仅在规定的范围内变化的光谱功率分布曲线。辐射功率最大的相对光谱功率为1,其他波长的相对光谱功率均小于1。
一种缓解眼疲劳的照明方法,照明光源采用高显指白光光源和宽光谱红光光源;其中,宽光谱红光光源产生的红光有效波段的波长范围为600nm~710nm;高显指白光光源发光的显色指数>90;
照明过程中,高显指白光光源采用亮度静态不变照明或亮度动态变化照明;同时,宽光谱红光光源采用亮度动态变化照明;
红光光源照明过程为,首先保持50%以下的亮度值,照明一段时间,然后在0.8s~1.2s内,上升至100%亮度值,保持照明,之后在0.8s~1.2s内下降至50%以下的亮度值,重复循环照明;
其中,红光光源亮度上升时,高显指白光光源亮度不变或亮度同步下降;红光光源亮度下降时,高显指白光光源亮度不变或亮度同步上升。
本发明提供了一种缓解眼疲劳的照明方法,采用高拟合自然光的高显指白光光源和宽光谱红光光源作为照明光源,高显指白光光源提供优异的光源与自然光具有较高的相似度,使得用眼照明环境更近似于自然光照环境,高显指白光光源照明条件下,人眼适应性较强,处于一个自然放松的状态,会改善用眼疲劳,高显指白光光源照明过程中,亮度静态不变或亮度动态变化。同时,本申请将宽光谱红光光源作为一个加强辅助光源,宽光谱红光光源在照明过程中采用同步动态照明,调节视觉感知的光色成像,降低眼部睫状肌向前拉动眼球,控制眼轴变化量;通过提供高显指白光光源的照明环境再配合红光的动态照明控制眼轴变化量,能够使各个年龄段人均能达到保护眼睛、减缓眼睛疲劳的效果。
研究发现,高显指白光光源的亮度可为静态不变或动态变化照明,但是红光光源需亮度动态变化才能解决技术问题。同时研究发现,红光光源亮度上升时,高显指白光光源亮度同步上升,以及;红光光源亮度下降时,高显指白光光源亮度同步下降的话,效果明显变差。
进一步的,照明过程中,高显指白光光源亮度值保持不变;同时,
宽光谱红光光源采用动态亮度照明,具体包括以下步骤:
步骤1、保持50%以下的亮度值,照明8s~15s;
步骤2、在0.8s~1.2s内,上升至100%亮度值;保持照明3s~4s;
步骤3、之后亮度值在0.8s~1.2s内,下降至50%以下的亮度值;
步骤4、重复所述步骤1~所述步骤3的步骤,进行循环照明。
宽光谱红光光源是在特定时间内完成低亮度至高亮度的切换和高亮度到低亮度的切换,循环渐变亮度值,把静态光变为动态光,宽光谱红光光源动态照明能够调节视觉感知的光色成像,降低眼部睫状肌向前拉动眼球,控制眼轴变化量。在静态照明的高显指白光光源以及宽光谱红光光源动态循环照明的相互配合下,取得了意想不到的技术效果,本发明提供的技术方案,能够使各个年龄段人均能达到保护眼睛、减缓眼睛疲劳的效果。
进一步的, 照明过程中,包括以下步骤:
步骤1、高显指白光光源保持100%亮度值,照明8s~15s;同一时间段内,宽光谱红光光源保持50%以下的亮度值进行同步照明;
步骤2、高显指白光光源从100%亮度值在0.8s~1.2s内,降至25%~45%的亮度值;在同一时间段内,宽光谱红光光源逐步上升至100%亮度值;然后高显指白光光源和宽光谱红光光源同步保持照明3s~4s;
步骤3、高显指白光光源之后亮度值在0.8s~1.2s内,上升至100%亮度值;在同一时间段内,宽光谱红光光源逐步下降至50%以下的亮度值;
步骤4、高显指白光光源和宽光谱红光光源分别重复所述步骤1~所述步骤3的步骤,进行循环同步照明。
本发明提供一种缓解眼疲劳的照明方法,照明光源采用高显指白光光源和宽光谱红光光源;其中, 宽光谱红光光源产生的红光有效波段的波长范围为600nm~710nm;照明过程中,包括以下步骤:步骤1、高显指白光光源保持100%亮度值,照明8s~15s;同一时间段内,宽光谱红光光源保持50%以下的亮度值进行同步照明;步骤2、高显指白光光源从100%亮度值在0.8s~1.2s内,降至25%~45%的亮度值;在同一时间段内,宽光谱红光光源逐步上升至100%亮度值;然后高显指白光光源和宽光谱红光光源同步保持照明3s~4s; 步骤3、高显指白光光源之后亮度值在0.8s~1.2s内,上升至100%亮度值;在同一时间段内,宽光谱红光光源逐步下降至50%以下的亮度值;步骤4、高显指白光光源和宽光谱红光光源分别重复所述步骤1~所述步骤3的步骤,进行循环同步照明。一方面,高显指白光光源照明时有助于视觉成像时,视觉的焦距和眼轴的调节,保证视觉较高的适应性和舒适性,有效缓解照明下的用眼疲劳。另一方面,整个照明过程中,高显指白光光源在特定时间内完成高亮度至低亮度的切换和低亮度到高亮度的切换,循环渐变亮度值,把静态光变为动态光,使眼睛眨眼,眼球自主调焦,重置,主动调节眼轴符合视觉习性。同时,在高显指白光光源照明过程中,本申请将宽光谱红光光源进行同步照明,且宽光谱红光光源是在特定时间内完成低亮度至高亮度的切换和高亮度到低亮度的切换,循环渐变亮度值,把静态光变为动态光,宽光谱红光光源动态照明能够调节视觉感知的光色成像,降低眼部睫状肌向前拉动眼球,控制眼轴变化量。通过高显指白光光源和宽光谱红光光源动态循环照明的相互配合下,取得了意想不到的技术效果,本发明提供的技术方案,能够使各个年龄段人均能达到保护眼睛、减缓眼睛疲劳的效果。
进一步的,所述步骤1中,宽光谱红光光源保持20%-50%的亮度值与高显指白光光源同步照明。
进一步的,所述步骤1中,高显指白光光源和宽光谱红光光源照明时间为8s~12s。例如,高显指白光光源和宽光谱红光光源照明时间为8s、9s、10s、11s、12s。
进一步的,所述步骤2中,高显指白光光源和宽光谱红光光源亮度值变化照明时间为0.8s~1.1s,例如0.8s、0.9s、1.0s、1.1s;同步保持亮度不变的照明时间为3s~4s,例如3s、4s。
进一步的,所述步骤3中,高显指白光光源和宽光谱红光光源亮度值变化照明时间为0.8s~1.1s;例如0.8s、0.9s、1.0s、1.1s。
进一步的,照明光源还包括远红外光源,所述远红外光源的有效波段的波长为4μm~25μm;在照明过程中,远红外光源亮度值保持不变与宽光谱红光光源进行同步照明。优选地,所述远红外光源的有效波段的波长为8μmm~14μmm;所述远红外光源的亮度值为300Lux~600 Lux。研究发现,添加入远红外光波,能够实现更好的缓解眼疲劳的效果,可能远红外光波的加入,加速了视觉神经细胞的活性,体现出更好的护眼效果。
进一步的,高显指白光光源100%的亮度值不低于600Lux,25%~45%的亮度值不大于400Lux;宽光谱红光光源100%的亮度值不低于600Lux,50%以下的亮度值不大于450Lux。选择合适的亮度,可以增加人的舒适度,缓解眼部的疲劳。
本发明的另一目的是为了提供上述缓解眼疲劳的照明方法采用的装置。
一种上述的缓解眼疲劳的照明方法采用的装置,包括控制模块、驱动电源模块、高显指白光光源组模块和宽光谱红光光源组模块;
所述高显指白光光源组模块包括低色温高显指白光光源组和高色温高显指白光光源组,所述宽光谱红光光源组模块包括宽光谱红光光源组,所述驱动电源模块分别与所述低色温高显指白光光源组和高色温高显指白光光源组以及宽光谱红光光源组进行电性连接;所述控制模块用于将所述低色温高显指白光光源组的电流I1大小信号和所述高色温高显指白光光源组的电流I2大小信号以及所述宽光谱红光光源组的电流I3大小信号同时提供给所述驱动电源模块;所述驱动电源模块用于根据接收的电流I1大小信号、电流I2大小信号和电流I3大小信号生成驱动电流I1、I2和I3分别驱动所述低色温高显指白光光源组和所述高色温高显指白光光源组以及宽光谱红光光源组,从而实现高显指白光光源亮度的调整以及宽光谱红光光源组亮度的变化。
本申请提供了一种LED护眼照明的装置,包括控制模块、驱动电源模块、高显指白光光源组模块和宽光谱红光光源组模块;所述高显指白光光源组模块包括低色温高显指白光光源组和高色温高显指白光光源组,所述宽光谱红光光源组模块包括宽光谱红光光源组,所述驱动电源模块分别与所述低色温高显指白光光源组和高色温高显指白光光源组以及宽光谱红光光源组进行电性连接;所述控制模块用于将所述低色温高显指白光光源组的电流I4大小信号和所述高色温高显指白光光源组的电流I5大小信号以及所述宽光谱红光光源组的电流I6大小信号同时提供给所述驱动电源模块;所述驱动电源模块用于根据接收的电流I4大小信号、电流I5大小信号和电流I6大小信号生成电流I4、电流I5和电流I6分别驱动所述低色温高显指白光光源组、所述高色温高显指白光光源组以及宽光谱红光光源组,从而实现高显指白光光源亮度的调整以及宽光谱红光光源组亮度的变化。本申请公开的LED护眼照明的装置,通过同时调节高色温光源组和低色温光源组的电流大小来实现照明亮度的变化,结构简单,使用方便,便于推广。
进一步的,所述控制模块包括光传感器。
进一步的,所述低色温高显指白光光源组由若干个低色温高显指白光光源串联、并联或串并而成的,所述高色温高显指白光光源组由若干个高色温高显指白光光源串联、并联或串并而成的。
进一步的,所述低色温高显指白光光源组的色温值和所述高色温高显指白光光源组的色温值为2700K-5600K中两个大小不同的色温值。
进一步的,所述低色温高显指白光光源组的色温值和所述高色温高显指白光光源组的色温值分别位于2700K~3000K、4000K~4200K、4700K~5200K和5500K~6000K中任意两个区间段色温值。
本发明的又一目的是为了提供上述缓解眼疲劳的照明方法的应用。
一种上述的缓解眼疲劳的照明方法在面板灯、台灯、吸顶灯、落地灯、筒灯、PAR和射灯中的应用。
该缓解眼疲劳的照明方法,通过全色仿生白光光源和宽光谱红光光源动态循环照明的相互配合下,取得了意想不到的技术效果,本发明提供的技术方案,能够使各个年龄段人均能达到保护眼睛、减缓眼睛疲劳的效果,可用于面板灯、台灯、吸顶灯、落地灯、筒灯、PAR和射灯中,应用广泛,便于推广。
一种上述的缓解眼疲劳的照明方法在面板灯、台灯、吸顶灯、落地灯、筒灯、PAR和射灯中的应用。
该缓解眼疲劳的照明方法,通过高显指白光光源和宽光谱红光光源动态循环照明的相互配合下,取得了意想不到的技术效果,本发明提供的技术方案,能够使各个年龄段人均能达到保护眼睛、减缓眼睛疲劳的效果,可用于面板灯、台灯、吸顶灯、落地灯、筒灯、PAR和射灯中,应用广泛,便于推广。
综上所述,由于采用了上述技术方案,本发明的有益效果是:
1.本发明提供了一种缓解眼疲劳的照明方法,采用高拟合自然光的全色仿生白光光源和宽光谱红光光源作为照明光源,全色仿生白光光源提供优异的光源与自然光具有高度的相似度,使得用眼照明环境更近似于自然光照环境,全色仿生白光光源照明条件下,人眼适应性更强,处于一个自然放松的状态,会改善用眼疲劳,全色仿生白光光源在照明过程中,色温静态不变或色温动态变化。同时,本申请将宽光谱红光光源作为一个加强辅助光源,宽光谱红光光源在照明过程中采用同步动态照明,调节视觉感知的光色成像,降低眼部睫状肌向前拉动眼球,控制眼轴变化量;通过提供全色仿生白光光源的照明环境再配合红光的动态照明控制眼轴变化量,能够使各个年龄段人均能达到保护眼睛、减缓眼睛疲劳的效果。
2.本发明提供一种缓解眼疲劳的照明方法,照明光源采用全色仿生白光光源和宽光谱红光光源;照明过程中,一方面,全色仿生光谱中形成了高饱和度的红光和高饱和度的青光的存在模式,依据颜色在视网膜上的成像原理,全色仿生白光光源照明时有助于视觉成像时,视觉的焦距和眼轴的调节,实现对物体还原颜色的视觉成像,保证视觉的高度适应性和舒适性,有效缓解照明下的用眼疲劳。另一方面,整个照明过程中,全色仿生白光光源在特定时间内完成高色温至低色温的切换和低色温到高色温的切换,循环渐变色温值,把静态光变为动态光,使眼睛眨眼,眼球自主调焦,重置,主动调节眼轴符合视觉习性。同时,在全色仿生白光光源照明过程中,本申请将宽光谱红光光源进行同步照明,且宽光谱红光光源是在特定时间内完成低亮度至高亮度的切换和高亮度到低亮度的切换,循环渐变亮度值,把静态光变为动态光,宽光谱红光光源动态照明能够调节视觉感知的光色成像,降低眼部睫状肌向前拉动眼球,控制眼轴变化量。通过全色仿生白光光源和宽光谱红光光源动态循环照明的相互配合下,取得了意想不到的技术效果,本发明提供的技术方案,能够使各个年龄段人均能达到保护眼睛、减缓眼睛疲劳的效果。
3. 本发明提供了一种缓解眼疲劳的照明方法,采用高拟合自然光的高显指白光光源和宽光谱红光光源作为照明光源,高显指白光光源提供优异的光源与自然光具有较高的相似度,使得用眼照明环境更近似于自然光照环境,高显指白光光源照明条件下,人眼适应性较强,处于一个自然放松的状态,会改善用眼疲劳,高显指白光光源照明过程中,亮度静态不变或亮度动态变化。同时,本申请将宽光谱红光光源作为一个加强辅助光源,宽光谱红光光源在照明过程中采用同步动态照明,调节视觉感知的光色成像,降低眼部睫状肌向前拉动眼球,控制眼轴变化量;通过提供高显指白光光源的照明环境再配合红光的动态照明控制眼轴变化量,能够使各个年龄段人均能达到保护眼睛、减缓眼睛疲劳的效果。
4. 本发明提供一种缓解眼疲劳的照明方法,照明光源采用高显指白光光源和宽光谱红光光源;其中, 宽光谱红光光源产生的红光有效波段的波长范围为600nm~710nm;照明过程中,包括以下步骤:步骤1、高显指白光光源保持100%亮度值,照明8s~15s;同一时间段内,宽光谱红光光源保持50%以下的亮度值进行同步照明;步骤2、高显指白光光源从100%亮度值在0.8s~1.2s内,降至25%~45%的亮度值;在同一时间段内,宽光谱红光光源逐步上升至100%亮度值;然后高显指白光光源和宽光谱红光光源同步保持照明3s~4s; 步骤3、高显指白光光源之后亮度值在0.8s~1.2s内,上升至100%亮度值;在同一时间段内,宽光谱红光光源逐步下降至50%以下的亮度值;步骤4、高显指白光光源和宽光谱红光光源分别重复所述步骤1~所述步骤3的步骤,进行循环同步照明。一方面,高显指白光光源照明时有助于视觉成像时,视觉的焦距和眼轴的调节,保证视觉较高的适应性和舒适性,有效缓解照明下的用眼疲劳。另一方面,整个照明过程中,高显指白光光源在特定时间内完成高亮度至低亮度的切换和低亮度到高亮度的切换,循环渐变亮度值,把静态光变为动态光,使眼睛眨眼,眼球自主调焦,重置,主动调节眼轴符合视觉习性。同时,在高显指白光光源照明过程中,本申请将宽光谱红光光源进行同步照明,且宽光谱红光光源是在特定时间内完成低亮度至高亮度的切换和高亮度到低亮度的切换,循环渐变亮度值,把静态光变为动态光,宽光谱红光光源动态照明能够调节视觉感知的光色成像,降低眼部睫状肌向前拉动眼球,控制眼轴变化量。通过高显指白光光源和宽光谱红光光源动态循环照明的相互配合下,取得了意想不到的技术效果,本发明提供的技术方案,能够使各个年龄段人均能达到保护眼睛、减缓眼睛疲劳的效果。
5. 本发明公开的缓解眼疲劳的照明方法,能够使各个年龄段人均能达到保护眼睛、减缓眼睛疲劳的效果,可用于面板灯、台灯、吸顶灯、落地灯、筒灯、PAR和射灯中,应用广泛,便于推广。
附图说明
图1为实施例1中LED护眼照明的装置。
图2为实施例1中低色温全色仿生白光光源组的光谱图。
图3为实施例1中高色温全色仿生白光光源组的光谱图。
图4为实施例1宽光谱红光光源组模块发出的红光光谱图。
图5为实施例2中低色温全色仿生白光光源组的光谱图。
图6为实施例2中高色温全色仿生白光光源组的光谱图。
图7为实施例2宽光谱红光光源组模块发出的红光光谱图。
图8为实施例4中远红外光源模块发出的谱图。
具体实施方式
下面结合附图,对本发明作详细的说明。
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
实施例1
如图1所示,一种LED护眼照明的装置,包括控制模块、驱动电源模块、全色仿生白光光源组模块和宽光谱红光光源组模块;
所述全色仿生白光光源组模块包括低色温全色仿生白光光源组和高色温全色仿生白光光源组,所述宽光谱红光光源组模块包括宽光谱红光光源组;
所述驱动电源模块分别与所述低色温全色仿生白光光源组和高色温全色仿生白光光源组以及宽光谱红光光源组进行电性连接;所述控制模块用于将所述低色温全色仿生白光光源组的电流I1与所述高色温全色仿生白光光源组的电流I2的比例信号以及所述宽光谱红光光源组的电流I3大小信号同时提供给所述驱动电源模块;所述驱动电源模块用于根据接收的电流I1和电流I2的比例关系信号和电流I3大小信号生成电流I1、电流I2和电流I3分别驱动所述低色温全色仿生白光光源组、所述高色温全色仿生白光光源组以及宽光谱红光光源组,从而实现全色仿生白光光源色温的调整以及宽光谱红光光源组模块的亮度的变化。
其中,UI/I1表示通过低色温全色仿生白光光源组的电压值/电流值;
U2/I2表示通过高色温全色仿生白光光源组的电压值/电流值;
U3/I3表示通过宽光谱红光光源组的电压值/电流值。
优选地,所述控制模块包括光传感器。
优选地,还包括红外遥控器,所述控制模块包括红外接收装置,所述红外接收装置用于接收所述红外遥控器的遥控信号,根据遥控信号,所述控制模块生成电流I1大小信号和电流I2大小信号以及I3大小信号。
具体的,所述低色温全色仿生白光光源组由18颗全色仿生(单颗功率为0.5W)白光LED光源组成,色温为2700K,其中,全色仿生白光LED光源的荧光层包括依次叠设的第一膜层、第二膜层和第三膜层。其中,第一膜层包括第一荧光粉和成膜材料硅胶、第二膜层包括第二荧光粉和成膜材料硅胶、第三膜层包括第三荧光粉和成膜材料硅胶。第一荧光粉、第二荧光粉和第三荧光粉的质量比为20:40:35。
其中,第一荧光粉包括荧光粉A2,荧光粉A2是发光波长为490nm的Y3(Al,Ga)5O12。
第二荧光粉包括荧光粉B1和荧光粉B2,荧光粉B1是发光波长为525nm的BaSi2O2N2,荧光粉B2是发光波长为540nm的BaSi2O2N2。荧光粉B1和荧光粉B2的质量比为55:50。
第三荧光粉包括荧光粉C1、荧光粉C2、荧光粉C3、荧光粉D、荧光粉E和荧光粉F。荧光粉C1是发光波长为630nm的(Ca,Sr)AlSiN3,荧光粉C2是发光波长为660nm的(Ca,Sr)AlSiN3,荧光粉C3是发光波长为679nm的(Ca,Sr)AlSiN3,荧光粉D是发光波长为720nm的(Ca,Sr)AlSiN3,荧光粉E是发光波长为740nm的(Ca,Sr)AlSiN3,荧光粉F是发光波长为795nm的(Ca,Sr)AlSiN3。荧光粉C1、荧光粉C2、荧光粉C3、荧光粉D、荧光粉E和荧光粉F的质量比为9:13:16:21:23:27。
同时,成膜方法为压膜法。第一膜层的膜厚为0.13mm和第一荧光粉浓度为61%,第二膜层的膜厚为0.13mm和第二荧光粉浓度为61%,以及第三膜层的膜厚为0.13mm和第三荧光粉浓度为61%。
该全色仿生白光光源的光谱为光源辐射功率分布曲线与同色温的自然光谱的近似度达到95%±5%的光谱,且全色仿生白光光源的光谱显色指数大于95,R1~R15均大于90。
具体的如图2所示,380~435nm紫光的绝对光功率值为0.15;435~475nm蓝光的绝对光功率值为0.42;475~492nm青光的绝对光功率值为0.48; 492~577nm绿光的绝对光功率值为0.52;577~597nm黄光的绝对光功率值为0.78; 597~622nm橙色光的绝对光功率值为0.85;622~700nm红光的绝对光功率值为0.84。低色温光源组的光源光谱为全色仿生光谱,全色仿生光谱和同色温自然光光谱的近似度为Ai/Bi;其中Ai 是指全色仿生白光光源的在inm时的辐射量,Bi是同色温的自然光光谱在inm时的辐射量;当380nm≤i≤480nm时,Ai/Bi为90%;当480nm≤i≤600nm时,Ai/Bi为95%;当600nm≤i≤700nm时,Ai/Bi为90%。
具体的,所述高色温全色仿生白光光源由18颗全色仿生(单颗功率为0.5W)白光LED光源组成,色温为5600K,其中,全色仿生白光LED光源的荧光层包括依次叠设的第一膜层、第二膜层和第三膜层。其中,第一膜层包括第一荧光粉和成膜材料硅胶、第二膜层包括第二荧光粉和成膜材料硅胶、第三膜层包括第三荧光粉和成膜材料硅胶。第一荧光粉、第二荧光粉和第三荧光粉的质量比为15:50:15。
其中,第一荧光粉包括荧光粉A2,荧光粉A2是发光波长为490nm的Y3(Al,Ga)5O12。
第二荧光粉包括荧光粉B1和荧光粉B2,荧光粉B1是发光波长为525nm的BaSi2O2N2,荧光粉B2是发光波长为540nm的BaSi2O2N2。荧光粉B1和荧光粉B2的质量比为20:26。
第三荧光粉包括荧光粉C1、荧光粉C2、荧光粉C3、荧光粉D、荧光粉E和荧光粉F。荧光粉C1是发光波长为630nm的(Ca,Sr)AlSiN3,荧光粉C2是发光波长为660nm的(Ca,Sr)AlSiN3,荧光粉C3是发光波长为679nm的(Ca,Sr)AlSiN3,荧光粉D是发光波长为720nm的(Ca,Sr)AlSiN3,荧光粉E是发光波长为740nm的(Ca,Sr)AlSiN3,荧光粉F是发光波长为795nm的(Ca,Sr)AlSiN3。荧光粉C1、荧光粉C2、荧光粉C3、荧光粉D、荧光粉E和荧光粉F的质量比为6:7:11:13:16:17。
同时,成膜法为压膜法,第一膜层的膜厚为0.11 mm和第一荧光粉浓度为67%,第二膜层的膜厚为0.11mm和第二荧光粉浓度为67%,以及第三膜层的膜厚为0.11mm和第三荧光粉浓度为67%。
该全色仿生白光光源的光谱为光源辐射功率分布曲线与同色温的自然光谱的近似度达到95%±5%的光谱,且全色仿生白光光源的光谱显色指数大于95,R1~R15均大于90。
具体的如图3所示,380~435nm紫光的绝对光功率值为0.40;435~475nm蓝光的绝对光功率值为0.75; 475~492n青光的绝对光功率值为0.72; 492~577nm绿光的绝对光功率值为0.83;577~597nm黄光的绝对光功率值为0.82;597~622nm橙色光的绝对光功率值为0.85;622~700nm红光的绝对光功率值为0.77。高色温光源组的光源光谱为全色仿生白光光源,全色仿生白光光源和同色温自然光光谱的近似度为Ai/Bi;其中Ai是指全色仿生白光光源的在inm时的辐射量,Bi是同色温的自然光光谱在inm时的辐射量;当380nm≤i≤480nm时,Ai/Bi为95%;当480nm≤i≤600nm时,Ai/Bi为100%;当600nm≤i≤700nm时,Ai/Bi为100%。
具体的,宽光谱红光光源组模块,由18颗串联的红光有效波段的波长范围为600nm~710nm的LED灯珠组成,具体的红光谱图如图4。宽光谱红光光源组模块的电流为I3。低色温宽光谱红光光源均匀布置在低色温全色仿生白光光源内。
采用上述照明装置进行照明的方法,包括以下步骤:
步骤1、控制I1为0%最小电流输出,I2为95%的电流输出,I1和I2的比例为0:95%,保持最高色温值5600K,照明15s;同一时间段内,控制I3为最大输出电流的50%,宽光谱红光光源保持50%亮度值450 Lux进行同步照明15s;
步骤2、从最高色温值在1s内,降至最低色温值为2700K以使被照物体表面的光色发生明显变化,保持照明3s;此时,I1为100%,I2为0%,I1和I2的比例为100%:0;同时,宽光谱红光光源在1s内,逐步上升至100%亮度值,此时I3为最大输出电流即100%,保持照明3s;
步骤3、之后最低色温值为2700K在1s内,上升至最高色温值5600K;在同一时间段内,宽光谱红光光源逐步下降值50%的亮度值;
步骤4、重复所述步骤1-所述步骤3的步骤,进行循环照明。
实施例2
实施例2采用实施例1相同的LED护眼照明装置。
具体的,所述低色温全色仿生白光光源组由18颗全色仿生(单颗功率为0.5W)白光LED光源组成,色温为3000K。
具体的如图5所示。380~435nm紫光的绝对光功率值为0.33;435~475nm蓝光的绝对光功率值为0.48;475~492nm青光的绝对光功率值为0.8;492~577nm绿光的绝对光功率值为0.9;577~597nm黄光的绝对光功率值为1.13;597~622nm橙色光的绝对光功率值为1.2;622~700nm红光的绝对光功率值为1.37。低色温光源组的光源光谱为全色仿生白光光源,全色仿生白光光源和同色温自然光光谱的近似度为Ai/Bi;其中Ai是指全色仿生白光光源的在inm时的辐射量,Bi是同色温的自然光光谱在inm时的辐射量;当380nm≤i≤480nm时,Ai/Bi为93%;当480nm≤i≤600nm时,Ai/Bi为98%;当600nm≤i≤700nm时,Ai/Bi为97%。
具体的,所述高色温全色光源由18颗全色仿生(单颗功率为0.5W)白光LED光源组成,色温为4200K。
具体的如图6所示。380~435nm紫光的绝对光功率值为0.35;435~475nm蓝光的绝对光功率值为0.6; 475~492nm青光的绝对光功率值为0.88; 492~577nm绿光的绝对光功率值为0.85; 577~597nm黄光的绝对光功率值为1.0;597~622nm橙色光的绝对光功率值为0.95;622~700nm红光的绝对光功率值为1.2。高色温光源组的光源光谱为全色仿生光谱,全色仿生光谱和同色温自然光光谱的近似度为Ai/Bi;其中Ai 是指全色仿生白光光源的在inm时的辐射量,Bi是同色温的自然光光谱在inm时的辐射量;当380nm≤i≤480nm时,Ai/Bi为95%;当480nm≤i≤600nm时,Ai/Bi为98%;当600nm≤i≤700nm时,Ai/Bi为97%。
具体的,宽光谱红光光源组模块,由18颗串联的红光有效波段的波长范围为600nm~710nm的LED灯珠组成,具体的红光谱图如图7。宽光谱红光光源组模块的电流为I3。低色温宽光谱红光光源均匀布置在低色温全色仿生白光光源内。
采用上述照明装置进行照明的方法,包括以下步骤:
步骤1、控制I1为0%最小电流输出,I2为90%的电流输出,I1和I2的比例为0:90%,保持最高色温值4200K,照明12s;同一时间段内,控制I3为最大输出电流即20%,宽光谱红光光源保持20%亮度值200Lux进行同步照明12s;
步骤2、从最高色温值在1.2s内,降至最低色温值为3000K以使被照物体表面的光色发生明显变化,保持照明4s;此时,控制I1为100%最小电流输出,I2为0%的电流输出,I1和I2的比例为100%:0%;同时,宽光谱红光光源在1.2s内,逐步上升至100%亮度值1000Lux,此时I3为最大输出电流即100%,保持照明4s;
步骤3、之后最低色温值为3000K在1.2s内,上升至最高色温值4200K; 在同一时间段内,宽光谱红光光源逐步下降值20%的亮度值;
步骤4、重复所述步骤1-所述步骤3的步骤,进行循环照明。
实施例3
实施例3采用了实施例1完全相同的LED护眼照明装置,全色仿生白光光源组模块和宽光谱红光光源组模块与实施例1相同。
照明的方法包括以下步骤:照明过程中,全色仿生白光光源亮度值保持在900Lux不变;宽光谱红光光源的亮度发生循环照明变化,具体如下:
采用上述照明装置进行照明的方法,包括以下步骤:
步骤1、控制I1为0%最小电流输出,I2为95%的电流输出,I1和I2的比例为0:95%,保持最高色温值5600K,照明8s;同一时间段内,控制I3为最大输出电流的50%,宽光谱红光光源保持50%亮度值450 Lux进行同步照明8s;
步骤2、从最高色温值在0.6s内,降至最低色温值为2700K以使被照物体表面的光色发生明显变化,保持照明3s;此时,I1为100%,I2为0%,I1和I2的比例为100%:0;同时,宽光谱红光光源在0.6s内,逐步上升至100%亮度值,此时I3为最大输出电流即100%,保持照明3s;
步骤3、之后最低色温值为2700K在0.6s内,上升至最高色温值5600K;在同一时间段内,宽光谱红光光源逐步下降值50%的亮度值;
步骤4、重复所述步骤1-所述步骤3的步骤,进行循环照明。
实施例4
实施例4采用实施例1相同的LED护眼照明装置。
低色温全色仿生白光光源组、高色温全色仿生白光光源组以及宽光谱红光光源组与实施例1相同。不同之处在于,照明光源还包括远红外光源模块,包括6个远红外灯珠。如图8所示, 所述远红外光源的有效波段的波长为4μm~25μm,所述远红外光源的亮度值为300Lux。在照明过程中,全色仿生白光光源和宽光谱红光光源与实施例1采用相同的照明方式,实施例4中,远红外光源亮度值保持不变与宽光谱红光光源进行同步照明。
对比例1
相比实施例1,改变为普通LED光源照射,非全色仿生白光光源,采用实施例1相同的照明方法。
其中普通LED光源,与同色温自然光谱的近似度为50%,640~650nm的光功率为0.65;650~660nm的光功率为0.44;660~670nm的光功率为0.36;670~700nm的光功率为0.21。
对比例2
相比实施例1,对比例2中仅采用全色仿生白光光源作为照明光源,在照明过程中,采用最高色温值照明,静态不变。
对比例3
相比实施例1,采用实施例1相同的照明装置。照明过程中,全色仿生白光光源的色温值保持2700K不变,宽光谱红光光源亮度值为900 Lux一直不变。
对比例4
相比实施例1,采用实施例1相同的照明装置,照明过程中,具体方法:
步骤1、控制I1为0%最小电流输出,I2为95%的电流输出,I1和I2的比例为0:95%,保持最高色温值5600K,照明15s;同一时间段内,控制I3为最大输出电流的50%,宽光谱红光光源保持50%亮度值450 Lux进行同步照明15s;
步骤2、从最高色温值在0.3s内,降至最低色温值为2700K以使被照物体表面的光色发生明显变化,保持照明3s;此时,I1为100%,I2为0%,I1和I2的比例为100%:0;同时,宽光谱红光光源在0.3s内,逐步上升至100%亮度值,此时I3为最大输出电流即100%,保持照明3s;
步骤3、之后最低色温值为2700K在0.3s内,上升至最高色温值5600K;在同一时间段内,宽光谱红光光源逐步下降值50%的亮度值;
步骤4、重复所述步骤1-所述步骤3的步骤,进行循环照明。
对比例5
相比实施例1,采用实施例1相同的照明装置,具体方法:
步骤1、控制I1为0%最小电流输出,I2为95%的电流输出,I1和I2的比例为0:95%,保持最高色温值5600K,照明15s;同一时间段内,控制I3为最大输出电流的50%,宽光谱红光光源保持50%亮度值450 Lux进行同步照明15s;
步骤2、从最高色温值在1.8s内,降至最低色温值为2700K以使被照物体表面的光色发生明显变化,保持照明3s;此时,I1为100%,I2为0%,I1和I2的比例为100%:0;同时,宽光谱红光光源在1.8s内,逐步上升至100%亮度值,此时I3为最大输出电流即100%,保持照明3s;
步骤3、之后最低色温值为2700K在1.8s内,上升至最高色温值5600K;在同一时间段内,宽光谱红光光源逐步下降值50%的亮度值;
步骤4、重复所述步骤1-所述步骤3的步骤,进行循环照明。
对比例6
对比例6相比实施例1仅采用全色仿生白光光源作为照明光源,照明过程中,全色仿生白光光源的照明方法与实施例1完全相同。
对比例7
对比例7相比实施例1仅采用宽光谱红光光源作为照明光源,照明过程中,宽光谱红光光源的照明方法与实施例1相同。
对比例8
对比例8采用了与实施例1相同的全色仿生白光光源和宽光谱红光光源,不同之处在于,全色仿生白光光源的照明方法与实施例1相同,整个照明过程中,宽光谱红光光源的亮度值为900 Lux一直不变。
对比例9
对比例9采用了实施例1相同的全色仿生白光光源和宽光谱红光光源,全色仿生白光光源的照明方法与实施例1相同,不同之处在于,宽光谱红光光源采用全色仿生白光光源照明方式进行照明,具体如下。
包括以下步骤:
步骤1、控制I1为0%最小电流输出,I2为95%的电流输出,I1和I2的比例为0:95%,保持最高色温值5600K,照明15s;同一时间段内,I3为最大输出电流即100%,I4为最小输出电流即0%,宽光谱红光光源保持100%亮度值900 Lux进行同步照明15s;
步骤2、从最高色温值在1s内,降至最低色温值为2700K以使被照物体表面的光色发生明显变化,保持照明3s;此时,I1为100%,I2为0%,I1和I2的比例为100%:0;同时,宽光谱红光光源在1s内,逐步下降至50%亮度值450 Lux,此时I3为最大输出电流即50%,保持照明3s;
步骤3、之后最低色温值为2700K在1s内,上升至最高色温值5600K;在同一时间段内,宽光谱红光光源亮度值在1s内,上升至100%亮度值;
步骤4、重复所述步骤1-所述步骤3的步骤,进行循环照明。
测试1
在四川某地区以100位初中的部分学生为试验对象,100位参与人员男比性别比例、年龄、近视和非近视分布等因素具有统计学意义,各方面基本平衡,具有可比性。
每隔半个月邀请相同的100位试验人员同时分别进入13个教室内,13个教室内分别全部安装相同位置相同个数的实施例1-实施例4以及对比例1-对比例9的护眼装置及对应的照明方法。
在13个教室内,100位试验人员均连续看杂志期刊2.5个小时,整个用眼过程中未有打扰。
2.5个小时后,让实验对象对用眼疲劳性进行打分,用眼疲劳度高为低分,用眼舒适度高为
高分,设置0分-10分的标准,其中,10分为用眼舒适度高,0分为用眼舒适度差,分越高,用眼舒适度越高,测试结果如表1所示。
测试2
在四川某地区以80位18周岁-44周岁的青年人为试验对象,80为参与人员男比性别比例、年龄、近视和非近视分布等因素具有统计学意义,各方面基本平衡,具有可比性。
每隔半个月邀请相同的80位试验人员同时分别进入13个教室内,13个教室内分别全部安装相同位置相同个数的实施例1-实施例4以及对比例1-对比例9的护眼装置及对应的照明方法。
在13个教室内,80位试验人员均连续看杂志期刊2.5个小时,整个用眼过程中未有打扰。
2.5个小时后,让实验对象对用眼疲劳性进行打分,用眼疲劳度高为低分,用眼舒适度高为
高分,设置0分-10分的标准,其中,10分为用眼舒适度高,0分为用眼舒适度差,分越高,用眼舒适度越高,测试结果如表1所示。
测试3
在四川某地区以80位45周岁-59周岁的中年人为试验对象,80为参与人员男比性别比例、年龄、近视和非近视分布等因素具有统计学意义,各方面基本平衡,具有可比性。
每隔半个月邀请相同的80位试验人员同时分别进入13个教室内,13个教室内分别全部安装相同位置相同个数的实施例1-实施例4以及对比例1-对比例9的护眼装置及对应的照明方法。
在13个教室内,80位试验人员均连续看杂志期刊2.5个小时,整个用眼过程中未有打扰。
2.5个小时后,让实验对象对用眼疲劳性进行打分,用眼疲劳度高为低分,用眼舒适度高为
高分,设置0分-10分的标准,其中,10分为用眼舒适度高,0分为用眼舒适度差,分越高,用眼舒适度越高,测试结果如表1所示。
测试4
在四川某地区以60位65周岁-80周岁的老年人为试验对象,60为参与人员男比性别比例、年龄、近视和非近视分布等因素具有统计学意义,各方面基本平衡,具有可比性。
每隔半个月邀请相同的60位试验人员同时分别进入13个教室内,13个教室内分别全部安装相同位置相同个数的实施例1-实施例4以及对比例1-对比例9的护眼装置及对应的照明方法。
在13个教室内,60位试验人员均连续看杂志期刊2.5个小时,整个用眼过程中未有打扰。
2.5个小时后,让实验对象对用眼疲劳性进行打分,并去掉最大值和最小值后计算平均分值。用眼疲劳度高为低分,用眼舒适度高为高分,设置0分-10分的标准,其中,10分为用眼舒适度高,0分为用眼舒适度差,分越高,用眼舒适度越高,测试结果如表1所示。
表1
从表1的测试结果来看,实施例1-3采用本发明的技术方案,对于各个年龄段的人缓解眼疲劳性得分可达9.0分,同时以全色仿生白光光源和宽光谱红光光源为照明光源,并通过针对性调整了照明光源和照明过程中的光源亮度值变化方法,在优异的光源照明下,仿生态变化亮度,实现“重置”人眼的主动调节眼轴功能,以及调节视觉感知的光色成像,降低眼部睫状肌向前拉动眼球,控制眼轴变化量,共同作用下,可对各个年龄段的人达到保护眼睛、减缓眼睛疲劳的效果,取得了意想不到的技术效果。实施例4增加了远红外光源,对缓解眼疲劳的效果也有更好的改善。对比例1-对比例9未采用本申请的全色仿生白光光源或未采用本申请的照明方法,缓解眼疲劳的效果明显降低,尤其发现,初中生阶段青少年眼睛发育与成年人眼睛发育状态情况有所不同,全色仿生白光光源+照明方法对初中生阶段青少年以外的各个年龄段的成年人的护眼效果明显下降。
本发明提供了一种缓解眼疲劳的照明方法,采用高拟合自然光的全色仿生白光光源和宽光谱红光光源作为照明光源,宽光谱红光光源产生的红光有效波段的波长为600nm~700nm中的至少一种波长,红光波段的光功率大于或等于最大光功率的80%;全色仿生白光光源提供优异的光源与自然光具有高度的相似度,使得用眼照明环境更近似于自然光照环境,全色仿生白光光源照明条件下,人眼适应性更强,处于一个自然放松的状态,会改善用眼疲劳。同时,本申请将宽光谱红光光源作为一个加强辅助光源,宽光谱红光光源在照明过程中采用同步动态照明,调节视觉感知的光色成像,降低眼部睫状肌向前拉动眼球,控制眼轴变化量;通过提供全色仿生白光光源的照明环境再配合红光的动态照明控制眼轴变化量,能够使各个年龄段人均能达到保护眼睛、减缓眼睛疲劳的效果。
实施例5
一种LED护眼照明的装置,包括控制模块、驱动电源模块、高显指白光光源组模块和宽光谱红光光源组模块;
所述高显指白光光源组模块包括低色温高显指白光光源组和高色温高显指白光光源组,所述宽光谱红光光源组模块包括宽光谱红光光源组,所述驱动电源模块分别与所述低色温高显指白光光源组和高色温高显指白光光源组以及宽光谱红光光源组进行电性连接;所述控制模块用于将所述低色温高显指白光光源组的电流I4大小信号和所述高色温高显指白光光源组的电流I5大小信号以及所述宽光谱红光光源组的电流I6大小信号同时提供给所述驱动电源模块;所述驱动电源模块用于根据接收的电流I4大小信号、电流I5大小信号和电流I6大小信号生成电流I4、电流I5和电流I6分别驱动所述低色温高显指白光光源组、所述高色温高显指白光光源组以及宽光谱红光光源组,从而实现高显指白光光源亮度的调整以及宽光谱红光光源组亮度的变化。
优选地,所述控制模块包括光传感器。
优选地,还包括红外遥控器,所述控制模块包括红外接收装置,所述红外接收装置用于接收所述红外遥控器的遥控信号,根据遥控信号,所述控制模块生成电流I1大小信号和电流I2大小信号以及I3大小信号。
具体的,所述低色温高显指白光光源组由18颗显指色值数大于90的(单颗功率为0.5W)白光LED光源组成,色温为2700K。
具体的,所述高色温高显指白光光源由18颗显色指数大于90(单颗功率为0.5W)白光LED光源组成,色温为5600K。
具体的,宽光谱红光光源组模块,由18颗串联的红光有效波段的波长范围为600nm~710nm的LED灯珠组成。宽光谱红光光源组模块的电流为I3。低色温宽光谱红光光源均匀布置在低色温高显指白光光源内。
采用上述照明装置进行照明的方法,包括以下步骤:
步骤1、控制I1为最小输出电流即0%,I2为最大输出电流的95%,或控制I1为最大输出电流即100%,I2为最小输出电流即0%,保持100%亮度值为900Lux,照明15s;
同一时间段内,控制I3为最大输出电流即50%,宽光谱红光光源保持50%亮度值450Lux进行同步照明15s;
步骤2、高显指白光光源从100%亮度值在0.8s内,降至的亮度值为270 Lux,此时,I1为0%,I2为最大输出电流的27%;或I1为最大输出电流的30%,I2为0%,保持照明3s;同时,宽光谱红光光源在0.8s内,逐步上升至100%亮度值,此时I3为最大输出电流即100%,保持照明3s;
步骤3、高显指白光光源之后亮度值在0.8s内,上升至100%亮度值; 在同一时间段内,宽光谱红光光源逐步下降值50%的亮度值;
步骤4、高显指白光光源和宽光谱红光光源重复所述步骤1-所述步骤3的步骤,进行循环同步照明。
实施例6
实施例6采用实施例5相同的LED护眼照明装置。
具体的,所述低色温高显指白光光源组由18颗高显指(单颗功率为0.5W)白光LED光源组成,色温为3000K。
具体的,所述高色温高显指白光光源由18颗高显指(单颗功率为0.5W)白光LED光源组成,色温为4200K。
具体的,宽光谱红光光源组模块,由18颗串联的红光有效波段的波长范围为600nm~710nm的LED灯珠组成。宽光谱红光光源组模块的电流为I3。低色温宽光谱红光光源均匀布置在低色温高显指白光光源内。
采用上述照明装置进行照明的方法,包括以下步骤:
步骤1、控制I1为最小输出电流即0%,I2为最大输出电流的84%,保持100%亮度值为800Lux,照明8s;
同一时间段内,控制I3为最大输出电流即20%,宽光谱红光光源保持20%亮度值200Lux进行同步照明8s;
步骤2、高显指白光光源从100%亮度值在1.2s内,降至的亮度值为200 Lux,此时,I1为0%,I2为最大输出电流的21%;保持照明3s;同时,宽光谱红光光源在1.2s内,逐步上升至100%亮度值1000Lux,此时I3为最大输出电流即100%,保持照明3s;
步骤3、高显指白光光源之后亮度值在1.2s内,上升至100%亮度值; 在同一时间段内,宽光谱红光光源逐步下降值20%的亮度值;
步骤4、高显指白光光源和宽光谱红光光源重复所述步骤1-所述步骤3的步骤,进行循环同步照明。
实施例7
实施例7采用了实施例5完全相同的LED护眼照明装置,高显指白光光源组模块和宽光谱红光光源组模块与实施例5相同。
照明的方法包括以下步骤:照明过程中,高显指白光光源亮度值保持在900Lux不变;宽光谱红光光源的亮度发生循环照明变化,具体如下:
步骤1、控制I1为最小输出电流即0%,I2为最大输出电流的95%,或控制I1为最大输出电流即100%,I2为最小输出电流即0%,保持100%亮度值为900Lux,一直照明;
同一时间段内,控制I3为最大输出电流即50%,宽光谱红光光源保持50%亮度值450Lux进行照明15s;
步骤2、宽光谱红光光源在0.8s内,逐步上升至100%亮度值,此时I3为最大输出电流即100%,保持照明5s;
步骤3、之后亮度值在0.8s内,宽光谱红光光源逐步下降值50%的亮度值;
步骤4、宽光谱红光光源重复所述步骤1-所述步骤3的步骤,进行循环同步照明。
实施例8
实施例8采用实施例5相同的LED护眼照明装置。
低色温高显指白光光源组、高色温高显指白光光源组以及宽光谱红光光源组与实施例5相同。不同之处在于,照明光源还包括远红外光源模块,包括6个远红外灯珠。所述远红外光源的有效波段的波长为4μm~25μm,所述远红外光源的亮度值为300 Lux。在照明过程中,高显指白光光源和宽光谱红光光源与实施例5采用相同的照明方式,实施例8中,远红外光源亮度值保持不变与宽光谱红光光源进行同步照明。
对比例10
相比实施例5,改变为普通LED光源照射,非高显指白光光源,采用实施例5相同的照明方法。
其中普通LED光源,与同色温自然光谱的近似度为50%,640~650nm的光功率为0.65;650~660nm的光功率为0.44;660~670nm的光功率为0.36;670~700nm的光功率为0.21。
对比例11
相比实施例5,对比例11中仅采用高显指白光光源作为照明光源,在照明过程中,亮度值不变。
对比例12
相比实施例5,采用实施例5相同的照明装置。照明过程中,高显指光源亮度值为900Lux,一直保持不变;红光光源亮度值为900 Lux一直不变。
对比例13
相比实施例5,采用实施例5相同的照明装置,照明过程中,具体方法:
步骤1、控制I1为最小输出电流即0%,I2为最大输出电流的95%,或控制I1为最大输出电流即100%,I2为最小输出电流即0%,保持100%亮度值为900Lux,照明15s;
同一时间段内,控制I3为最大输出电流即50%,I4为最小输出电流即0%,宽光谱红光光源保持50%亮度值450 Lux进行同步照明15s;
步骤2、高显指白光光源从100%亮度值在0.3s内,降至的亮度值为270 Lux,此时,I1为0%,I2为最大输出电流的27%;或I1为最大输出电流的30%,I2为0%,保持照明5s;同时,宽光谱红光光源在0.3s内,逐步上升至100%亮度值,此时I3为最大输出电流即100%,I4为最小输出电流即0%,保持照明5s;
步骤3、高显指白光光源之后亮度值在0.3s内,上升至100%亮度值; 在同一时间段内,宽光谱红光光源逐步下降值50%的亮度值;
步骤4、高显指白光光源和宽光谱红光光源重复所述步骤1-所述步骤3的步骤,进行循环同步照明。
对比例14
相比实施例5,采用实施例5相同的照明装置,具体方法:
步骤1、控制I1为最小输出电流即0%,I2为最大输出电流的95%,或控制I1为最大输出电流即100%,I2为最小输出电流即0%,保持100%亮度值为900Lux,照明15s;
同一时间段内,控制I3为最大输出电流即50%,I4为最小输出电流即0%,宽光谱红光光源保持50%亮度值450 Lux进行同步照明15s;
步骤2、高显指白光光源从100%亮度值在1.8s内,降至的亮度值为270 Lux,此时,I1为0%,I2为最大输出电流的27%;或I1为最大输出电流的30%,I2为0%,保持照明5s;同时,宽光谱红光光源在2.8s内,逐步上升至100%亮度值,此时I3为最大输出电流即100%,I4为最小输出电流即0%,保持照明5s;
步骤3、高显指白光光源之后亮度值在2.8s内,上升至100%亮度值; 在同一时间段内,宽光谱红光光源逐步下降值50%的亮度值;
步骤4、高显指白光光源和宽光谱红光光源重复所述步骤1-所述步骤3的步骤,进行循环同步照明。
对比例15
对比例15相比实施例5仅采用高显指白光光源作为照明光源,照明过程中,高显指白光光源的照明方法与实施例5完全相同。
对比例16
对比例16相比实施例5仅采用宽光谱红光光源作为照明光源,照明过程中,宽光谱红光光源的照明方法与实施例5相同。
对比例17
对比例17采用了与实施例5相同的高显指白光光源和宽光谱红光光源,不同之处在于,高显指白光光源的照明方法与实施例5相同,整个照明过程中,宽光谱红光光源的亮度值为900 Lux一直不变。
对比例18
对比例18采用了实施例5相同的高显指白光光源和宽光谱红光光源,高显指白光光源的照明方法与实施例5相同,不同之处在于,宽光谱红光光源采用高显指白光光源照明方式进行照明,具体如下。
包括以下步骤:
步骤1、控制I1为最小输出电流即0%,I2为最大输出电流的95%,或控制I1为最大输出电流即100%,I2为最小输出电流即0%,保持100%亮度值为900Lux,照明15s;
I3为最大输出电流即100%,I4为最小输出电流即0%,宽光谱红光光源保持100%亮度值900 Lux进行同步照明15s;
步骤2、高显指白光光源从100%亮度值在0.8s内,降至的亮度值为270 Lux,此时,I1为0%,I2为最大输出电流的27%;或I1为最大输出电流的30%,I2为0%,保持照明5s;同时,宽光谱红光光源在0.8s内,逐步下降至50%亮度值450 Lux,此时I3为最大输出电流即50%,I4为最小输出电流即0%,保持照明5s;
步骤3、高显指白光光源和宽光谱红光光源均是亮度值在0.8s内,上升至100%亮度值;
步骤4、高显指白光光源和宽光谱红光光源重复所述步骤1-所述步骤3的步骤,进行循环同步照明。
测试5
在四川某地区以100位初中的部分学生为试验对象,100位参与人员男比性别比例、年龄、近视和非近视分布等因素具有统计学意义,各方面基本平衡,具有可比性。
每隔半个月邀请相同的100位试验人员同时分别进入13个教室内,13个教室内分别全部安装相同位置相同个数的实施例5-实施例8以及对比例10-对比例18的护眼装置及对应的照明方法。
在13个教室内,100位试验人员均连续看杂志期刊2.5个小时,整个用眼过程中未有打扰。
2.5个小时后,让实验对象对用眼疲劳性进行打分,用眼疲劳度高为低分,用眼舒适度高为
高分,设置0分-10分的标准,其中,10分为用眼舒适度高,0分为用眼舒适度差,分越高,用眼舒适度越高,测试结果如表2所示。
测试6
在四川某地区以80位18周岁-44周岁的青年人为试验对象,80为参与人员男比性别比例、年龄、近视和非近视分布等因素具有统计学意义,各方面基本平衡,具有可比性。
每隔半个月邀请相同的80位试验人员同时分别进入13个教室内,13个教室内分别全部安装相同位置相同个数的实施例5-实施例8以及对比例10-对比例18的护眼装置及对应的照明方法。
在13个教室内,80位试验人员均连续看杂志期刊2.5个小时,整个用眼过程中未有打扰。
2.5个小时后,让实验对象对用眼疲劳性进行打分,用眼疲劳度高为低分,用眼舒适度高为
高分,设置0分-10分的标准,其中,10分为用眼舒适度高,0分为用眼舒适度差,分越高,用眼舒适度越高,测试结果如表2所示。
测试7
在四川某地区以80位45周岁-59周岁的中年人为试验对象,80为参与人员男比性别比例、年龄、近视和非近视分布等因素具有统计学意义,各方面基本平衡,具有可比性。
每隔半个月邀请相同的80位试验人员同时分别进入13个教室内,13个教室内分别全部安装相同位置相同个数的实施例5-实施例8以及对比例10-对比例18的护眼装置及对应的照明方法。
在13个教室内,80位试验人员均连续看杂志期刊2.5个小时,整个用眼过程中未有打扰。
2.5个小时后,让实验对象对用眼疲劳性进行打分,用眼疲劳度高为低分,用眼舒适度高为
高分,设置0分-10分的标准,其中,10分为用眼舒适度高,0分为用眼舒适度差,分越高,用眼舒适度越高,测试结果如表2所示。
测试8
在四川某地区以60位65周岁-80周岁的老年人为试验对象,60为参与人员男比性别比例、年龄、近视和非近视分布等因素具有统计学意义,各方面基本平衡,具有可比性。
每隔半个月邀请相同的60位试验人员同时分别进入13个教室内,13个教室内分别全部安装相同位置相同个数的实施例5-实施例8以及对比例10-对比例18的护眼装置及对应的照明方法。
在13个教室内,60位试验人员均连续看杂志期刊2.5个小时,整个用眼过程中未有打扰。
2.5个小时后,让实验对象对用眼疲劳性进行打分,并去掉最大值和最小值后计算平均分值。用眼疲劳度高为低分,用眼舒适度高为高分,设置0分-10分的标准,其中,10分为用眼舒适度高,0分为用眼舒适度差,分越高,用眼舒适度越高,测试结果如表2所示。
表2
从表2的测试结果来看,实施例5-7采用本发明的技术方案,对于各个年龄段的人缓解眼疲劳性得分可达9.0分,同时以高显指白光光源和宽光谱红光光源为照明光源,并通过针对性调整了照明光源和照明过程中的光源亮度值变化方法,在优异的光源照明下,仿生态变化亮度,实现“重置”人眼的主动调节眼轴功能,以及调节视觉感知的光色成像,降低眼部睫状肌向前拉动眼球,控制眼轴变化量,共同作用下,可对各个年龄段的人达到保护眼睛、减缓眼睛疲劳的效果,取得了意想不到的技术效果。实施例8增加了远红外光源,对缓解眼疲劳的效果也有更好的改善。对比例10-对比例18未采用本申请的高显指白光光源或未采用本申请的照明方法,缓解眼疲劳的效果明显降低,尤其发现,初中生阶段青少年眼睛发育与成年人眼睛发育状态情况有所不同,高显指白光光源+照明方法对初中生阶段青少年以外的各个年龄段的成年人的护眼效果明显下降。
本发明提供了一种缓解眼疲劳的照明方法,采用高拟合自然光的高显指白光光源和宽光谱红光光源作为照明光源,宽光谱红光光源产生的红光有效波段的波长为600nm~700nm中的至少一种波长,高显指白光光源提供优异的光源与自然光具有较高的相似度,使得用眼照明环境更近似于自然光照环境,高显指白光光源照明条件下,人眼适应性较强,处于一个自然放松的状态,会改善用眼疲劳。同时,本申请将宽光谱红光光源作为一个加强辅助光源,宽光谱红光光源在照明过程中采用同步动态照明,调节视觉感知的光色成像,降低眼部睫状肌向前拉动眼球,控制眼轴变化量;通过提供高显指白光光源的照明环境再配合红光的动态照明控制眼轴变化量,能够使各个年龄段人均能达到保护眼睛、减缓眼睛疲劳的效果。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (17)

1.一种缓解眼疲劳的照明方法,其特征在于,照明光源采用白光光源和红光光源;其中,所述白光光源为全色仿生白光光源或高显指白光光源,所述红光光源为宽光谱红光光源;
宽光谱红光光源产生的红光有效波段的波长范围为600nm~710nm,红光波段的光功率大于或等于最大光功率的80%;全色仿生白光光源的光谱为光源辐射功率分布曲线与同色温的自然光谱的近似度达到95%±5%的光谱,且全色仿生白光光源的光谱显色指数大于95,R1~R15均大于90;高显指白光光源发光的显色指数>90;
(1)、当白光光源为全色仿生白光光源时,照明过程中,全色仿生白光光源的色温静态不变或色温动态变化照明;同时,宽光谱红光光源采用亮度动态变化照明;
红光亮度动态照明时包括以下步骤,首先保持50%以下的亮度值照明,然后在0.6s~1.2s内,上升至100%亮度值,保持照明,之后在0.6s~1.2s内下降至50%以下的亮度值,重复循环照明;
其中,红光亮度上升时,全色仿生白光光源色温不变或色温同步下降;红光亮度下降时,全色仿生白光光源色温不变或色温同步上升;
(2)、当白光光源为高显指白光光源时,照明过程中,高显指白光光源采用亮度静态不变照明或亮度动态变化照明;同时,宽光谱红光光源采用亮度动态变化照明;
红光光源照明过程为,首先保持50%以下的亮度值照明,然后在0.8s~1.2s内,上升至100%亮度值,保持照明,之后在0.8s~1.2s内下降至50%以下的亮度值,重复循环照明;
其中,红光光源亮度上升时,高显指白光光源亮度不变或亮度同步下降;红光光源亮度下降时,高显指 白光光源亮度不变或亮度同步上升。
2.根据权利要求1所述的缓解眼疲劳的照明方法,其特征在于,当白光光源为全色仿生白光光源时,照明过程中,全色仿生白光光源色温值保持不变;同时,
宽光谱红光光源采用动态亮度照明,具体包括以下步骤:
步骤1、保持50%以下的亮度值,照明8s~15s;
步骤2、在0.6s~1.2s内,上升至100%亮度值;保持照明3s~4s;
步骤3、之后亮度值在0.6s~1.2s内,下降至50%以下的亮度值;
步骤4、重复所述步骤1~所述步骤3的步骤,进行循环照明。
3.根据权利要求1所述的缓解眼疲劳的照明方法,其特征在于,当白光光源为全色仿生白光光源时,照明过程中,包括以下步骤:
步骤1、全色仿生白光光源保持最高色温值,照明8s~15s;同一时间段内,宽光谱红光光源保持50%以下的亮度值进行同步照明;
步骤2、全色仿生白光光源从最高色温值在0.6s~1.2s内,降至最低色温值;在同一时间段内,宽光谱红光光源逐步上升至100%亮度值;然后全色仿生白光光源和宽光谱红光光源同步保持照明3s~4s;
步骤3、全色仿生白光光源之后最低色温值在0.6s~1.2s内,上升至最高色温值;在同一时间段内,宽光谱红光光源逐步下降至50%以下的亮度值;
步骤4、全色仿生白光光源和宽光谱红光光源分别重复所述步骤1~所述步骤3的步骤,进行循环同步照明;
其中,最高色温值与最低色温值的差值不小于600K。
4.根据权利要求3所述的缓解眼疲劳的照明方法,其特征在于,所述步骤1中,宽光谱红光光源保持20%-50%的亮度值与全色仿生白光光源同步照明。
5.根据权利要求3所述的缓解眼疲劳的照明方法,其特征在于,所述步骤1中,全色仿生白光光源和宽光谱红光光源照明时间为8s~12s。
6.根据权利要求3所述的缓解眼疲劳的照明方法,其特征在于,所述步骤2中,全色仿生白光光源色温值变化时间和宽光谱红光光源亮度值变化照明时间均为0.8s~1.1s,同步保持照明时间为3s~4s。
7.根据权利要求3所述的缓解眼疲劳的照明方法,其特征在于,所述步骤3中,全色仿生白光光源色温值变化时间和宽光谱红光光源亮度值变化照明时间均为0.8s~1.1s。
8.根据权利要求1所述的缓解眼疲劳的照明方法,其特征在于,照明光源还包括远红外光源,所述远红外光源的有效波段的波长为4μm~25μm;在照明过程中,远红外光源亮度值保持不变与宽光谱红光光源进行同步照明。
9. 根据权利要求8所述的缓解眼疲劳的照明方法,其特征在于,所述远红外光源的有效波段的波长为8μm~14μm;所述远红外光源的亮度值为300 Lux~600 Lux。
10.根据权利要求1所述的缓解眼疲劳的照明方法,其特征在于,当白光光源为高显指白光光源时,照明过程中,高显指白光光源亮度值保持不变;同时,
宽光谱红光光源采用动态亮度照明,具体包括以下步骤:
步骤S1、保持50%以下的亮度值,照明8s~15s;
步骤S2、在0.8s~1.2s内,上升至100%亮度值;保持照明3s~4s;
步骤S3、之后亮度值在0.8s~1.2s内,下降至50%以下的亮度值;
步骤S4、重复所述步骤S1~所述步骤S3的步骤,进行循环照明。
11.根据权利要求1所述的缓解眼疲劳的照明方法,其特征在于,当白光光源为高显指白光光源时,照明过程中,包括以下步骤:
步骤S1、高显指白光光源保持100%亮度值,照明8s~15s;同一时间段内,宽光谱红光光源保持50%以下的亮度值进行同步照明;
步骤S2、高显指白光光源从100%亮度值在0.8s~1.2s内,降至25%~45%的亮度值;在同一时间段内,宽光谱红光光源逐步上升至100%亮度值;然后高显指白光光源和宽光谱红光光源同步保持照明3s~4s;
步骤S3、高显指白光光源之后亮度值在0.8s~1.2s内,上升至100%亮度值;在同一时间段内,宽光谱红光光源逐步下降至50%以下的亮度值;
步骤S4、高显指白光光源和宽光谱红光光源分别重复所述步骤S1~所述步骤S3的步骤,进行循环同步照明。
12.根据权利要求11所述的缓解眼疲劳的照明方法,其特征在于,所述步骤S1中,宽光谱红光光源保持20%-50%的亮度值与高显指白光光源同步照明。
13.根据权利要求11所述的缓解眼疲劳的照明方法,其特征在于,所述步骤S1中,高显指白光光源和宽光谱红光光源照明时间均为8s~12s。
14.根据权利要求11所述的缓解眼疲劳的照明方法,其特征在于,所述步骤S2中,高显指白光光源和宽光谱红光光源亮度值变化照明时间为0.8s~1.1s,同步保持亮度不变的照明时间为3s~4s。
15.根据权利要求11所述的缓解眼疲劳的照明方法,其特征在于,所述步骤S3中,高显指白光光源和宽光谱红光光源亮度值变化照明时间为0.8s~1.1s。
16.一种如权利要求1-15任意一项所述的缓解眼疲劳的照明方法采用的照明装置,其特征在于,当白光光源为全色仿生白光光源时,包括控制模块、驱动电源模块、全色仿生白光光源组模块和宽光谱红光光源组模块;
所述全色仿生白光光源组模块包括低色温全色仿生白光光源组和高色温全色仿生白光光源组,所述宽光谱红光光源组模块包括宽光谱红光光源组;
所述驱动电源模块分别与所述低色温全色仿生白光光源组和高色温全色仿生白光光源组以及宽光谱红光光源组进行电性连接;所述控制模块用于将所述低色温全色仿生白光光源组的电流I1与所述高色温全色仿生白光光源组的电流I2的比例信号以及所述宽光谱红光光源组的电流I3大小信号同时提供给所述驱动电源模块;所述驱动电源模块用于根据接收的电流I1和电流I2的比例关系信号和电流I3大小信号生成电流I1、电流I2和电流I3以分别驱动所述低色温全色仿生白光光源组、所述高色温全色仿生白光光源组以及宽光谱红光光源组,从而实现全色仿生白光光源色温的调整以及宽光谱红光光源组模块的亮度的变化;
当白光光源为高显指白光光源时,包括控制模块、驱动电源模块、高显指白光光源组模块和宽光谱红光光源组模块;
所述高显指白光光源组模块包括低色温高显指白光光源组和高色温高显指白光光源组,所述宽光谱红光光源组模块包括宽光谱红光光源组,所述驱动电源模块分别与所述低色温高显指白光光源组和高色温高显指白光光源组以及宽光谱红光光源组进行电性连接;所述控制模块用于将所述低色温高显指白光光源组的电流I4大小信号和所述高色温高显指白光光源组的电流I5大小信号以及所述宽光谱红光光源组的电流I6大小信号同时提供给所述驱动电源模块;所述驱动电源模块用于根据接收的电流I4大小信号、电流I5大小信号和电流I6大小信号生成电流I4、电流I5和电流I6以分别驱动所述低色温高显指白光光源组、所述高色温高显指白光光源组以及宽光谱红光光源组,从而实现高显指白光光源亮度的调整以及宽光谱红光光源组亮度的变化。
17.一种如权利要求1-15任意一项所述的缓解眼疲劳的照明方法在面板灯、台灯、吸顶灯、落地灯、筒灯、PAR和射灯中的应用。
CN202311210003.3A 2023-09-19 2023-09-19 一种缓解眼疲劳的照明方法及照明装置、应用 Active CN116928626B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311210003.3A CN116928626B (zh) 2023-09-19 2023-09-19 一种缓解眼疲劳的照明方法及照明装置、应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311210003.3A CN116928626B (zh) 2023-09-19 2023-09-19 一种缓解眼疲劳的照明方法及照明装置、应用

Publications (2)

Publication Number Publication Date
CN116928626A true CN116928626A (zh) 2023-10-24
CN116928626B CN116928626B (zh) 2024-01-02

Family

ID=88379330

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311210003.3A Active CN116928626B (zh) 2023-09-19 2023-09-19 一种缓解眼疲劳的照明方法及照明装置、应用

Country Status (1)

Country Link
CN (1) CN116928626B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0790457A2 (en) * 1996-02-14 1997-08-20 ARTEMIDE S.p.A. Polychrome lighting device, particularly for the decorative lighting of rooms and the like
EP1391650A2 (en) * 1998-09-04 2004-02-25 Wynne Willson Gottelier Limited Apparatus and method for providing a linear effect
WO2016124106A1 (zh) * 2015-02-04 2016-08-11 深圳大学 一种高显色指数的led光源模组及led灯具
CN109268773A (zh) * 2017-07-17 2019-01-25 emz-汉拿两合有限公司 用于家用电器的可变色温照明设备
CN115499965A (zh) * 2022-11-21 2022-12-20 四川世纪和光科技发展有限公司 一种led护眼照明使用方法及其装置
CN115665918A (zh) * 2022-11-21 2023-01-31 四川世纪和光科技发展有限公司 一种led智能控制系统及照明方法
CN115665919A (zh) * 2022-11-21 2023-01-31 四川世纪和光科技发展有限公司 一种led可调色温装置及使用方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0790457A2 (en) * 1996-02-14 1997-08-20 ARTEMIDE S.p.A. Polychrome lighting device, particularly for the decorative lighting of rooms and the like
EP1391650A2 (en) * 1998-09-04 2004-02-25 Wynne Willson Gottelier Limited Apparatus and method for providing a linear effect
WO2016124106A1 (zh) * 2015-02-04 2016-08-11 深圳大学 一种高显色指数的led光源模组及led灯具
CN109268773A (zh) * 2017-07-17 2019-01-25 emz-汉拿两合有限公司 用于家用电器的可变色温照明设备
CN115499965A (zh) * 2022-11-21 2022-12-20 四川世纪和光科技发展有限公司 一种led护眼照明使用方法及其装置
CN115665918A (zh) * 2022-11-21 2023-01-31 四川世纪和光科技发展有限公司 一种led智能控制系统及照明方法
CN115665919A (zh) * 2022-11-21 2023-01-31 四川世纪和光科技发展有限公司 一种led可调色温装置及使用方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HYO-JUN LEE ET AL.: "Multiple Routes of Light Signaling during Root Photomorphogenesis", 《TRENDS IN PLANT SCIENCE》, vol. 22, no. 9, pages 803 - 812, XP085170473, DOI: 10.1016/j.tplants.2017.06.009 *
田会娟 等: "红/绿/蓝/暖白4色LED白光温度光谱优化方法", 《光学学报》, vol. 43, no. 09, pages 269 - 276 *

Also Published As

Publication number Publication date
CN116928626B (zh) 2024-01-02

Similar Documents

Publication Publication Date Title
CN109000160A (zh) 一种准自然光led光源及照明装置
WO2024109779A1 (zh) 一种可调眼轴的led灯具及其使用方法
WO2024109783A1 (zh) 一种led护眼照明使用方法及其装置
WO2024109780A1 (zh) 一种led可调色温装置及使用方法
WO2024109775A1 (zh) 一种led智能控制系统及照明方法
CN112020168A (zh) 协同动态照明方法及其可调光直流白炽灯
CN116928626B (zh) 一种缓解眼疲劳的照明方法及照明装置、应用
CN117346106A (zh) 一种护眼照明方法及照明装置、应用
CN117346107A (zh) 一种视觉保护的照明方法及照明装置、应用
US1877512A (en) Method of producing normal light effects
CN115499969B (zh) 一种led视觉保护方法及其装置
WO2024109898A1 (zh) 一种全色仿生护眼台灯及其照明方法
CN221035309U (zh) 一种具有缓解眼疲劳功能的led发光板及led照明装置
CN221004758U (zh) 一种led光源结构及led照明装置
CN221035424U (zh) 一种具有视觉保护功能的光源板及照明装置
CN221035308U (zh) 一种全色仿生led发光板及照明装置
CN221004759U (zh) 一种护眼led发光板及led照明装置
CN114501722B (zh) 节律光谱的调制方法
WO2024109893A1 (zh) 一种视力保护面板灯、面板灯组及其照明方法
CN115776745A (zh) 一种led护眼吸顶灯及控制方法
CN219177603U (zh) 一种多功能落地灯
US20240060606A1 (en) White light luminaire for everyday activities that regenerates the retina of the eye in real time, damaged by blue light
CN112601316B (zh) 一种全光谱台灯照明方法及台灯
CN221004760U (zh) 一种护眼照明led发光板及照明装置
Jacobs SynthLight handbook

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant