WO2024109775A1 - 一种led智能控制系统及照明方法 - Google Patents

一种led智能控制系统及照明方法 Download PDF

Info

Publication number
WO2024109775A1
WO2024109775A1 PCT/CN2023/133076 CN2023133076W WO2024109775A1 WO 2024109775 A1 WO2024109775 A1 WO 2024109775A1 CN 2023133076 W CN2023133076 W CN 2023133076W WO 2024109775 A1 WO2024109775 A1 WO 2024109775A1
Authority
WO
WIPO (PCT)
Prior art keywords
color temperature
light source
source group
lighting
value
Prior art date
Application number
PCT/CN2023/133076
Other languages
English (en)
French (fr)
Inventor
杨小琴
曾胜
曾骄阳
陈华
李刚
陈道蓉
曾小东
Original Assignee
四川世纪和光科技发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四川世纪和光科技发展有限公司 filed Critical 四川世纪和光科技发展有限公司
Publication of WO2024109775A1 publication Critical patent/WO2024109775A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/20Controlling the colour of the light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Definitions

  • the present application relates to the technical field of LED intelligent control systems, and in particular to an LED intelligent control system and a lighting method.
  • the human eye was formed and evolved under natural lighting conditions, and the adaptability of vision to natural light is irreplaceable. As shown in Figure 1, when the eyes look at pure blue light, the eyes will open wider unnaturally, so that the image of the blue light falls on the retina; when the eyes look at pure red light, the eyes will squint unnaturally, so that the image of the red light falls on the retina. There is a lack of red light spectrum in the ordinary artificial lighting spectrum, and the amount of blue light spectrum is too high. After long-term use of the eyes, it can not only damage the retinal macular area, but also easily cause "eye fatigue" and form myopia. Strengthening the red light spectrum in the lighting spectrum and weakening the blue light spectrum are of great significance in reducing eye fatigue and preventing myopia.
  • an eye protection lighting method that can well realize an adjustable eye axis method that conforms to visual habits to protect the eyes, relieve eye fatigue, and reduce or prevent myopia.
  • the purpose of the present application is to provide an LED intelligent control system and a lighting method for the problem that the eyes are easily fatigued after long-term viewing when the human eye is reading or writing, especially when the light source lacks red light or the red light spectrum is weak, which easily leads to the elongation of the eye axis and the occurrence of myopia.
  • the LED intelligent control system of the present application adopts full-color bionics formed by white light + red light as the light source, and provides bionic visual control with independent dimming during the lighting process, turning static light into dynamic light.
  • the spectrum remains unchanged when the brightness changes and does not cause visual adaptation, so that the eyes blink and the eyeballs focus and reset autonomously, thereby realizing active adjustment of the eye axis in accordance with visual habits, while protecting the eyes, alleviating eye fatigue, and reducing or preventing myopia.
  • the cost is low and it is easy to promote and apply.
  • An LED intelligent control system comprises a control module, a driving power module and a light source group module;
  • the light source group module comprises a low color temperature light source group and a high color temperature light source group,
  • the driving power module is electrically connected to the low color temperature light source group and the high color temperature light source group respectively, and both the low color temperature light source group and the high color temperature light source group are full-color bionic light sources;
  • the control module is used to provide the current I1 magnitude signal of the low color temperature light source group and the current I2 magnitude signal of the high color temperature light source group to the driving power module at the same time, and the driving power module is used to drive the low color temperature light source group and the high color temperature light source group respectively according to the received current I1 magnitude signal and current I2 magnitude signal, and the change of the lighting brightness can be adjusted by simultaneously adjusting the magnitude of the current I1 of the low color temperature light source group and the magnitude of the current I2 of the high color temperature light source group;
  • the control module is used to provide the current ratio signal of the low color temperature light source group and the high color temperature light source group to the driving power supply module, and the driving power supply module is used to generate driving currents I1 and I2 according to the ratio of the received current I1 and the current I2, and drive the low color temperature light source group and the high color temperature light source group respectively, and the change of the lighting color temperature value can be adjusted by adjusting the current ratio of the low color temperature light source group and the high color temperature light source group;
  • both the low color temperature light source group and the high color temperature light source group are full-color bionic light sources; both the low color temperature light source group and the high color temperature light source group are composed of at least one LED white light source group and at least one LED red light source group; The ratio of the total power of all the LED white light source groups to the total power of all the LED red light source groups is 7 to 20:1.
  • the present application provides an LED intelligent control system, comprising a control module, a driving power module and a light source group module;
  • the light source group module comprises a low color temperature light source group and a high color temperature light source group, and the driving power module is electrically connected to the low color temperature light source group and the high color temperature light source group respectively;
  • the low color temperature light source group and the high color temperature light source group are both full-color bionic light sources;
  • the control module is used to simultaneously provide the current I1 magnitude signal of the low color temperature light source group and the current I2 magnitude signal of the high color temperature light source group to the driving power module, or to provide the current ratio signal of the low color temperature light source group and the high color temperature light source group to the driving power module;
  • the driving power module is used to generate driving currents I1 and I2 according to the received current I1 magnitude signal and current I2 magnitude signal or the ratio of current I1 and current I2 to drive the low color temperature light source group and the high color temperature light source group respectively; thereby, the change of the
  • the low color temperature light source group and the high color temperature light source group are both composed of a combination of a white light source group and a red light source group.
  • the spectrum formed by the light source group of the LED intelligent control system is the spectrum of the full-color bionic light source.
  • the change of the lighting color temperature value can be adjusted by adjusting the current ratio passing through the low color temperature light source group and the high color temperature light source group; the change of the lighting brightness can be adjusted by simultaneously adjusting the magnitude of the current I1 of the low color temperature light source group and the magnitude of the current I2 of the high color temperature light source group; by adjusting the coordination of the change of the lighting color temperature value and the change of the brightness, the human eye can be caused to blink passively involuntarily, and the eyeball can focus and reset autonomously, so as to actively adjust the eye axis and prevent the eye axis from becoming longer.
  • the low color temperature light source group and the high color temperature light source group are both composed of at least one low color temperature LED white light source group and at least one LED red light source group with the same low color temperature value as the white light source group; the ratio of the total power of all the LED white light source groups to the total power of all the LED red light source groups is 7 to 20:1.
  • the color rendering index of the white light source is greater than 90, and the peak of the red light spectrum is 630nm ⁇ 640nm, or the light power distribution greater than 630nm ⁇ 640nm shows a downward trend, especially the light power distribution of 650nm ⁇ 700nm is seriously low.
  • the white light source includes a blue light chip and a phosphor excited by the blue light chip
  • the blue light chip includes a first chip with a peak wavelength of 452-457nm and a second chip with a peak wavelength of 463-467nm
  • the phosphor includes a first green powder with a peak wavelength between 510-514nm, a second green powder with a peak wavelength between 532-537nm and a red powder with a peak wavelength between 652-658nm; wherein the first chip and the second chip are electrically connected in parallel, the forward operating voltage difference between the first chip and the second chip is less than or equal to 5%, and the peak intensity ratio of the first chip and the second chip under the same working conditions is (1-1.2): (0.8-1); based on the total weight of the phosphor as 100%, the mass percentage of the first green powder is 5%-10%, the mass percentage of the second green powder is 82%-90%, and the mass percentage of the red powder is 3%-10%.
  • the red light source group for the white light source, compared with the natural spectrum of the same color temperature, there is insufficient (or missing) red light power distribution, and a red light source of the corresponding wavelength is selected, and the total power of all the LED white light source groups and the total power of all the LED red light source groups are specifically adjusted to 7 to 20:1, so that the (white light source + red light source) light power distribution is close to the natural spectrum.
  • the study found that a total power ratio that is too low or too high cannot meet the requirements of the full-color bionic light source spectrum.
  • the spectrum of the full-color bionic light source is a spectrum whose radiation power distribution curve is 70% to 80% similar to the natural spectrum of the same color temperature, and the spectral color rendering index of the full-color bionic light source is greater than 95, and R1 to R15 are all greater than 90.
  • the approximation of the light source radiation power distribution curve to the natural light with the same color temperature reaches 60% to 80%, which means that in any same wavelength band, the ratio of the smaller absolute light power to the larger absolute light power is 70% to 80%.
  • each of the LED white light source groups includes at least two LED white light sources, and each of the red light sources The source group includes at least two LED red light sources.
  • the ratio of the number of the LED white light sources to the number of the LED red light sources in the low color temperature light source group and the high color temperature light source group is 7 to 20:1.
  • the total power of all the LED white light source groups and the total power of all the LED red light source groups are 12-20:1, for example, 12:1; 13:1; 14:1; 15:1; 16:1; 17:1; 18:1; 19:1; 20:1.
  • control module includes an infrared receiving device, and includes an infrared remote controller, the control module includes an infrared receiving device, the infrared receiving device is used to receive the remote control signal of the infrared remote controller, and according to the remote control signal, the control module generates a current I1 magnitude signal and a current I2 magnitude signal, and a current I1 and current I2 ratio signal.
  • control module also includes a light sensor.
  • the low color temperature light source group is formed by connecting a plurality of low color temperature full-color bionic light sources in series, in parallel, or in series and parallel
  • the high color temperature light source group is formed by connecting a plurality of high color temperature full-color bionic light sources in series, in parallel, or in series and parallel.
  • the color temperature of the low color temperature light source group and the color temperature of the high color temperature light source group are two different color temperature values in the range of 2700K-5600K.
  • the color temperature of the low color temperature light source group and the color temperature of the high color temperature light source group are any two color temperature values in the range of 2700K-3000K, 4000K-4200K, 4700K-5200K and 5500K-6000K.
  • the color temperature of the low color temperature light source group is any color temperature value in the range of 2700K-3000K
  • the color temperature of the high color temperature light source group is any color temperature value in the range of 5500K-6000K.
  • Another purpose of the present application is to provide a method for using the above-mentioned LED intelligent control system.
  • a lighting method using the above-mentioned LED intelligent control system comprises the following steps:
  • Step 1 the lighting source gradually changes from the highest color temperature value to the lowest color temperature value.
  • the lighting maintains a 100% brightness value, and the color temperature gradient duration is 6s to 18s; then, the lowest color temperature value is maintained unchanged, and the lighting brightness value is reduced from 100% brightness value to 25% to 45% brightness value within 0.5s to 2s so that the illumination of the illuminated object surface is 150lim to 300lim, and the lighting is maintained for 2s to 6s; then the brightness value is increased to 100% brightness value within 0.5s to 2s;
  • Step 2 the lighting source gradually changes from the lowest color temperature value to the highest color temperature value.
  • the lighting maintains a 100% brightness value, and the color temperature gradual change time is 6s to 18s; then the highest color temperature value is maintained unchanged, and the lighting brightness decreases from 100% brightness value to 25% to 45% brightness value within 0.5s to 2s, and the lighting is maintained for 2s to 6s; then the brightness value rises to 100% brightness value within 0.5s to 2s;
  • Step 3 repeating the steps of step 1 to step 2 to perform cyclic lighting; wherein in step 1, the total lighting time is 12s to 22s, and in step 2, the total lighting time is 12s to 22s.
  • the lighting source adopted is a full-color bionic light source
  • the spectrum of the full-color bionic light source is a spectrum whose radiation power distribution curve of the light source is 60%-80% similar to the natural spectrum of the same color temperature, and the spectral color rendering index of the full-color bionic light source is greater than 95, and R1-R15 are all greater than 90;
  • the spectrum of the lighting source forms an existence mode of high-saturation red light and high-saturation cyan light, and according to the imaging principle of color on the retina, the full-color bionic light source helps to adjust the visual focal length and eye axis during visual imaging, realizes visual imaging of restoring the color of objects, ensures high adaptability and comfort of vision, and effectively relieves eye fatigue under lighting.
  • the lighting method provided by the present application includes the following steps: Step 1, the lighting light source gradually changes from the highest color temperature value to the lowest color temperature value, and during the color temperature gradient process, the lighting maintains a 100% brightness value unchanged, and the color temperature gradient duration is 6s to 18s; then, the lowest color temperature value is maintained unchanged, and the lighting brightness value is reduced from 100% brightness value to 25% to 45% brightness value within 0.5s to 2s so that the illumination of the surface of the illuminated object is 150lim to 300lim, and the lighting is maintained for 2s to 6s; then the brightness is maintained at 100% brightness value within 0.5s to 2s.
  • the value rises to 100% brightness value within 0.5s to 2s
  • step 2 the lighting source gradually changes from the lowest color temperature value to the highest color temperature value.
  • step 3 repeat the above
  • the steps of step 1 to step 2 are to perform cyclic lighting; wherein in step 1, the total lighting time is 12s to 22s, and in step 2, the total lighting time is 12s to 22s.
  • the switching from high brightness to low brightness and the switching from low brightness to high brightness are completed within a specific time, and static light is changed into dynamic light, while visual adaptation can be avoided, and by targeted adjustment of the lighting source and the simultaneous change of the light source brightness and color temperature during the lighting process, under the illumination of excellent light sources, the brightness is simulated by ecology, and the active adjustment of the eye axis function of the human eye is "reset", which makes people blink unconsciously, and the active adjustment of the eye axis conforms to the visual habits, thereby achieving the effect of protecting the eyes, reducing eye fatigue, and reducing or preventing myopia.
  • the time for the lighting source to gradually change from the highest color temperature value to the lowest color temperature value is 6s to 16s.
  • the time for the illumination light source to gradually change from the lowest color temperature value to the highest color temperature value is 6s to 16s.
  • step 1 the brightness value is reduced from 100% to 25% to 45% within 0.5s to 1.5s, and the lighting is maintained for 2s to 5s.
  • the time when the high brightness value is reduced to the low brightness value and the lighting time of the low brightness value are both key factors for realizing people's unconscious blinking and actively adjusting the eye axis, and under the synergistic effect of the reasonable selection range of the low brightness value, it can effectively improve the comfort of the eyes, relieve eye fatigue, protect the eyes, and achieve the effect of reducing or preventing myopia.
  • adjusting the high brightness value to the low brightness value too quickly will produce an adaptive effect on the human eye, and the human eye will not have time to adjust the eye axis, because the adaptive time length of the vision or the adaptive conditioned reflex of the vision to the external sense under the change or switching of light and dark light will cause the eye axis to not change, and it is impossible to achieve active adjustment of the eye axis, and it is difficult to achieve the effect of relieving eye fatigue and reducing or preventing myopia.
  • adjusting the high brightness value to the low brightness value too slowly will not have the effect of changing from static light to dynamic light, and the effect of relieving eye fatigue will be significantly worse, and good eye protection effect cannot be achieved.
  • step 1 the time for the high brightness value to decrease to the low brightness value can be 0.5s; 0.6s; 0.7s; 0.8s; 0.9s; 1s; 1.1s; 1.2s; 1.3s; 1.4s; 1.5s.
  • the lighting time of the low brightness value can be 2s, 3s; 4s, 5s.
  • step 2 the brightness value is reduced from 100% to 25% to 45% within 0.5s to 1.5s, and the lighting is maintained for 2s to 5s.
  • the time from the high brightness value to the low brightness value and the lighting time of the low brightness value are both key factors for realizing unconscious blinking and actively adjusting the eye axis, and under the synergistic effect of the reasonable selection range of the low brightness value, it can effectively improve the comfort of the eyes, relieve eye fatigue, protect the eyes, and achieve the effect of reducing or preventing myopia.
  • adjusting the high brightness value to the low brightness value too quickly will produce an adaptive effect on the human eye, and the human eye will not have time to adjust the eye axis, because the adaptive time length of the vision or the adaptive conditioned reflex of the vision to the external sense under the change or switching of light and dark light will cause the eye axis to not change, and it is impossible to actively adjust the eye axis, and it is difficult to achieve the effect of relieving eye fatigue and reducing or preventing myopia.
  • adjusting the high brightness value to the low brightness value too slowly will not have the effect of converting static light to dynamic light, and the effect of relieving eye fatigue will be significantly worse, and good eye protection effect cannot be achieved.
  • the time for the high brightness value to decrease to the low brightness value can be 0.5s; 0.6s; 0.7s; 0.8s; 0.9s; 1s; 1.1s; 1.2s; 1.3s; 1.4s; 1.5s.
  • the lighting time of the low brightness value can be 2s, 3s; 4s, 5s.
  • the brightness value rises to 100% brightness value within 0.5s to 1.5s.
  • the time from the low brightness value to the high brightness value and the lighting time of the high brightness value are key factors for realizing unconscious blinking and actively adjusting the eye axis, which can effectively improve the comfort of eye use, relieve eye fatigue, protect the eyes, and achieve the necessary conditions for reducing or preventing myopia.
  • adjusting the low brightness value to the high brightness value too quickly will produce an adaptive effect on the human eye, and the human eye will not have time to adjust the eye axis, because the adaptive time length of the vision or the adaptive conditioned reflex of the vision to the external sense under the change or switching of light and dark light will cause the eye axis to not change, and it is impossible to actively adjust the eye axis, and it is difficult to achieve the effect of relieving eye fatigue and reducing or preventing myopia.
  • adjusting the low brightness value to the high brightness value too slowly will not have the effect of converting static light to dynamic light, and the effect of relieving eye fatigue will be significantly worse, and good eye protection effect cannot be achieved.
  • the time for the low brightness value to rise to the high brightness value can be 0.5s; 0.6s; 0.7s; 0.8s; 0.9s; 1s; 1.1s; 1.2s; 1.3s; 1.4s; 1.5s.
  • step 2 the brightness value rises to 100% brightness value within 0.5s to 1.5s.
  • the key factor of the eye axis is to effectively improve the comfort of the eyes, relieve eye fatigue, protect the eyes, and achieve the necessary conditions for reducing or preventing myopia.
  • adjusting the low brightness value to a high brightness value too quickly will produce an adaptive effect on the human eye, and the human eye will not have time to adjust the eye axis, because the adaptive time length of the vision or the adaptive conditioned reflex of the vision to the external sense of the human vision under the change or switching of light and dark light will cause the eye axis to not change, and it is impossible to actively adjust the eye axis, and it is difficult to achieve the effect of relieving eye fatigue and reducing or preventing myopia.
  • adjusting the low brightness value to a high brightness value too slowly cannot achieve the effect of the transition from static light to dynamic light, and the effect of relieving eye fatigue will be significantly worse, and good eye protection effect cannot be achieved.
  • the time for the low brightness value to rise to the high brightness value can be 0.5s; 0.6s; 0.7s; 0.8s; 0.9s; 1s; 1.1s; 1.2s; 1.3s; 1.4s; 1.5s.
  • the total lighting time is 12s to 20s.
  • the total lighting time is 12s to 20s.
  • the total lighting time is 12s to 20s.
  • the total lighting time is 12s; 13s; 14s; 15s; 16s; 17s; 18s; 19s; 20s.
  • the brightness value of 100% is not less than 600 Lux, and the brightness value of 25% to 45% is not greater than 400 Lux. Selecting the appropriate brightness can increase people's comfort and relieve eye fatigue.
  • the brightness value of 100% is not less than 800 Lux, and the brightness value of 25% to 45% is not greater than 300 Lux.
  • the highest color temperature value is ⁇ the color temperature value of the high color temperature light source group, and the lowest color temperature value is ⁇ the color temperature value of the low color temperature light source group.
  • the color temperature of the low color temperature light source group and the color temperature of the high color temperature light source group are two different color temperature values in the range of 2700K-5600K.
  • the highest color temperature value and the lowest color temperature value are color temperature values in any two intervals of 2700K-3000K, 4000K-4200K, 4700K-5200K and 5500K-6000K, respectively.
  • the lowest color temperature value is any color temperature value in the range of 2700K-3000K
  • the highest color temperature value is any color temperature value in the range of 5500K-6000K.
  • the present application provides an LED intelligent control system, comprising a control module, a driving power module and a light source group module;
  • the light source group module comprises a low color temperature light source group and a high color temperature light source group, and the driving power module is electrically connected to the low color temperature light source group and the high color temperature light source group respectively;
  • the low color temperature light source group and the high color temperature light source group are both full-color bionic light sources;
  • the control module is used to simultaneously provide the current I1 magnitude signal of the low color temperature light source group and the current I2 magnitude signal of the high color temperature light source group to the driving power module, or to provide the current ratio signal of the low color temperature light source group and the high color temperature light source group to the driving power module;
  • the driving power module is used to generate driving currents I1 and I2 according to the received current I1 magnitude signal and current I2 magnitude signal or the ratio of current I1 and current I2 to drive the low color temperature light source group and the high color temperature light source group respectively; thereby, the change of the
  • the low color temperature light source group and the high color temperature light source group are both composed of a combination of a white light source group and a red light source group.
  • the spectrum formed by the light source group of the LED intelligent control system is the spectrum of the full-color bionic light source.
  • the change of the lighting color temperature value can be adjusted by adjusting the current ratio passing through the low color temperature light source group and the high color temperature light source group; the change of the lighting brightness can be adjusted by simultaneously adjusting the magnitude of the current I1 of the low color temperature light source group and the magnitude of the current I2 of the high color temperature light source group; by adjusting the coordination of the change of the lighting color temperature value and the change of the brightness, the human eye can be caused to blink passively involuntarily, and the eyeball can focus and reset autonomously, so as to actively adjust the eye axis and prevent the eye axis from becoming longer.
  • the lighting source used is a full-color bionic light source
  • the spectrum of the full-color bionic light source is a spectrum whose radiation power distribution curve is 60%-80% similar to the natural spectrum of the same color temperature, and the spectral color rendering index of the full-color bionic light source is greater than 95, and R1 ⁇ R15 are all greater than 90;
  • the spectrum of the lighting source forms a high-saturation red light and a high-saturation cyan light existence mode, and according to the imaging principle of color on the retina, the full-color bionic light source helps to adjust the visual focal length and eye axis during visual imaging, realizes visual imaging of objects with restored colors, ensures high adaptability and comfort of vision, and effectively relieves eye fatigue under lighting.
  • the lighting method provided by the present application includes the following steps: step 1, lighting The bright light source gradually changes from the highest color temperature value to the lowest color temperature value.
  • step 1 lighting The bright light source gradually changes from the highest color temperature value to the lowest color temperature value.
  • the lighting maintains a 100% brightness value, and the color temperature gradient duration is 6s to 18s; then, the lowest color temperature value is maintained, and the lighting brightness value is reduced from 100% brightness value to 25% to 45% brightness value within 0.5s to 2s so that the illumination of the illuminated object surface is 150lim to 300lim, and the lighting is maintained for 2s to 6s; then the brightness value rises to 100% brightness value within 0.5s to 2s;
  • step 2 the lighting light source gradually changes from the lowest color temperature value to the highest color temperature value, and gradually changes During the process, the lighting maintains a brightness value of 100%, and the color temperature gradient duration is 6s to 18s; then the highest color temperature value is maintained unchanged, and the lighting brightness decreases from 100% brightness value to 25% to 45% brightness value within 0.5s to 2
  • the eye fatigue relief score can reach 9.0 points, and the treatment efficiency of moderate to high myopia and mild myopia has reached 100%, which can be reduced by up to 200 degrees.
  • the brightness changes by imitating ecology to achieve "resetting" the human eye's active adjustment of the eye axis function, making people blink unconsciously, and actively adjusting the eye axis in line with visual habits, thereby protecting the eyes, alleviating eye fatigue, and reducing or preventing myopia.
  • FIG1 is a schematic diagram showing the structure of the position of light of different colors falling on the retina.
  • FIG. 2 is a schematic diagram of the structure of an LED eye protection lighting device.
  • FIG. 3 is a schematic diagram of the structure of a driving power module and a light source group module.
  • FIG. 4 is a chromatogram of a low color temperature light source group with a color temperature of 2700K in Example 1.
  • FIG. 5 is a chromatogram of a 5600K high color temperature light source group in Example 1.
  • FIG. 6 is a chromatogram of a low color temperature light source group with a color temperature of 3000K in Example 2.
  • FIG. 7 is a chromatogram of the 4200K high color temperature light source group in Example 2.
  • FIG8 is a spectrum of a white light source with a color temperature of 4000K (top) and a chromatogram of a low color temperature light source group of 4000K in Example 3 (bottom).
  • FIG. 9 is a chromatogram of a 6000K high color temperature light source group in Example 3.
  • FIG. 10 is a table of dimming and color adjustment parameters for a white light source and a red light source.
  • FIG. 11 is a table of dimming and color adjustment parameters for a white light source and a red light source.
  • the color rendering index of the white light source is greater than 90, and the peak of the red light spectrum is 630nm ⁇ 640nm, or the light power distribution greater than 630nm ⁇ 640nm shows a downward trend, especially the light power distribution of 650nm ⁇ 700nm is seriously low.
  • the white light source includes a blue light chip and a phosphor excited by the blue light chip
  • the blue light chip includes a first chip with a peak wavelength of 452-457nm and a second chip with a peak wavelength of 463-467nm
  • the phosphor includes a first green powder with a peak wavelength between 510-514nm, a second green powder with a peak wavelength between 532-537nm and a red powder with a peak wavelength between 652-658nm; wherein the first chip and the second chip are electrically connected in parallel, the forward working voltage difference between the first chip and the second chip is less than or equal to 5%, and the first
  • the peak intensity ratio of the first chip and the second chip under the same working conditions is (1-1.2): (0.8-1); based on the total weight of the phosphor powder being 100%, the mass percentage of the first green powder is 5%-10%, the mass percentage of the second green powder is 82%-90%, and the mass percentage of the red powder is 3%-10%.
  • red light source group for the white light source, compared with the natural spectrum of the same color temperature, there is insufficient (or missing) red light power distribution, so a red light source of the corresponding wavelength is selected, and the total power of all the LED white light source groups and the total power of all the LED red light source groups are adjusted to 7 to 20:1, so that the (white light source + red light source) light power distribution is close to the natural spectrum.
  • an LED intelligent control system includes a control module, a driving power module and a light source group module;
  • the light source group module includes a low color temperature light source group and a high color temperature light source group, and the driving power module is electrically connected to the low color temperature light source group and the high color temperature light source group respectively;
  • the low color temperature light source group and the high color temperature light source group are both full-color bionic light sources;
  • the control module is used to provide the current I1 magnitude signal of the low color temperature light source group and the current I2 magnitude signal of the high color temperature light source group to the driving power module at the same time, and the driving power module is used to drive the low color temperature light source group and the high color temperature light source group respectively according to the received current I1 magnitude signal and current I2 magnitude signal, and the change of the lighting brightness can be adjusted by simultaneously adjusting the magnitude of the current I1 of the low color temperature light source group and the magnitude of the current I2 of the high color temperature light source group;
  • the control module is used to provide the current ratio signal of the low color temperature light source group and the high color temperature light source group to the driving power supply module, and the driving power supply module is used to generate driving currents I1 and I2 according to the ratio of the received current I1 and the current I2, and drive the low color temperature light source group and the high color temperature light source group respectively, and the change of the lighting color temperature value can be adjusted by adjusting the current ratio of the low color temperature light source group and the high color temperature light source group;
  • the low color temperature light source group is a full-color bionic light source, and the low color temperature light source group is composed of a plurality of LED white light source groups and a plurality of LED red light source groups; the total power of all the LED white light source groups and the total power of all the LED red light source groups are in a ratio of 15:1.
  • the ratio of the number of the LED white light sources to the number of the LED red light sources is 15:1.
  • the spectrum of the full-color bionic light source is a spectrum whose radiation power distribution curve is 80% similar to the natural spectrum of the same color temperature, and the spectral color rendering index of the full-color bionic light source is greater than 95, and R1-R15 are all greater than 90.
  • the color temperature is 2700K, as shown in FIG4, the absolute optical power value of 380-435nm purple light is 0.15; the absolute optical power value of 435-475nm blue light is 0.32; the absolute optical power value of 475-492nm cyan light is 0.48; the absolute optical power value of 492-577nm green light is 0.52; the absolute optical power value of 577-597nm yellow light is 0.78; the absolute optical power value of 597-622nm orange light is 0.85; the absolute optical power value of 622-700nm red light is 0.54.
  • the high color temperature light source group is a full-color bionic light source, and the high color temperature light source group is composed of a plurality of LED white light source groups and a plurality of LED red light source groups; the total power of all the LED white light source groups and the total power of all the LED red light source groups is 16:1.
  • the color temperature is 5600K.
  • the absolute optical power value of 380-435nm purple light is 0.40; the absolute optical power value of 435-475nm blue light is 0.65; the absolute optical power value of 475-492nm cyan light is 0.72; the absolute optical power value of 492-577nm green light is 0.83; the absolute optical power value of 577-597nm yellow light is 0.82; the absolute optical power value of 597-622nm orange light is 0.85; the absolute optical power value of 622-700nm red light is 0.47.
  • the method for lighting using the above-mentioned LED intelligent control system comprises the following steps:
  • Step 1 The lighting source gradually changes from the highest color temperature value of 5600K to the lowest color temperature value of 3000K. During the color temperature gradient process, the lighting brightness value remains unchanged at 900Lux. The color temperature gradient lasts for 12s. Then, the lowest color temperature value is maintained, and the lighting brightness value decreases from 900Lux to 270Lux within 0.8s, and the lighting is maintained for 4s. After that, the brightness value rises to 900Lux within 0.8s.
  • Step 3 The lighting source gradually changes from the lowest color temperature value of 3000K to the highest color temperature value of 5600K. During the color temperature gradient process, the lighting brightness value remains unchanged at 900Lux. The color temperature gradient duration is 12s. After that, the highest color temperature value is kept unchanged, and the lighting brightness decreases from 900Lux to 270Lux within 0.8s, and the lighting is maintained for 4s. After that, the brightness value rises to 900Lux within 0.8s.
  • Step 3 Repeat the steps of step 1 to step 2 to perform cyclic lighting.
  • dimming and color adjustment parameter tables for white light sources and red light sources.
  • the dimming and color adjustment parameters Through the dimming and color adjustment parameters, the parameter sizes of different warm color temperature groups, cold color temperature groups and red light can be achieved by adjusting the current ratios, and finally changing the output color temperature value.
  • An LED intelligent control system comprises a control module, a driving power module and a light source group module;
  • the light source group module comprises a low color temperature light source group and a high color temperature light source group,
  • the driving power module is electrically connected to the low color temperature light source group and the high color temperature light source group respectively;
  • the low color temperature light source group and the high color temperature light source group are both full-color bionic light sources;
  • the control module is used to simultaneously provide the current I1 magnitude signal of the low color temperature light source group and the current I2 magnitude signal of the high color temperature light source group to the driving power module, or to provide the current ratio signal of the low color temperature light source group and the high color temperature light source group to the driving power module;
  • the driving power module is used to generate driving currents I1 and I2 according to the received current I1 magnitude signal and current I2 magnitude signal or the ratio of current I1 and current I2 to drive the low color temperature light source group and the high color temperature light source group respectively; thereby, by adjusting the current ratio passing through the low color temperature light source group and the high color temperature light source group, the change of the lighting color temperature value can be adjusted; by simultaneously adjusting the magnitude of the current I1 of the low color temperature light source group and the magnitude of the current I2 of the high color temperature light source group, the change of the lighting brightness can be adjusted.
  • the low color temperature light source group is a full-color bionic light source, and the low color temperature light source group is composed of a plurality of LED white light source groups and a plurality of LED red light source groups; the total power ratio of all the LED white light source groups to the total power ratio of all the LED red light source groups is 7:1.
  • the color temperature is 3000K, as shown in Figure 6.
  • the absolute optical power value of 380-435nm purple light is 0.33; the absolute optical power value of 435-475nm blue light is 0.38; the absolute optical power value of 475-492nm cyan light is 0.8; the absolute optical power value of 492-577nm green light is 0.9; the absolute optical power value of 577-597nm yellow light is 1.13; the absolute optical power value of 597-622nm orange light is 1.2; the absolute optical power value of 622-700nm red light is 1.07.
  • the high color temperature light source group is a full-color bionic light source, and the high color temperature light source group is composed of a plurality of LED white light source groups and a plurality of LED red light source groups; the total power of all the LED white light source groups and the total power of all the LED red light source groups is 8:1.
  • the color temperature is 4200K.
  • the absolute optical power value of 380-435nm purple light is 0.35; the absolute optical power value of 435-475nm blue light is 0.5; the absolute optical power value of 475-492nm cyan light is 0.88; the absolute optical power value of 492-577nm green light is 0.85; the absolute optical power value of 577-597nm yellow light is 1.0; the absolute optical power value of 597-622nm orange light is 0.95; and the absolute optical power value of 622-700nm red light is 1.0.
  • the method for lighting using the above control system comprises the following steps:
  • Step 1 The lighting source gradually changes from the highest color temperature value of 4200K to the lowest color temperature value of 3000K.
  • the lighting brightness value remains unchanged at 800Lux.
  • the color temperature gradient lasts for 6 seconds.
  • the lowest color temperature value is maintained.
  • the lighting brightness value decreases from 800Lux to 200Lux within 2 seconds.
  • the lighting is maintained for 6 seconds. After that, the brightness value increases to 800Lux within 2 seconds.
  • Step 2 The lighting source gradually changes from the lowest color temperature value of 3000K to the highest color temperature value of 4200K. During the gradual change, the brightness value is maintained at 100% of 800Lux, and the color temperature gradual change time is 6s. Then, the highest color temperature value is maintained unchanged, and the lighting brightness is reduced from 800Lux to 200Lux within 2s, and the lighting is maintained for 6s. After that, the brightness value is increased to 800Lux within 2s.
  • Step 3 Repeat the steps of step 1 to step 2 to perform cyclic lighting.
  • An LED intelligent control system comprises a control module, a driving power module and a light source group module;
  • the light source group module comprises a low color temperature light source group and a high color temperature light source group,
  • the driving power module is electrically connected to the low color temperature light source group and the high color temperature light source group respectively;
  • the low color temperature light source group and the high color temperature light source group are both full-color bionic light sources;
  • the control module is used to simultaneously provide the current I1 magnitude signal of the low color temperature light source group and the current I2 magnitude signal of the high color temperature light source group to the driving power module, or to provide the current ratio signal of the low color temperature light source group and the high color temperature light source group to the driving power module;
  • the driving power module is used to generate driving currents I1 and I2 according to the received current I1 magnitude signal and current I2 magnitude signal or the ratio of current I1 and current I2 to drive the low color temperature light source group and the high color temperature light source group respectively; thereby, by adjusting the current ratio passing through the low color temperature light source group and the high color temperature light source group, the change of the lighting color temperature value can be adjusted; by simultaneously adjusting the magnitude of the current I1 of the low color temperature light source group and the magnitude of the current I2 of the high color temperature light source group, the change of the lighting brightness can be adjusted.
  • the low color temperature light source group is a full-color bionic light source, and the low color temperature light source group is composed of a plurality of LED white light source groups and a plurality of LED red light source groups; the total power ratio of all the LED white light source groups to the total power ratio of all the LED red light source groups is 20:1.
  • the color temperature is 4000K, and the full spectrum formed is shown in the lower figure in Figure 8.
  • the absolute optical power value of 380-435nm purple light is 0.33; the absolute optical power value of 435-475nm blue light is 0.32; the absolute optical power value of 475-492nm cyan light is 0.72; the absolute optical power value of 492-577nm green light is 0.66; the absolute optical power value of 577-597nm yellow light is 0.88; the absolute optical power value of 597-622nm orange light is 0.88; the absolute optical power value of 622-700nm red light is 0.65.
  • the spectrum of the white light source with a color temperature of 4000K is shown in the upper figure of Figure 8.
  • the high color temperature light source group is a full-color bionic light source, and the high color temperature light source group is composed of a plurality of LED white light source groups and a plurality of LED red light source groups; the total power ratio of all the LED white light source groups to the total power ratio of all the LED red light source groups is 18:1.
  • the color temperature is 6000K, as shown in Figure 9.
  • the absolute optical power value of 380-435nm purple light is 0.43; the absolute optical power value of 435-475nm blue light is 0.68; the absolute optical power value of 475-492nm cyan light is 1.25; the absolute optical power value of 492-577nm green light is 1.15; the absolute optical power value of 577-597nm yellow light is 1.1; the absolute optical power value of 597-622nm orange light is 0.7; the absolute optical power value of 622-700nm red light is 0.93.
  • the method for lighting using the above control system comprises the following steps:
  • Step 1 The lighting source gradually changes from the highest color temperature value of 6000K to the lowest color temperature value of 4000K. During the color temperature gradient process, the lighting brightness value remains unchanged at 600Lux. The color temperature gradient lasts for 18s. Then, the lowest color temperature value is maintained. The lighting brightness value decreases from 600Lux to 250Lux within 1s, and the lighting is maintained for 2s. After that, the brightness value increases to 600Lux within 1s.
  • Step 2 The lighting source gradually changes from the lowest color temperature value of 4000K to the highest color temperature value of 6000K. During the gradual change, the brightness value is maintained at 100% of 600Lux, and the color temperature gradual change time is 18s. Then, the highest color temperature value is maintained unchanged, and the lighting brightness is reduced from 600Lux to 250Lux within 1s, and the lighting is maintained for 2s. After that, the brightness value rises to 600Lux within 1s.
  • Step 3 Repeat the steps from step 1 to step 2 to perform cyclic lighting.
  • An LED intelligent control system comprises a control module, a driving power module and a light source group module;
  • the light source group module comprises a low color temperature light source group and a high color temperature light source group,
  • the driving power module is electrically connected to the low color temperature light source group and the high color temperature light source group respectively;
  • the low color temperature light source group and the high color temperature light source group are both full-color bionic light sources;
  • the control module is used to simultaneously provide the current I1 magnitude signal of the low color temperature light source group and the current I2 magnitude signal of the high color temperature light source group to the driving power module, or to provide the current ratio signal of the low color temperature light source group and the high color temperature light source group to the driving power module;
  • the driving power module is used to generate driving currents I1 and I2 according to the received current I1 magnitude signal and current I2 magnitude signal or the ratio of current I1 and current I2 to drive the low color temperature light source group and the high color temperature light source group respectively; thereby, by adjusting the current ratio passing through the low color temperature light source group and the high color temperature light source group, the change of the lighting color temperature value can be adjusted; by simultaneously adjusting the magnitude of the current I1 of the low color temperature light source group and the magnitude of the current I2 of the high color temperature light source group, the change of the lighting brightness can be adjusted.
  • the low color temperature light source group is a full-color bionic light source, and the low color temperature light source group is composed of a plurality of LED white light source groups and a plurality of LED red light source groups; the total power ratio of all the LED white light source groups to the total power ratio of all the LED red light source groups is 20:1.
  • the color temperature is 2800K, the absolute optical power value of 380-435nm purple light is 0.22; the absolute optical power value of 435-475nm blue light is 0.34; the absolute optical power value of 475-492nm cyan light is 0.62; the absolute optical power value of 492-577nm green light is 0.55; the absolute optical power value of 577-597nm yellow light is 0.92; the absolute optical power value of 597-622nm orange light is 0.92; the absolute optical power value of 622-700nm red light is 0.65.
  • the high color temperature light source group is a full-color bionic light source, and the high color temperature light source group is composed of a plurality of LED white light source groups and a plurality of LED red light source groups; the total power ratio of all the LED white light source groups to the total power ratio of all the LED red light source groups is 15:1.
  • the color temperature is 5600K, as follows: the absolute optical power value of 380-435nm purple light is 0.36; the absolute optical power value of 435-475nm blue light is 0.6; the absolute optical power value of 475-492nm cyan light is 0.85; the absolute optical power value of 492-577nm green light is 0.85; the absolute optical power value of 577-597nm yellow light is 0.88; the absolute optical power value of 597-622nm orange light is 0.86; the absolute optical power value of 597-622nm cyan light is 0.87; the absolute optical power value of 597-622nm orange light is 0.88; the absolute optical power value of 597-622nm cyan light is 0.86; the absolute optical power value of 597-622nm cyan light is 0.8 The absolute optical power value of 622-700nm red light is 0.48.
  • the method for lighting using the above control system comprises the following steps:
  • Step 1 The lighting source gradually changes from the highest color temperature value of 4800K to the lowest color temperature value of 2800K. During the color temperature gradient process, the lighting brightness value remains unchanged at 1000Lux, and the color temperature gradient duration is 8s. Then, the lowest color temperature value is maintained, and the lighting brightness value decreases from 1000Lux to 300Lux within 0.5s, and the lighting is maintained for 6s. After that, the brightness value increases to 1000Lux within 0.5s.
  • Step 2 The lighting source gradually changes from the lowest color temperature value of 2800K to the highest color temperature value of 4800K. During the gradual change, the 100% brightness value of 1000Lux is maintained for 8s. Then, the highest color temperature value is maintained unchanged, and the lighting brightness is reduced from 1000Lux to 300Lux within 0.5s, and the lighting is maintained for 6s. After that, the brightness value is increased to 1000Lux within 0.5s.
  • Step 3 Repeat the steps from step 1 to step 2 to perform cyclic lighting.
  • Example 1 Compared with Example 1, the illumination is changed to ordinary light source, not full-color bionics, and the same lighting method as Example 1 is adopted.
  • the common LED light source has a similarity of 50% to the natural spectrum of the same color temperature, and the optical power of 640-650nm is 0.65; the optical power of 650-660nm is 0.44; the optical power of 660-670nm is 0.36; and the optical power of 670-700nm is 0.21.
  • Example 1 Compared with Example 1, the same control system as Example 1 is used. During the lighting process, the color temperature remains unchanged at 5600K, and the brightness value remains unchanged at 900Lux.
  • Comparative Example 3 adopts the same lighting method as Example 1. Comparative Example 3 adopts the same control system as Example 1, except that the total power of all the LED white light source groups and the total power of all the LED red light source groups are 5:1.
  • Comparative Example 4 adopts the same lighting method as Example 1. Comparative Example 4 adopts the same control system as Example 1, except that the total power of all the LED white light source groups and the total power of all the LED red light source groups are 25:1.
  • Example 1 Compared with Example 1, the same control system as Example 1 is used, and the lighting process is:
  • Step 1 The lighting source gradually changes from the highest color temperature value of 5600K to the lowest color temperature value of 3000K. During the color temperature gradient process, the lighting brightness value remains unchanged at 900Lux. The color temperature gradient lasts for 12s. Then, the lowest color temperature value is maintained, and the lighting brightness value decreases from 900Lux to 270Lux within 0.3s, and the lighting is maintained for 4s. After that, the brightness value increases to 900Lux within 0.3s.
  • Step 3 The lighting source gradually changes from the lowest color temperature value of 3000K to the highest color temperature value of 5600K. During the color temperature gradient process, the lighting brightness value remains unchanged at 900Lux. The color temperature gradient duration is 12s. After that, the highest color temperature value is kept unchanged, and the lighting brightness decreases from 900Lux to 270Lux within 0.3s, and the lighting is maintained for 4s. After that, the brightness value rises to 900Lux within 0.3s.
  • Step 3 Repeat the steps of step 1 to step 2 to perform cyclic lighting.
  • Example 1 Compared with Example 1, the lighting method adopts the same control system as Example 1 and specifically includes the following steps:
  • Step 1 The lighting source gradually changes from the highest color temperature value of 5600K to the lowest color temperature value of 3000K. During the color temperature gradient process, the lighting brightness value remains unchanged at 900Lux. The color temperature gradient lasts for 12s. Then, the lowest color temperature value is maintained, and the lighting brightness value drops from 900Lux to 270Lux within 2.8s, and the lighting is maintained for 4s. After that, the brightness value rises to 900Lux within 2.8s.
  • Step 3 The lighting source gradually changes from the lowest color temperature value of 3000K to the highest color temperature value of 5600K. During the color temperature gradient process, the lighting brightness value remains unchanged at 900Lux. The color temperature gradient duration is 12s. After that, the highest color temperature value is kept unchanged, and the lighting brightness decreases from 900Lux to 270Lux within 2.8s, and the lighting is maintained for 4s. After that, the brightness value rises to 900Lux within 2.8s.
  • Step 3 Repeat the steps of step 1 to step 2 to perform cyclic lighting.
  • Example 1 Compared with Example 1, the raising and lowering times are within the range, but the total time is less than 12 s.
  • Example 1 Compared with Example 1, the same control system as Example 1 is adopted, and the specific lighting method is as follows:
  • Step 1 The lighting source gradually changes from the highest color temperature value of 5600K to the lowest color temperature value of 3000K. During the color temperature gradient process, the lighting brightness value remains unchanged at 900Lux. The color temperature gradient lasts for 6 seconds. Then, the lowest color temperature value is maintained, and the lighting brightness value decreases from 900Lux to 270Lux within 1 second, and the lighting is maintained for 2 seconds. After that, the brightness value increases to 900Lux within 1 second.
  • Step 3 The lighting source gradually changes from the lowest color temperature value of 3000K to the highest color temperature value of 5600K. During the color temperature gradient process, the lighting brightness value remains unchanged at 900Lux. The color temperature gradient duration is 6s. After that, the highest color temperature value is kept unchanged, and the lighting brightness decreases from 900Lux to 270Lux within 1s, and the lighting is maintained for 2s. After that, the brightness value increases to 900Lux within 1s.
  • Step 3 Repeat the steps of step 1 to step 2 to perform cyclic lighting.
  • Example 1 Compared with Example 1, the raising and lowering times are within the range, but the total time is higher than 22 s.
  • Example 1 Compared with Example 1, the same control system as Example 1 is adopted, and the specific lighting method is as follows:
  • Step 1 The lighting source gradually changes from the highest color temperature value of 5600K to the lowest color temperature value of 3000K. During the color temperature gradient process, the lighting brightness value remains unchanged at 900Lux. The color temperature gradient lasts for 18s. Then, the lowest color temperature value is maintained, and the lighting brightness value decreases from 900Lux to 270Lux within 1s, and the lighting is maintained for 4s. After that, the brightness value increases to 900Lux within 1s.
  • Step 3 The lighting source gradually changes from the lowest color temperature value of 3000K to the highest color temperature value of 5600K. During the color temperature gradient process, the lighting brightness value remains unchanged at 900Lux. The color temperature gradient duration is 18s. After that, the highest color temperature value is kept unchanged, and the lighting brightness decreases from 900Lux to 270Lux within 1s, and the lighting is maintained for 4s. After that, the brightness value rises to 900Lux within 1s.
  • Step 3 Repeat the steps of step 1 to step 2 to perform cyclic lighting.
  • the illumination is changed to ordinary LED light source, which is not full-color bionic.
  • the ordinary LED light source has a similarity of 50% to the natural spectrum of the same color temperature, and the light power of 640-650nm is 0.65; the light power of 650-660nm is 0.44; the light power of 660-670nm is 0.36; and the light power of 670-700nm is 0.21.
  • the color temperature remains unchanged at 5600K and the brightness value remains unchanged at 900Lux.
  • Test conditions 8:30-11:30 a.m., 2:00-4:30 p.m., and self-study from 7:00-9:00 p.m. every day; during holidays, study no more than 3 hours at night and go to bed after 9 p.m.
  • the test period was 24 weeks, and the changes in visual acuity are shown in Table 2.
  • the effective rate is the percentage of eyes with decreased diopter.
  • the visual acuity of highly myopic eyes is above 600 degrees
  • the visual acuity of moderate myopic eyes is between 300 degrees and 600 degrees
  • the visual acuity of mild myopic eyes is below 300 degrees.
  • Examples 1-4 adopt the technical solution of the present application, and the score of relieving eye fatigue can reach 9.0 points.
  • the treatment efficiency of moderate and high myopia and mild myopia eyes reaches 100%, and the maximum can be reduced by 200 degrees.
  • the illumination source and the method of changing the brightness value of the light source during the illumination process the brightness is changed by mimicking ecology under the illumination of excellent light sources, so as to achieve the "reset" of the active adjustment of the eye axis function of the human eye, which makes people blink unconsciously, and the active adjustment of the eye axis conforms to the visual habits, so as to achieve the effect of protecting the eyes, relieving eye fatigue, and reducing or preventing myopia.
  • Comparative Examples 1-Comparative Examples 7 do not adopt the full-color bionic light source of the present application or the lighting method of the present application, and the effect of relieving eye fatigue is significantly reduced. Some eyes will also produce the phenomenon of increased degree, and it is impossible to achieve a good effect of reducing or preventing myopia. It can be seen from the test data of Comparative Example 8 that only conventional illumination sources and conventional lighting methods are used, and the degree of the eyes will increase to varying degrees, and non-myopic eyes will turn into myopic eyes, and the technical effect is poor.
  • the lighting source adopted is a full-color bionic light source
  • the spectrum of the full-color bionic light source is a spectrum whose radiation power distribution curve of the light source is 60%-80% similar to the natural spectrum of the same color temperature, and the spectral color rendering index of the full-color bionic light source is greater than 95, and R1-R15 are all greater than 90;
  • the spectrum of the lighting source forms an existence mode of high-saturation red light and high-saturation cyan light, and according to the imaging principle of color on the retina, the full-color bionic light source helps to adjust the visual focal length and eye axis during visual imaging, realizes visual imaging of restoring the color of objects, ensures high adaptability and comfort of vision, and effectively relieves eye fatigue under lighting.
  • the lighting method provided by the present application includes the following steps: Step 1, the lighting light source gradually changes from the highest color temperature value to the lowest color temperature value, and during the color temperature gradient process, the lighting maintains a 100% brightness value unchanged, and the color temperature gradient duration is 6s to 18s; then, the lowest color temperature value is maintained unchanged, and the lighting brightness value is reduced from 100% brightness value to 25% to 45% brightness value within 0.5s to 2s so that the illumination of the surface of the illuminated object is 150lim to 300lim, and the lighting is maintained 2s ⁇ 6s; then the brightness value rises to 100% brightness value within 0.5s ⁇ 2s; step 2, the lighting light source gradually changes from the lowest color temperature value to the highest color temperature value, and during the gradual change, the lighting maintains a 100% brightness value unchanged, and the color temperature gradual change duration is 6s ⁇ 18s; then the highest color temperature value is maintained unchanged, and the lighting brightness decreases from 100% brightness value to 25% ⁇ 45% brightness value within 0.5s ⁇ 2s, and the lighting is maintained for 2s ⁇ 6s; then the following steps: Step
  • the switching from high brightness to low brightness and from low brightness to high brightness is completed within a specific time, turning static light into dynamic light, and avoiding visual adaptation at the same time.
  • the ecological change in brightness is simulated to "reset" the human eye's active adjustment of the eye axis function, making people blink unconsciously, and actively adjusting the eye axis in line with visual habits, thereby protecting the eyes, alleviating eye fatigue, and reducing or preventing myopia.

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

本申请涉及了一种LED智能控制系统及照明方法,包括控制模块、驱动电源模块和光源组模块;光源组模块包括低色温光源组和高色温光源组,通过调节所述低色温光源组和所述高色温光源组的电流比例能够调节照明色温值的变化;通过同时调节电流I1的大小和电流I2的大小能够调节照明亮度的变化;所述低色温光源组和所述高色温光源组均是由至少一个LED白光光源组和至少一个LED红光光源组构成;所有所述LED白光光源组的合计功率与所有所述LED红光光源组的合计功率为7~20:1。通过调节照明色温值变化和亮度变化的配合,把静态光变为动态光,主动调节眼轴,避免眼轴变长,可达到保护眼睛、减缓眼睛疲劳、预防近视技术效果。

Description

一种LED智能控制系统及照明方法
本申请要求于2022年11月21日在中国专利局提交的、申请号为202211453321.8、发明名称为“一种LED智能控制系统及照明方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及了LED智能控制系统技术领域,具体涉及了一种LED智能控制系统及照明方法。
背景技术
人眼是在自然光照环境下形成和进化的,视觉对自然光的适应性是无可取代的。如图1所示,眼睛看纯蓝光时,眼睛不自然的会睁大点看,使蓝光的成像落在视网膜上;眼睛看纯红光时,眼睛不自然的会眯一点看,使红光的成像落在视网膜上。普通的人工照明光谱中存在红光光谱缺少,且蓝光光谱量过高的问题,长时间的用眼后,不仅能伤害到视网膜黄斑区,还会很容易引起“眼疲劳”,形成近视。强化照明光谱中红光光谱以及减弱蓝光光谱对降低眼睛疲劳和预防近视具有十分重要的意义。
再有,当人眼在看书或写字时,往往会“聚精会神”或“目不转睛”的盯着被视物体,这样,久视后,眼睛长时间固焦,眼睛易疲劳,尤其是在发光光色中,缺失红光光谱时,眼睛久视物体,容易导致眼轴变长,产生近视。
因此,研发出一种能够很好的实现符合视觉习性可调眼轴方法来实现保护眼睛、减缓眼睛疲劳、减轻或预防近视的护眼照明方法具有十分重要的意义。
技术问题
本申请的目的在于:针对人眼在看书或写字时,尤其光源为缺少红光或红光光谱较弱时,存在久视后,眼睛易疲劳的问题,容易导致眼轴变长,产生近视的问题,提供一种LED智能控制系统及照明方法,本申请的LED智能控制系统,采用白光+红光形成的全色仿生作为光源,并在照明过程中提供了独立调光的仿生视觉控制,把静态光变为动态光,光谱在亮度变化时保持不变且不会导致视觉自适应,使眼睛眨眼,眼球自主调焦,重置,从而实现眼轴主动调节,符合视觉习性,同时以达到保护眼睛、减缓眼睛疲劳、减轻或预防近视效果,且成本低,便于推广应用。
技术解决方案
为了实现上述目的,本申请采用的技术方案为:
一种LED智能控制系统,包括控制模块、驱动电源模块和光源组模块;所述光源组模块包括低色温光源组和高色温光源组,所述驱动电源模块分别与所述低色温光源组和高色温光源组进行电性连接,所述低色温光源组和所述高色温光源组均为全色仿生光源;
所述控制模块用于将所述低色温光源组的电流I1大小信号和所述高色温光源组的电流I2大小信号同时提供给驱动电源模块,所述驱动电源模块用于根据接收的电流I1大小信号和电流I2大小信号,分别驱动所述低色温光源组和所述高色温光源组,通过同时调节所述低色温光源组电流I1的大小和所述高色温光源组电流I2的大小能够调节照明亮度的变化;
所述控制模块用于将所述低色温光源组和所述高色温光源组的电流比例信号提供给驱动电源模块,所述驱动电源模块用于根据接收的电流I1和电流I2的比例生成驱动电流I1和I2,分别驱动所述低色温光源组和所述高色温光源组,通过调节所述低色温光源组和所述高色温光源组通过的电流比例能够调节照明色温值的变化;
其中,所述低色温光源组和所述高色温光源组均为全色仿生光源;所述低色温光源组和所述高色温光源组均是由至少一个LED白光光源组和至少一个LED红光光源组构成; 所有所述LED白光光源组的合计功率与所有所述LED红光光源组的合计功率比为7~20:1。
本申请提供了一种LED智能控制系统,包括控制模块、驱动电源模块和光源组模块;所述光源组模块包括低色温光源组和高色温光源组,所述驱动电源模块分别与所述低色温光源组和高色温光源组进行电性连接;所述低色温光源组和所述高色温光源组均为全色仿生光源;所述控制模块用于将所述低色温光源组的电流I1大小信号和所述高色温光源组的电流I2大小信号同时提供给驱动电源模块或者用于将所述低色温光源组和所述高色温光源组的电流比例信号提供给驱动电源模块;所述驱动电源模块用于根据接收的电流I1大小信号和电流I2大小信号或电流I1和电流I2的比例生成驱动电流I1和I2分别驱动所述低色温光源组和所述高色温光源组;从而通过调节所述低色温光源组和所述高色温光源组通过的电流比例能够调节照明色温值的变化;通过同时调节所述低色温光源组电流I1的大小和所述高色温光源组电流I2的大小能够调节照明亮度的变化。
本申请公开的LED智能控制系统中,低色温光源组和高色温光源组均是由白光光源、红光光源组组组合而成的,通过控制白光光源组和红光光源组的合计功率比,使得LED智能控制系统的光源组形成的光谱为全色仿生光源的光谱,使用时,通过调节所述低色温光源组和所述高色温光源组通过的电流比例能够调节照明色温值的变化;通过同时调节所述低色温光源组电流I1的大小和所述高色温光源组电流I2的大小能够调节照明亮度的变化;通过调节照明色温值变化和亮度变化的配合,可导致人眼不由自主的被动眨眼,眼球自主调焦,重置,以达到主动调节眼轴,防止眼轴变长。
进一步的,所述低色温光源组和所述高色温光源组均是由至少一个低色温的LED白光光源组和至少一个与白光光源组相同低色温值的LED红光光源组构成;所有所述LED白光光源组的合计功率与所有所述LED红光光源组的合计功率比为7~20:1。
进一步的,白光光源组中,白光光源显色指数大于90,且红光光谱的峰值为630nm~640nm,或大于630nm~640nm的光功率分布呈下降趋势,尤其是650nm~700nm的光功率分布严重偏低。
具体的,白光光源包括蓝光芯片和被所述蓝光芯片激发的荧光粉,所述蓝光芯片包括峰值波长为452-457nm的第一芯片和峰值波长为463-467nm的第二芯片,所述荧光粉包括峰值波长位于510-514nm之间的第一绿粉、峰值波长位于532-537nm之间的第二绿粉和峰值波长位于652-658nm之间的红粉;其中,所述第一芯片和所述第二芯片采用并联方式电性相连,所述第一芯片和所述第二芯片之间的正向工作电压差值小于或等于5%,且所述第一芯片和所述第二芯片在相同工作条件下的峰值强度比为(1-1.2):(0.8-1);以所述荧光粉的总重量为100%计,所述第一绿粉的质量百分含量为5%-10%,所述第二绿粉的质量百分含量为82%-90%,所述红粉的质量百分含量为3%-10%。
进一步的,红光光源组中,针对白光光源,与同色温的自然光谱相比,存在红光光功率分布不足(或缺失的部分)而选择相应波长的红光光源,通过针对性调整所有所述LED白光光源组的合计功率与所有所述LED红光光源组的合计功率7~20:1,使其(白光光源+红光光源)光功率分布接近自然光谱。研究发现合计功率比过低或过高都不能达到全色仿生光源光谱的要求。
进一步的,全色仿生光源的光谱为光源辐射功率分布曲线与同色温的自然光谱的近似度达到70%~80%的光谱,且全色仿生光源的光谱显色指数大于95,R1~R15均大于90。
全色仿生光源的光谱中,光源辐射功率分布曲线与同色温的自然光的近似度达到60%~80%是指全色仿生光源的光谱与同色温的自然光光谱,在任一相同波段上,较小的绝对光功率与较大的绝对光功率的比值为70%~80%。
进一步的,每个所述LED白光光源组包括至少两颗LED白光光源,每组所述红光光 源组包括至少两颗LED红光光源。
进一步的,每颗LED白光光源和每颗LED红光光源的功率相同时,所述低色温光源组和所述高色温光源组内所述LED白光光源的数量和所述LED红光光源的数量比例均为7~20:1。
进一步的,所有所述LED白光光源组的合计功率与所有所述LED红光光源组的合计功率为12~20:1。例如12:1;13:1;14:1;15:1;16:1;17:1;18:1;19:1;20:1。
进一步的,还包括红外遥控器,所述控制模块包括红外接收装置,包括红外遥控器,所述控制模块包括红外接收装置,所述红外接收装置用于接收所述红外遥控器的遥控信号,根据遥控信号,所述控制模块生成电流I1大小信号和电流I2大小信号、电流I1和电流I2比例信号。进一步的,所述控制模块还包括光传感器。
进一步的,所述低色温光源组由若干个低色温全色仿生光源串联、并联或串并联而成的,所述高色温光源组由若干个高色温全色仿生光源串联、并联或串并联而成的。
进一步的,所述低色温光源组的色温和所述高色温光源组的色温为2700K-5600K中两个大小不同的色温值。优选地,所述低色温光源组的色温和所述高色温光源组的色温分别为2700K~3000K、4000K~4200K、4700K~5200K和5500K~6000K中的任意两种区间段色温值。更优选地,所述低色温光源组的色温为2700K~3000K中任一色温值,所述高色温光源组的色温为5500K~6000K中任一色温值。
本申请的另一目的是为了提供上述LED智能控制系统的使用方法。
一种使用上述的LED智能控制系统的照明方法,包括以下步骤:
步骤1、照明光源从最高色温值渐变到最低色温值,色温渐变过程中,照明保持100%亮度值不变,色温渐变时长为6s~18s;然后,保持最低色温值不变,照明亮度值从100%亮度值在0.5s~2s内,降至25%~45%的亮度值以使被照明物体表面的照度为150lim~300lim,保持照明2s~6s;之后亮度值在0.5s~2s内,上升至100%亮度值;
步骤2、照明光源从最低色温值渐变到最高色温值,渐变过程中,照明保持100%亮度值不变,色温渐变时长为6s~18s;然后保持最高色温值不变,照明亮度从100%亮度值在0.5s~2s内,降至25%~45%的亮度值,保持照明2s~6s;之后亮度值在0.5s~2s内,上升至100%亮度值;
步骤3、重复所述步骤1~所述步骤2的步骤,进行循环照明;其中所述步骤1中,照明时间合计量为12s~22s,所述步骤2中,照明时间合计量为12s~22s。
采用的照明光源为全色仿生光源,全色仿生光源的光谱为光源辐射功率分布曲线与同色温的自然光谱的近似度达到60%-80%的光谱,且全色仿生光源的光谱显色指数大于95,R1~R15均大于90;该照明光源的光谱中形成了高饱和度的红光和高饱和度的青光的存在模式,依据颜色在视网膜上的成像原理,该全色仿生光源照明时有助于视觉成像时,视觉的焦距和眼轴的调节,实现对物体还原颜色的视觉成像,保证视觉的高度适应性和舒适性,有效缓解照明下的用眼疲劳。同时,本申请提供的照明方法,包括以下步骤:步骤1、照明光源从最高色温值渐变到最低色温值,色温渐变过程中,照明保持100%亮度值不变,色温渐变时长为6s~18s;然后,保持最低色温值不变,照明亮度值从100%亮度值在0.5s~2s内,降至25%~45%的亮度值以使被照明物体表面的照度为150lim~300lim,保持照明2s~6s;之后亮度值在0.5s~2s内,上升至100%亮度值;步骤2、照明光源从最低色温值渐变到最高色温值,渐变过程中,照明保持100%亮度值不变,色温渐变时长为6s~18s;然后保持最高色温值不变,照明亮度从100%亮度值在0.5s~2s内,降至25%~45%的亮度值,保持照明2s~6s;之后亮度值在0.5s~2s内,上升至100%亮度值;步骤3、重复所述 步骤1~所述步骤2的步骤,进行循环照明;其中所述步骤1中,照明时间合计量为12s~22s,所述步骤2中,照明时间合计量为12s~22s。整个照明过程中,通过调节照明色温值变化和亮度变化的配合,在色温渐变过程中,在特定时间内完成高亮度至低亮度的切换和低亮度到高亮度的切换,把静态光变为动态光,同时能避免视觉的自适应,通过针对性调整了照明光源和照明过程中的光源亮度和色温的同时变化,在优异的光源照明下,仿生态变化亮度,实现“重置”人眼的主动调节眼轴功能,让人不自觉的眨眼,且主动调节眼轴符合视觉习性,从而可达到保护眼睛、减缓眼睛疲劳、减轻或预防近视的效果。进一步的,所述步骤1中,照明光源从最高色温值渐变至最低色温值的时间为6s~16s。例如,6s;7s;8s;9s;10s;11s;12s;13s;14s;15s;16s。
进一步的,所述步骤2中,照明光源从最低色温值渐变至最高色温值的时间为6s~16s。例如,6s;7s;8s;9s;10s;11s;12s;13s;14s;15s;16s。
进一步的,所述步骤1中,从100%亮度值在0.5s~1.5s内,降至25%~45%的亮度值,保持照明2s~5s。研究发现,高亮度值降为低亮度值的时间,以及低亮度值的照明时间均为实现人不自觉眨眼,主动调节眼轴的关键性因素,并在低亮度值的合理选择范围的协同作用下,可有效提高用眼的舒适度,缓解眼疲劳,保护眼睛,实现减轻或预防近视的效果。其中,过快的将高亮度值调至低亮度值,会对人眼产生自适应效果,人眼来不及调节眼轴,因为人视觉在明暗光线变化或切换下,视觉的自适应时间长度或视觉对外界感观的自适应条件反射,会导致眼轴不会产生变化,无法实现主动调节眼轴,难以实现缓解眼疲劳,并实现减轻或预防近视的效果。但是过慢的将高亮度值调至低亮度值,也无法起到静态光到动态光的转变的效果,缓解眼疲劳的效果会明显变差,无法实现良好的护眼功效。所述步骤1中,高亮度值降为低亮度值的时间可以是0.5s;0.6s;0.7s;0.8s;0.9s;1s;1.1s;1.2s;1.3s;1.4s;1.5s。所述步骤1中,低亮度值的照明时间,可以是2s,3s;4s,5s。
进一步的,所述步骤2中,从100%亮度值在0.5s~1.5s内,降至25%~45%的亮度值,保持照明2s~5s。研究发现,高亮度值降为低亮度值的时间,以及低亮度值的照明时间均为实现人不自觉眨眼,主动调节眼轴的关键性因素,并在低亮度值的合理选择范围的协同作用下,可有效提高用眼的舒适度,缓解眼疲劳,保护眼睛,实现减轻或预防近视的效果。其中,过快的将高亮度值调至低亮度值,会对人眼产生自适应效果,人眼来不及调节眼轴,因为人视觉在明暗光线变化或切换下,视觉的自适应时间长度或视觉对外界感观的自适应条件反射,会导致眼轴不会产生变化,无法实现主动调节眼轴,难以实现缓解眼疲劳,并实现减轻或预防近视的效果。但是过慢的将高亮度值调至低亮度值,也无法起到静态光到动态光的转变的效果,缓解眼疲劳的效果会明显变差,无法实现良好的护眼功效。所述步骤2中,高亮度值降为低亮度值的时间可以是0.5s;0.6s;0.7s;0.8s;0.9s;1s;1.1s;1.2s;1.3s;1.4s;1.5s。所述步骤2中,低亮度值的照明时间,可以是2s,3s;4s,5s。
进一步的,所述步骤1中,亮度值在0.5s~1.5s内,上升至100%亮度值。研究发现,低亮度值降为高亮度值的时间,以及高亮度值的照明时间均为实现人不自觉眨眼,主动调节眼轴的关键性因素,是可有效提高用眼的舒适度,缓解眼疲劳,保护眼睛,实现减轻或预防近视的必要条件。其中,过快的将低亮度值调至高亮度值,会对人眼产生自适应效果,人眼来不及调节眼轴,因为人视觉在明暗光线变化或切换下,视觉的自适应时间长度或视觉对外界感观的自适应条件反射,会导致眼轴不会产生变化,无法实现主动调节眼轴,难以实现缓解眼疲劳,并实现减轻或预防近视的效果。但是过慢的将低亮度值调至高亮度值,也无法起到静态光到动态光的转变的效果,缓解眼疲劳的效果会明显变差,无法实现良好的护眼功效。例如,所述步骤1,低亮度值升为高亮度值的时间可以是0.5s;0.6s;0.7s;0.8s;0.9s;1s;1.1s;1.2s;1.3s;1.4s;1.5s。
进一步的,所述步骤2中,亮度值在0.5s~1.5s内,上升至100%亮度值。研究发现,低亮度值降为高亮度值的时间,以及高亮度值的照明时间均为实现人不自觉眨眼,主动调 节眼轴的关键性因素,是可有效提高用眼的舒适度,缓解眼疲劳,保护眼睛,实现减轻或预防近视的必要条件。其中,过快的将低亮度值调至高亮度值,会对人眼产生自适应效果,人眼来不及调节眼轴,因为人视觉在明暗光线变化或切换下,视觉的自适应时间长度或视觉对外界感观的自适应条件反射,会导致眼轴不会产生变化,无法实现主动调节眼轴,难以实现缓解眼疲劳,并实现减轻或预防近视的效果。但是过慢的将低亮度值调至高亮度值,也无法起到静态光到动态光的转变的效果,缓解眼疲劳的效果会明显变差,无法实现良好的护眼功效。例如,所述步骤2,低亮度值升为高亮度值的时间可以是0.5s;0.6s;0.7s;0.8s;0.9s;1s;1.1s;1.2s;1.3s;1.4s;1.5s。
进一步的,所述步骤1中,照明时间合计量为12s~20s。所述步骤2中,照明时间合计量为12s~20s。研究发现,即使满足亮度转换过程中的切换时间,整个亮度调节过程中的总时间也是影响护眼效果的关键性因素,整个亮度调节过程中的时间不易过长,也不易过短,否则会明显降低用眼舒适度,对近视的减轻或预防较差。例如,照明时间合计量为12s;13s;14s;15s;16s;17s;18s;19s;20s。
进一步的,100%的亮度值不低于600Lux,25%~45%的亮度值不大于400Lux。选择合适的亮度,可以增加人的舒适度,缓解眼部的疲劳。优选地,100%的亮度值不低于800Lux,25%~45%的亮度值不大于300Lux。
进一步的,最高色温值≤高色温光源组的色温值,最低色温值≥低色温光源组的色温值。
进一步的,所述低色温光源组的色温和所述高色温光源组的色温为2700K-5600K中两个大小不同的色温值。进一步的,最高色温值和最低色温值分别为2700K~3000K、4000K~4200K、4700K~5200K和5500K~6000K中任意两个区间段色温值。优选地,所述最低色温值为2700K~3000K中任一色温值,所述最高色温值为5500K~6000K中任一色温值。
综上所述,由于采用了上述技术方案,本申请的有益效果是:
1.本申请提供了一种LED智能控制系统,包括控制模块、驱动电源模块和光源组模块;所述光源组模块包括低色温光源组和高色温光源组,所述驱动电源模块分别与所述低色温光源组和高色温光源组进行电性连接;所述低色温光源组和所述高色温光源组均为全色仿生光源;所述控制模块用于将所述低色温光源组的电流I1大小信号和所述高色温光源组的电流I2大小信号同时提供给驱动电源模块或者用于将所述低色温光源组和所述高色温光源组的电流比例信号提供给驱动电源模块;所述驱动电源模块用于根据接收的电流I1大小信号和电流I2大小信号或电流I1和电流I2的比例生成驱动电流I1和I2分别驱动所述低色温光源组和所述高色温光源组;从而通过调节所述低色温光源组和所述高色温光源组通过的电流比例能够调节照明色温值的变化;通过同时调节所述低色温光源组电流I1的大小和所述高色温光源组电流I2的大小能够调节照明亮度的变化。本申请公开的LED智能控制系统中,低色温光源组和高色温光源组均是由白光光源、红光光源组组组合而成的,通过控制白光光源组和红光光源组的合计功率比,使得LED智能控制系统的光源组形成的光谱为全色仿生光源的光谱,使用时,通过调节所述低色温光源组和所述高色温光源组通过的电流比例能够调节照明色温值的变化;通过同时调节所述低色温光源组电流I1的大小和所述高色温光源组电流I2的大小能够调节照明亮度的变化;通过调节照明色温值变化和亮度变化的配合,可导致人眼不由自主的被动眨眼,眼球自主调焦,重置,以达到主动调节眼轴,防止眼轴变长。
2.采用的照明光源为全色仿生光源,全色仿生光源的光谱为光源辐射功率分布曲线与同色温的自然光谱的近似度达到60%-80%的光谱,且全色仿生光源的光谱显色指数大于95,R1~R15均大于90;该照明光源的光谱中形成了高饱和度的红光和高饱和度的青光的存在模式,依据颜色在视网膜上的成像原理,该全色仿生光源照明时有助于视觉成像时,视觉的焦距和眼轴的调节,实现对物体还原颜色的视觉成像,保证视觉的高度适应性和舒适性,有效缓解照明下的用眼疲劳。同时,本申请提供的照明方法,包括以下步骤:步骤1、照 明光源从最高色温值渐变到最低色温值,色温渐变过程中,照明保持100%亮度值不变,色温渐变时长为6s~18s;然后,保持最低色温值不变,照明亮度值从100%亮度值在0.5s~2s内,降至25%~45%的亮度值以使被照明物体表面的照度为150lim~300lim,保持照明2s~6s;之后亮度值在0.5s~2s内,上升至100%亮度值;步骤2、照明光源从最低色温值渐变到最高色温值,渐变过程中,照明保持100%亮度值不变,色温渐变时长为6s~18s;然后保持最高色温值不变,照明亮度从100%亮度值在0.5s~2s内,降至25%~45%的亮度值,保持照明2s~6s;之后亮度值在0.5s~2s内,上升至100%亮度值;步骤3、重复所述步骤1~所述步骤2的步骤,进行循环照明;其中所述步骤1中,照明时间合计量为12s~22s,所述步骤2中,照明时间合计量为12s~22s。整个照明过程中,通过调节照明色温值变化和亮度变化的配合,在色温渐变过程中,在特定时间内完成高亮度至低亮度的切换和低亮度到高亮度的切换,把静态光变为动态光,同时能避免视觉的自适应,通过针对性调整了照明光源和照明过程中的光源亮度和色温的同时变化,缓解眼疲劳性得分可达9.0分,中高度近视以及轻度近视眼睛的治疗有效率达到了100%,最高可降低200度,在优异的光源照明下,仿生态变化亮度,实现“重置”人眼的主动调节眼轴功能,让人不自觉的眨眼,且主动调节眼轴符合视觉习性,从而可达到保护眼睛、减缓眼睛疲劳、减轻或预防近视的效果。
附图说明
图1为不同颜色光落在视网膜位置的结构示意图。
图2为LED护眼照明使用装置的结构示意图。
图3为驱动电源模块和光源组模块的结构示意图。
图4为实施例1中色温为2700K的低色温光源组的色谱图。
图5为实施例1中5600K的高色温光源组的色谱图。
图6为实施例2中色温为3000K的低色温光源组的色谱图。
图7为实施例2中4200K的高色温光源组的色谱图。
图8为实施例3中色温为4000K的白光光源光谱(上)及4000K的低色温光源组的色谱图(下)。
图9为实施例3中6000K的高色温光源组的色谱图。
图10为白光光源和红光光源的调光调色参数表。
图11为白光光源和红光光源的调光调色参数表。
本发明的实施方式
下面结合附图,对本申请作详细的说明。
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
以下实施例和对比例中,白光光源组中,白光光源显色指数大于90,且红光光谱的峰值为630nm~640nm,或大于630nm~640nm的光功率分布呈下降趋势,尤其是650nm~700nm的光功率分布严重偏低。
具体的,白光光源包括蓝光芯片和被所述蓝光芯片激发的荧光粉,所述蓝光芯片包括峰值波长为452-457nm的第一芯片和峰值波长为463-467nm的第二芯片,所述荧光粉包括峰值波长位于510-514nm之间的第一绿粉、峰值波长位于532-537nm之间的第二绿粉和峰值波长位于652-658nm之间的红粉;其中,所述第一芯片和所述第二芯片采用并联方式电性相连,所述第一芯片和所述第二芯片之间的正向工作电压差值小于或等于5%,且所述第 一芯片和所述第二芯片在相同工作条件下的峰值强度比为(1-1.2):(0.8-1);以所述荧光粉的总重量为100%计,所述第一绿粉的质量百分含量为5%-10%,所述第二绿粉的质量百分含量为82%-90%,所述红粉的质量百分含量为3%-10%。根据不同色温需要,来调整荧光粉的配比。
红光光源组中,针对白光光源,与同色温的自然光谱相比,存在红光光功率分布不足(或缺失的部分)而选择相应波长的红光光源,通过针对性调整所有所述LED白光光源组的合计功率与所有所述LED红光光源组的合计功率7~20:1,使其(白光光源+红光光源)光功率分布接近自然光谱。
实施例1
如图2和图3所示,一种LED智能控制系统,包括控制模块、驱动电源模块和光源组模块;所述光源组模块包括低色温光源组和高色温光源组,所述驱动电源模块分别与所述低色温光源组和高色温光源组进行电性连接;所述低色温光源组和所述高色温光源组均为全色仿生光源;
所述控制模块用于将所述低色温光源组的电流I1大小信号和所述高色温光源组的电流I2大小信号同时提供给驱动电源模块,所述驱动电源模块用于根据接收的电流I1大小信号和电流I2大小信号,分别驱动所述低色温光源组和所述高色温光源组,通过同时调节所述低色温光源组电流I1的大小和所述高色温光源组电流I2的大小能够调节照明亮度的变化;
所述控制模块用于将所述低色温光源组和所述高色温光源组的电流比例信号提供给驱动电源模块,所述驱动电源模块用于根据接收的电流I1和电流I2的比例生成驱动电流I1和I2,分别驱动所述低色温光源组和所述高色温光源组,通过调节所述低色温光源组和所述高色温光源组通过的电流比例能够调节照明色温值的变化;
其中,所述低色温光源组为全色仿生光源,所述低色温光源组是由若干个LED白光光源组和若干个LED红光光源组构成;所有所述LED白光光源组的合计功率与所有所述LED红光光源组的合计功率比为15:1。当单颗LED白光光源和单颗LED红光光源的功率相同时,所述LED白光光源的数量和所述LED红光光源的数量比例15:1。
全色仿生光源的光谱为光源辐射功率分布曲线与同色温的自然光谱的近似度达到80%的光谱,且全色仿生光源的光谱显色指数大于95,R1~R15均大于90。色温为2700K,如图4所示,380~435nm紫光的绝对光功率值为0.15;435~475nm蓝光的绝对光功率值为0.32;475~492nm青光的绝对光功率值为0.48;492~577nm绿光的绝对光功率值为0.52;577~597nm黄光的绝对光功率值为0.78;597~622nm橙色光的绝对光功率值为0.85;622~700nm红光的绝对光功率值为0.54。
具体的,所述高色温光源组为全色仿生光源,所述高色温光源组是由若干个LED白光光源组和若干个LED红光光源组构成;所有所述LED白光光源组的合计功率与所有所述LED红光光源组的合计功率为16:1。
色温为5600K,如图5所示,380~435nm紫光的绝对光功率值为0.40;435~475nm蓝光的绝对光功率值为0.65;475~492nm青光的绝对光功率值为0.72;492~577nm绿光的绝对光功率值为0.83;577~597nm黄光的绝对光功率值为0.82;597~622nm橙色光的绝对光功率值为0.85;622~700nm红光的绝对光功率值为0.47。
采用上述LED智能控制系统进行照明的方法,包括以下步骤:
步骤1、照明光源从最高色温值5600K在渐变到低色温值3000K,色温渐变过程中,照明亮度值为900Lux不变;色温渐变时长12s;然后,保持最低色温值,照明亮度值从900Lux在0.8s内,降至的亮度值为270Lux,保持照明4s;之后亮度值在0.8s内,上升至900Lux;
步骤3、照明光源从最低色温值3000K渐变到最高色温值5600K,色温渐变过程中,照明亮度值900Lux不变;色温渐变时长为12s;之后,保持最高色温值不变,照明亮度从900Lux在0.8s内,降至的亮度值为270Lux,保持照明4s;之后亮度值在0.8s内,上升至900Lux;
步骤3、重复所述步骤1-~-所述步骤2的步骤,进行循环照明。
实际工作中,如图10-图11所示为白光光源和红光光源的调光调色参数表,通过该调光调色参数可以通过调节各电流比例来实现不同暖色温组、冷色温组和红光的各参数大小,最终改变输出的色温值大小。
实施例2
一种LED智能控制系统,包括控制模块、驱动电源模块和光源组模块;所述光源组模块包括低色温光源组和高色温光源组,所述驱动电源模块分别与所述低色温光源组和高色温光源组进行电性连接;所述低色温光源组和所述高色温光源组均为全色仿生光源;
所述控制模块用于将所述低色温光源组的电流I1大小信号和所述高色温光源组的电流I2大小信号同时提供给驱动电源模块或者用于将所述低色温光源组和所述高色温光源组的电流比例信号提供给驱动电源模块;所述驱动电源模块用于根据接收的电流I1大小信号和电流I2大小信号或电流I1和电流I2的比例生成驱动电流I1和I2分别驱动所述低色温光源组和所述高色温光源组;从而通过调节所述低色温光源组和所述高色温光源组通过的电流比例能够调节照明色温值的变化;通过同时调节所述低色温光源组电流I1的大小和所述高色温光源组电流I2的大小能够调节照明亮度的变化。
具体的,其中,所述低色温光源组为全色仿生光源,所述低色温光源组是由若干个LED白光光源组和若干个LED红光光源组构成;所有所述LED白光光源组的合计功率与所有所述LED红光光源组的合计功率比为7:1。
色温为3000K,如图6所示,
380~435nm紫光的绝对光功率值为0.33;435~475nm蓝光的绝对光功率值为0.38;475~492nm青光的绝对光功率值为0.8;492~577nm绿光的绝对光功率值为0.9;577~597nm黄光的绝对光功率值为1.13;597~622nm橙色光的绝对光功率值为1.2;622~700nm红光的绝对光功率值为1.07。
具体的,所述高色温光源组为全色仿生光源,所述高色温光源组是由若干个LED白光光源组和若干个LED红光光源组构成;所有所述LED白光光源组的合计功率与所有所述LED红光光源组的合计功率为8:1。
色温为4200K,如图7所示,380~435nm紫光的绝对光功率值为0.35;435~475nm蓝光的绝对光功率值为0.5;475~492nm青光的绝对光功率值为0.88;492~577nm绿光的绝对光功率值为0.85;577~597nm黄光的绝对光功率值为1.0;597~622nm橙色光的绝对光功率值为0.95;622~700nm红光的绝对光功率值为1.0。
采用上述控制系统进行照明的方法,包括以下步骤:
步骤1、照明光源从最高色温值4200K渐变到低色温值3000K,色温渐变过程中,照明亮度值800Lux不变,色温渐变时长6s,然后,保持最低色温值,照明亮度值从800Lux在2s内,降至的亮度值为200Lux,保持照明6s;之后亮度值在2s内,上升至800Lux;
步骤2、照明光源从最低色温值3000K渐变到最高色温值4200K,渐变过程中,保持100%亮度值800Lux,色温渐变时长为6s;然后,保持最高色温值不变,照明亮度从800Lux在2s内,降至的亮度值为200Lux,保持照明6s;之后亮度值在2s内,上升至800Lux;
步骤3、重复所述步骤1-~-所述步骤2的步骤,进行循环照明。
实施例3
一种LED智能控制系统,包括控制模块、驱动电源模块和光源组模块;所述光源组模块包括低色温光源组和高色温光源组,所述驱动电源模块分别与所述低色温光源组和高色温光源组进行电性连接;所述低色温光源组和所述高色温光源组均为全色仿生光源;
所述控制模块用于将所述低色温光源组的电流I1大小信号和所述高色温光源组的电流I2大小信号同时提供给驱动电源模块或者用于将所述低色温光源组和所述高色温光源组的电流比例信号提供给驱动电源模块;所述驱动电源模块用于根据接收的电流I1大小信号和电流I2大小信号或电流I1和电流I2的比例生成驱动电流I1和I2分别驱动所述低色温光源组和所述高色温光源组;从而通过调节所述低色温光源组和所述高色温光源组通过的电流比例能够调节照明色温值的变化;通过同时调节所述低色温光源组电流I1的大小和所述高色温光源组电流I2的大小能够调节照明亮度的变化。
具体的,所述低色温光源组为全色仿生光源,所述低色温光源组是由若干个LED白光光源组和若干个LED红光光源组构成;所有所述LED白光光源组的合计功率与所有所述LED红光光源组的合计功率比为20:1。
色温为4000K,形成的全光谱如图8中的下图所示。
具体的:380~435nm紫光的绝对光功率值为0.33;435~475nm蓝光的绝对光功率值为0.32;475~492nm青光的绝对光功率值为0.72;492~577nm绿光的绝对光功率值为0.66;577~597nm黄光的绝对光功率值为0.88;597~622nm橙色光的绝对光功率值为0.88;622~700nm红光的绝对光功率值为0.65。4000K色温的白光光源光谱如图8中的上图所示。
具体的,所述高色温光源组为全色仿生光源,所述高色温光源组是由若干个LED白光光源组和若干个LED红光光源组构成;所有所述LED白光光源组的合计功率与所有所述LED红光光源组的合计功率比为18:1。
色温为6000K,如图9所示,
380~435nm紫光的绝对光功率值为0.43;435~475nm蓝光的绝对光功率值为0.68;475~492nm青光的绝对光功率值为1.25;492~577nm绿光的绝对光功率值为1.15;577~597nm黄光的绝对光功率值为1.1;597~622nm橙色光的绝对光功率值为0.7;622~700nm红光的绝对光功率值为0.93。
采用上述控制系统进行照明的方法,包括以下步骤:
步骤1、照明光源从最高色温值6000K渐变到低色温值4000K,色温渐变过程中,照明亮度值600Lux不变;色温渐变时长为18s,然后,保持最低色温值,照明亮度值从600Lux在1s内,降至的亮度值为250Lux,保持照明2s;之后亮度值在1s内,上升至600Lux;
步骤2、照明光源从最低色温值4000K渐变到最高色温值6000K,渐变过程中,保持100%亮度值600Lux,色温渐变时长为18s;然后,保持最高色温值不变,照明亮度从600Lux在1s内,降至的亮度值为250Lux,保持照明2s;之后亮度值在1s内,上升至600Lux;
步骤3、重复所述步骤1-~所述步骤2的步骤,进行循环照明。
实施例4
一种LED智能控制系统,包括控制模块、驱动电源模块和光源组模块;所述光源组模块包括低色温光源组和高色温光源组,所述驱动电源模块分别与所述低色温光源组和高色温光源组进行电性连接;所述低色温光源组和所述高色温光源组均为全色仿生光源;
所述控制模块用于将所述低色温光源组的电流I1大小信号和所述高色温光源组的电流I2大小信号同时提供给驱动电源模块或者用于将所述低色温光源组和所述高色温光源组的电流比例信号提供给驱动电源模块;所述驱动电源模块用于根据接收的电流I1大小信号和电流I2大小信号或电流I1和电流I2的比例生成驱动电流I1和I2分别驱动所述低色温光源组和所述高色温光源组;从而通过调节所述低色温光源组和所述高色温光源组通过的电流比例能够调节照明色温值的变化;通过同时调节所述低色温光源组电流I1的大小和所述高色温光源组电流I2的大小能够调节照明亮度的变化。
具体的,所述低色温光源组为全色仿生光源,所述低色温光源组是由若干个LED白光光源组和若干个LED红光光源组构成;所有所述LED白光光源组的合计功率与所有所述LED红光光源组的合计功率比为20:1。
色温为2800K,380~435nm紫光的绝对光功率值为0.22;435~475nm蓝光的绝对光功率值为0.34;475~492nm青光的绝对光功率值为0.62;492~577nm绿光的绝对光功率值为0.55;577~597nm黄光的绝对光功率值为0.92;597~622nm橙色光的绝对光功率值为0.92;622~700nm红光的绝对光功率值为0.65。
具体的,所述高色温光源组为全色仿生光源,所述高色温光源组是由若干个LED白光光源组和若干个LED红光光源组构成;所有所述LED白光光源组的合计功率与所有所述LED红光光源组的合计功率比为15:1。
色温为5600K,具体如下:380~435nm紫光的绝对光功率值为0.36;435~475nm蓝光的绝对光功率值为0.6;475~492nm青光的绝对光功率值为0.85;492~577nm绿光的绝对光功率值为0.85;577~597nm黄光的绝对光功率值为0.88;597~622nm橙色光的绝对光功 率值为0.84;622~700nm红光的绝对光功率值为0.48。
采用上述控制系统进行照明的方法,包括以下步骤:
步骤1、照明光源从最高色温值4800K渐变到低色温值2800K,色温渐变过程中,照明亮度值1000Lux不变,色温渐变时长为8s;然后,保持最低色温值,照明亮度值从1000Lux在0.5s内,降至的亮度值为300Lux,保持照明6s;之后亮度值在0.5s内,上升至1000Lux;
步骤2、照明光源从最低色温值2800K渐变到最高色温值4800K,渐变过程中,保持100%亮度值1000Lux,照明8s;然后,保持最高色温值不变,照明亮度从1000Lux在0.5s内,降至的亮度值为300Lux,保持照明6s;之后亮度值在0.5s内,上升至1000Lux;
步骤3、重复所述步骤1-~所述步骤2的步骤,进行循环照明。
对比例1
相比实施例1,改变为普通光源照射,非全色仿生,采用实施例1相同的照明方法。
其中普通LED光源,与同色温自然光谱的近似度为50%,640~650nm的光功率为0.65;650~660nm的光功率为0.44;660~670nm的光功率为0.36;670~700nm的光功率为0.21。
对比例2
相比实施例1,采用实施例1相同的控制系统。照明过程中,色温为5600K不变,亮度值为900Lux,一直保持不变。
对比例3
对比例3采用实施例1相同的照明方法。对比例3采用实施例1相同的控制系统,不同之处在于,所有所述LED白光光源组的合计功率与所有所述LED红光光源组的合计功率为5:1。
对比例4
对比例4采用实施例1相同的照明方法。对比例4采用实施例1相同的控制系统,不同之处在于,所有所述LED白光光源组的合计功率与所有所述LED红光光源组的合计功率为25:1。
对比例5
相比实施例1,采用实施例1相同的控制系统,照明过程为:
步骤1、照明光源从最高色温值5600K在渐变到低色温值3000K,色温渐变过程中,照明亮度值为900Lux不变;色温渐变时长12s;然后,保持最低色温值,照明亮度值从900Lux在0.3s内,降至的亮度值为270Lux,保持照明4s;之后亮度值在0.3s内,上升至900Lux;
步骤3、照明光源从最低色温值3000K渐变到最高色温值5600K,色温渐变过程中,照明亮度值900Lux不变;色温渐变时长为12s;之后,保持最高色温值不变,照明亮度从900Lux在0.3s内,降至的亮度值为270Lux,保持照明4s;之后亮度值在0.3s内,上升至900Lux;
步骤3、重复所述步骤1-~-所述步骤2的步骤,进行循环照明。
对比例6
相比实施例1,采用实施例1相同的控制系统,照明方法具体包括以下步骤:
步骤1、照明光源从最高色温值5600K在渐变到低色温值3000K,色温渐变过程中,照明亮度值为900Lux不变;色温渐变时长12s;然后,保持最低色温值,照明亮度值从900Lux在2.8s内,降至的亮度值为270Lux,保持照明4s;之后亮度值在2.8s内,上升至900Lux;
步骤3、照明光源从最低色温值3000K渐变到最高色温值5600K,色温渐变过程中,照明亮度值900Lux不变;色温渐变时长为12s;之后,保持最高色温值不变,照明亮度从900Lux在2.8s内,降至的亮度值为270Lux,保持照明4s;之后亮度值在2.8s内,上升至900Lux;
步骤3、重复所述步骤1-~-所述步骤2的步骤,进行循环照明。
对比例7
相比实施例1,升高和降低时间都在范围内,但是总时间低于12s。
相比实施例1,采用实施例1相同的控制系统,具体照明方法:
步骤1、照明光源从最高色温值5600K在渐变到低色温值3000K,色温渐变过程中,照明亮度值为900Lux不变;色温渐变时长6s;然后,保持最低色温值,照明亮度值从900Lux在1s内,降至的亮度值为270Lux,保持照明2s;之后亮度值在1s内,上升至900Lux;
步骤3、照明光源从最低色温值3000K渐变到最高色温值5600K,色温渐变过程中,照明亮度值900Lux不变;色温渐变时长为6s;之后,保持最高色温值不变,照明亮度从900Lux在1s内,降至的亮度值为270Lux,保持照明2s;之后亮度值在1s内,上升至900Lux;
步骤3、重复所述步骤1-~-所述步骤2的步骤,进行循环照明。
对比例8
相比实施例1,升高和降低时间都在范围内,但是总时间高于22s。
相比实施例1,采用实施例1相同的控制系统,具体照明方法:
步骤1、照明光源从最高色温值5600K在渐变到低色温值3000K,色温渐变过程中,照明亮度值为900Lux不变;色温渐变时长18s;然后,保持最低色温值,照明亮度值从900Lux在1s内,降至的亮度值为270Lux,保持照明4s;之后亮度值在1s内,上升至900Lux;
步骤3、照明光源从最低色温值3000K渐变到最高色温值5600K,色温渐变过程中,照明亮度值900Lux不变;色温渐变时长为18s;之后,保持最高色温值不变,照明亮度从900Lux在1s内,降至的亮度值为270Lux,保持照明4s;之后亮度值在1s内,上升至900Lux;
步骤3、重复所述步骤1-~-所述步骤2的步骤,进行循环照明。
对比例9
相比实施例1,改变为普通LED光源照射,非全色仿生。其中普通LED光源,与同色温自然光谱的近似度为50%,640~650nm的光功率为0.65;650~660nm的光功率为0.44;660~670nm的光功率为0.36;670~700nm的光功率为0.21。
照明过程中,色温为5600K不变,亮度值为900Lux,一直保持不变。
测试1
以四川某些初中的部分学生为实验对象,设置13个组别,每个组别包里三个班级,每个班级的学生为49-51个学生。且每个组别中,学生的男比性别比例、年龄、近视和非近视分布等因素具有统计学意义,各方面基本平衡,具有可比性。13个组别的教室中,分别全部安装相同位置相同个数的实施例1-实施例4以及对比例1-对比例9的护眼装置及对应的照明方法。具体的学生情况如表1所示。
测试条件:每天上午8:30~11:30,下午2:00~4:30,晚上自习7:00~9:00;放假期间,晚上学习不超过3h,晚上9点后上床睡觉。
学习期间,上课或学习每隔45min,休息15min,短时休息,学生要去户外活动。
测试时间为24周,视力变化情况如表2所示。表2中,有效率为度数下降的眼睛占比。
6个月后,让实验对象对用眼疲劳性进行打分,用眼疲劳度高为低分,用眼舒适度高为高分,设置0分-10分的标准,其中,10分为用眼舒适度高,0分为用眼舒适度差,分越高,用眼舒适度越高,测试结果如表2所示。
其中,表1中,高度近视眼睛的视力为600度以上,中度近视眼睛的视力为300度~600度,轻度近视眼睛的视力为300度以下。
表1
表2

从表2的测试结果来看,实施例1-4采用本申请的技术方案,缓解眼疲劳性得分可达9.0分,中高度近视以及轻度近视眼睛的治疗有效率达到了100%,最高可降低200度,通过针对性调整了照明光源和照明过程中的光源亮度值变化方法,在优异的光源照明下,仿生态变化亮度,实现“重置”人眼的主动调节眼轴功能,让人不自觉的眨眼,且主动调节眼轴符合视觉习性,从而可达到保护眼睛、减缓眼睛疲劳以及减轻或预防近视的效果。对比例1-对比例7未采用本申请的全色仿生光源或未采用本申请的照明方法,缓解眼疲劳的效果明显降低,有部分眼睛还会产生度数升高的现象,无法实现良好的减轻或预防近视的效果。对比例8组的测试数据可以看出,仅采用常规的照明光源和常规的照明方式,眼睛度数均会不同程度的升高,出现非近视眼睛转为近视眼的情况,技术效果差。
采用的照明光源为全色仿生光源,全色仿生光源的光谱为光源辐射功率分布曲线与同色温的自然光谱的近似度达到60%-80%的光谱,且全色仿生光源的光谱显色指数大于95,R1~R15均大于90;该照明光源的光谱中形成了高饱和度的红光和高饱和度的青光的存在模式,依据颜色在视网膜上的成像原理,该全色仿生光源照明时有助于视觉成像时,视觉的焦距和眼轴的调节,实现对物体还原颜色的视觉成像,保证视觉的高度适应性和舒适性,有效缓解照明下的用眼疲劳。同时,本申请提供的照明方法,包括以下步骤:步骤1、照明光源从最高色温值渐变到最低色温值,色温渐变过程中,照明保持100%亮度值不变,色温渐变时长为6s~18s;然后,保持最低色温值不变,照明亮度值从100%亮度值在0.5s~2s内,降至25%~45%的亮度值以使被照明物体表面的照度为150lim~300lim,保持照明 2s~6s;之后亮度值在0.5s~2s内,上升至100%亮度值;步骤2、照明光源从最低色温值渐变到最高色温值,渐变过程中,照明保持100%亮度值不变,色温渐变时长为6s~18s;然后保持最高色温值不变,照明亮度从100%亮度值在0.5s~2s内,降至25%~45%的亮度值,保持照明2s~6s;之后亮度值在0.5s~2s内,上升至100%亮度值;步骤3、重复所述步骤1~所述步骤2的步骤,进行循环照明;其中所述步骤1中,照明时间合计量为12s~22s,所述步骤2中,照明时间合计量为12s~22s。整个照明过程中,通过调节照明色温值变化和亮度变化的配合,在色温渐变过程中,在特定时间内完成高亮度至低亮度的切换和低亮度到高亮度的切换,把静态光变为动态光,同时能避免视觉的自适应,通过针对性调整了照明光源和照明过程中的光源亮度和色温的同时变化,在优异的光源照明下,仿生态变化亮度,实现“重置”人眼的主动调节眼轴功能,让人不自觉的眨眼,且主动调节眼轴符合视觉习性,从而可达到保护眼睛、减缓眼睛疲劳、减轻或预防近视的效果。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。

Claims (19)

  1. 一种LED智能控制系统,其特征在于,包括控制模块、驱动电源模块和光源组模块;所述光源组模块包括低色温光源组和高色温光源组,所述驱动电源模块分别与所述低色温光源组和高色温光源组进行电性连接,所述低色温光源组和所述高色温光源组均为全色仿生光源;
    所述控制模块用于将所述低色温光源组的电流I1大小信号和所述高色温光源组的电流I2大小信号同时提供给驱动电源模块,所述驱动电源模块用于根据接收的电流I1大小信号和电流I2大小信号,分别驱动所述低色温光源组和所述高色温光源组,通过同时调节所述低色温光源组电流I1的大小和所述高色温光源组电流I2的大小能够调节照明亮度的变化;
    所述控制模块用于将所述低色温光源组和所述高色温光源组的电流比例信号提供给驱动电源模块,所述驱动电源模块用于根据接收的电流I1和电流I2的比例生成驱动电流I1和I2,分别驱动所述低色温光源组和所述高色温光源组,通过调节所述低色温光源组和所述高色温光源组通过的电流比例能够调节照明色温值的变化;
    其中,所述低色温光源组和所述高色温光源组均为全色仿生光源;所述低色温光源组和所述高色温光源组均是由至少一个LED白光光源组和至少一个LED红光光源组构成;所有所述LED白光光源组的合计功率与所有所述LED红光光源组的合计功率比为7~20:1。
  2. 根据权利要求1所述的LED智能控制系统,其特征在于,包括红外遥控器,所述控制模块包括红外接收装置,所述红外接收装置用于接收所述红外遥控器的遥控信号,根据遥控信号,所述控制模块生成电流I1大小信号和电流I2大小信号、电流I1和电流I2比例信号。
  3. 根据权利要求2所述的LED智能控制系统,其特征在于,每颗LED白光光源和每颗LED红光光源的功率相同时,所述低色温光源组和所述高色温光源组内所述LED白光光源的数量和所述LED红光光源的数量比例均为7~20:1。
  4. 根据权利要求3所述的LED智能控制系统,其特征在于,还包括红外遥控器,所述控制模块包括红外接收装置,所述红外接收装置用于接收所述红外遥控器的遥控信号,根据遥控信号,所述控制模块生成电流I1大小信号和电流I2大小信号。
  5. 根据权利要求4所述的LED智能控制系统,其特征在于,所述控制模块还包括光传感器。
  6. 根据权利要求5所述的LED智能控制系统,其特征在于,所述低色温光源组由若干个低色温光源串联、并联或串并联而成的,所述高色温光源组由若干个高色温光源串联、并联或串并联而成的。
  7. 根据权利要求6所述的LED智能控制系统,其特征在于,所述低色温光源组的色温和所述高色温光源组的色温为2700K-5600K中两个大小不同的色温值。
  8. 根据权利要求7所述的LED智能控制系统,其特征在于,所述低色温光源组的色温和所述高色温光源组的色温分别为2700K~3000K、4000K~4200K、4700K~5200K和5500K~6000K中的任意两种区间段色温值。
  9. 根据权利要求8所述的LED智能控制系统,其特征在于,所述低色温光源组的色温为2700K~3000K,所述高色温光源组的色温为5500K~6000K。
  10. 一种使用权利要求1-9任意一项所述的LED智能控制系统的照明方法,其特征在于,包括以下步骤:步骤1、照明光源从最高色温值渐变到最低色温值,色温渐变过程中,照明保持100%亮度值不变,色温渐变时长为6s~18s;然后,保持最低色温值不变,照明亮度值从100%亮度值在0.5s~2s内,降至25%~45%的亮度值以使被照明物体表面的照度为 150lim~300lim,保持照明2s~6s;之后亮度值在0.5s~2s内,上升至100%亮度值;
    步骤2、照明光源从最低色温值渐变到最高色温值,渐变过程中,照明保持100%亮度值不变,色温渐变时长为6s~18s;然后保持最高色温值不变,照明亮度从100%亮度值在0.5s~2s内,降至25%~45%的亮度值,保持照明2s~6s;之后亮度值在0.5s~2s内,上升至100%亮度值;
    步骤3、重复所述步骤1~所述步骤2的步骤,进行循环照明;其中所述步骤1中,照明时间合计量为12s~22s,所述步骤2中,照明时间合计量为12s~22s。
  11. 根据权利要求10所述的使用LED智能控制系统的照明方法,其特征在于,所述步骤1中,照明光源从最高色温值渐变至最低色温值的时间为6s~16s。
  12. 根据权利要求11所述的使用LED智能控制系统的照明方法,其特征在于,所述步骤2中,照明光源从最低色温值渐变至最高色温值的时间为6s~16s。
  13. 根据权利要求12所述的使用LED智能控制系统的照明方法,其特征在于,所述步骤1中,照明亮度从100%亮度值在0.5s~1.5s内,降至25%~45%的亮度值以使被照明物体表面的照度为150lim~300lim,保持照明2s~5s。
  14. 根据权利要求13所述的使用LED智能控制系统的照明方法,其特征在于,所述步骤2中,照明亮度从100%亮度值在0.5s~1.5s内,降至25%~45%的亮度值,保持照明2s~5s。
  15. 根据权利要求14所述的使用LED智能控制系统的照明方法,其特征在于,所述步骤1中,整个亮度变化的时间合计量为12s~20s,所述步骤2中,整个亮度值变化的时间合计量为步骤1到步骤3所用时长为12s~20s。
  16. 根据权利要求10-15任意一项所述的使用LED智能控制系统的照明方法,其特征在于,100%的亮度值不低于600Lux,25%~45%的亮度值不大于400Lux。
  17. 根据权利要求16所述的使用LED智能控制系统的照明方法,其特征在于,100%的亮度值不低于800Lux,25%~45%的亮度值不大于300Lux。
  18. 根据权利要求17所述的使用LED智能控制系统的照明方法,其特征在于,最高色温值≤高色温光源组的色温值,最低色温值≥低色温光源组的色温值。
  19. 根据权利要求18所述的使用LED智能控制系统的照明方法,其特征在于,所述低色温光源组的色温和所述高色温光源组的色温为2700K-5600K中两个大小不同的色温值。
PCT/CN2023/133076 2022-11-21 2023-11-21 一种led智能控制系统及照明方法 WO2024109775A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211453321.8 2022-11-21
CN202211453321.8A CN115665918A (zh) 2022-11-21 2022-11-21 一种led智能控制系统及照明方法

Publications (1)

Publication Number Publication Date
WO2024109775A1 true WO2024109775A1 (zh) 2024-05-30

Family

ID=85018665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/133076 WO2024109775A1 (zh) 2022-11-21 2023-11-21 一种led智能控制系统及照明方法

Country Status (2)

Country Link
CN (1) CN115665918A (zh)
WO (1) WO2024109775A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115665919B (zh) * 2022-11-21 2023-05-02 四川世纪和光科技发展有限公司 一种led可调色温装置及使用方法
CN115665918A (zh) * 2022-11-21 2023-01-31 四川世纪和光科技发展有限公司 一种led智能控制系统及照明方法
CN116928626B (zh) * 2023-09-19 2024-01-02 四川世纪和光科技发展有限公司 一种缓解眼疲劳的照明方法及照明装置、应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020047624A1 (en) * 2000-03-27 2002-04-25 Stam Joseph S. Lamp assembly incorporating optical feedback
CN102278621A (zh) * 2011-04-22 2011-12-14 深圳市瑞丰光电子股份有限公司 一种色温可调的白光led模组、照明设备及制作方法
US20170064790A1 (en) * 2012-06-06 2017-03-02 Finelite Inc. Light emitting diode luminaire device and system with color temperature tunning
CN109027719A (zh) * 2018-06-27 2018-12-18 朗昭创新控股(深圳)有限公司 一种色温可调的led光源组件及照明装置
CN114466476A (zh) * 2022-01-12 2022-05-10 林璧光 一种led照明灯的光色调节方法及其光源和调节装置
CN115665918A (zh) * 2022-11-21 2023-01-31 四川世纪和光科技发展有限公司 一种led智能控制系统及照明方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020047624A1 (en) * 2000-03-27 2002-04-25 Stam Joseph S. Lamp assembly incorporating optical feedback
CN102278621A (zh) * 2011-04-22 2011-12-14 深圳市瑞丰光电子股份有限公司 一种色温可调的白光led模组、照明设备及制作方法
US20170064790A1 (en) * 2012-06-06 2017-03-02 Finelite Inc. Light emitting diode luminaire device and system with color temperature tunning
CN109027719A (zh) * 2018-06-27 2018-12-18 朗昭创新控股(深圳)有限公司 一种色温可调的led光源组件及照明装置
CN114466476A (zh) * 2022-01-12 2022-05-10 林璧光 一种led照明灯的光色调节方法及其光源和调节装置
CN115665918A (zh) * 2022-11-21 2023-01-31 四川世纪和光科技发展有限公司 一种led智能控制系统及照明方法

Also Published As

Publication number Publication date
CN115665918A (zh) 2023-01-31

Similar Documents

Publication Publication Date Title
WO2024109775A1 (zh) 一种led智能控制系统及照明方法
WO2024109780A1 (zh) 一种led可调色温装置及使用方法
WO2024109783A1 (zh) 一种led护眼照明使用方法及其装置
WO2024109779A1 (zh) 一种可调眼轴的led灯具及其使用方法
WO2024109888A1 (zh) 一种led护眼吸顶灯及控制方法
TWI597710B (zh) 顯示裝置及背光模組控制方法
WO2024109782A1 (zh) 一种led视觉保护方法及其装置
CN104806915A (zh) 一种智能模拟动态自然光的视力保健灯
WO2024109893A1 (zh) 一种视力保护面板灯、面板灯组及其照明方法
CN103167697A (zh) 色温亮度自适应灯
WO2024109898A1 (zh) 一种全色仿生护眼台灯及其照明方法
CN107666736A (zh) 动态照明方法
CN111853579A (zh) 灯具
CN107666750A (zh) 一种动态变化的照明方法
CN107666738B (zh) 动态照明方法
CN207070414U (zh) 一种灯光可调节式台灯
CN201269457Y (zh) 一种模拟动态自然光的视力保健灯
CN212644312U (zh) 灯具
CN207704838U (zh) 一种具有护眼功能的显示器及电子设备
CN107666752A (zh) 动态照明方法
Bálský et al. Use of tunable white luminaires for biodynamic lighting
CN116928626B (zh) 一种缓解眼疲劳的照明方法及照明装置、应用
CN217853791U (zh) 一种具有动态变化的眼肌调节训练灯
CN221727109U (zh) 一种让人感官舒适的led光源
CN117346107A (zh) 一种视觉保护的照明方法及照明装置、应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23893865

Country of ref document: EP

Kind code of ref document: A1