CN116924804A - 一种无粘结相超细超微粒硬质合金及其制备方法 - Google Patents

一种无粘结相超细超微粒硬质合金及其制备方法 Download PDF

Info

Publication number
CN116924804A
CN116924804A CN202311196345.4A CN202311196345A CN116924804A CN 116924804 A CN116924804 A CN 116924804A CN 202311196345 A CN202311196345 A CN 202311196345A CN 116924804 A CN116924804 A CN 116924804A
Authority
CN
China
Prior art keywords
powder
tungsten carbide
carbide
nano tungsten
percent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202311196345.4A
Other languages
English (en)
Other versions
CN116924804B (zh
Inventor
张绍铁
鲜勇
林爱丽
周发
唐小平
林丽娟
曾璐璐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Jinwu Cemented Alloy Co ltd
Original Assignee
Chengdu Jinwu Cemented Alloy Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Jinwu Cemented Alloy Co ltd filed Critical Chengdu Jinwu Cemented Alloy Co ltd
Priority to CN202311196345.4A priority Critical patent/CN116924804B/zh
Publication of CN116924804A publication Critical patent/CN116924804A/zh
Application granted granted Critical
Publication of CN116924804B publication Critical patent/CN116924804B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5626Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on tungsten carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • C04B2235/3236Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/386Boron nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/781Nanograined materials, i.e. having grain sizes below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

本申请涉及纳米碳化钨制备技术领域,尤其是一种无粘结相超细超微粒硬质合金及其制备方法,所述无粘结相超细超微粒硬质合金,是由以下质量百分比的原料制成:0.10%‑0.18%的碳粉、0.2%‑0.4%的纳米钛酸锶、0.5%‑5.0%的超细钛碳化锡Ti2SnC陶瓷粉、0.2%‑2.0%的六方氮化硼纳米片、余量为纳米碳化钨粉末;所述纳米碳化钨粉末的平均粒度为5.0‑60nm。本申请中制备的无粘结相超细晶WC硬质合金具有优异综合性能,突破了应用领域限制,具有广阔的市场前景。

Description

一种无粘结相超细超微粒硬质合金及其制备方法
技术领域
本申请涉及纳米碳化钨制备技术领域,尤其是涉及一种无粘结相超细超微粒硬质合金及其制备方法。
背景技术
传统硬质合金是以难溶金属硬质化合物为基体,以具有促进合金烧结全致密化的功能的钴、镍、铁等金属为粘结相,通过常规方法生产如氢气烧结、负压烧结、热等静压烧结(低压)等生产制备。虽然上述粘结相改善了硬质合金的韧性和强度,但是也导致其耐腐蚀性能、耐高温性能、耐磨性能、热导率、使用寿命的下降,限制了其使用范围和应用领域。为此,本申请提供了一种优异综合性能的无粘结相超细超微粒硬质合金及其制备方法。
发明内容
为了解决上述技术问题,本申请提供一种无粘结相超细超微粒硬质合金及其制备方法。
本申请提供的一种无粘结相超细超微粒硬质合金,是通过以下技术方案得以实现的:
一种无粘结相超细超微粒硬质合金,是由以下质量百分比的原料制成:0.10%-0.18%的碳粉、0.2%-0.4%的纳米钛酸锶、0.5%-5.0%的超细钛碳化锡Ti2SnC陶瓷粉、0.2%-2.0%的六方氮化硼纳米片、余量为纳米碳化钨粉末;所述纳米碳化钨粉末的平均粒度为5.0-60nm。
更进一步地,所述纳米碳化钨粉末的平均粒度为10-30nm。
更进一步地,所述纳米碳化钨粉末的平均粒度为10nm。
更进一步地,所述纳米钛酸锶的平均粒度为50nm-200nm。
更进一步地,所述超细钛碳化锡Ti2SnC陶瓷粉的平均粒度为500nm-3000nm。
更进一步地,所述六方氮化硼纳米片的平均粒度为50nm-200nm。
本申请中的无粘结相超细晶 WC硬质合金具有优异综合性能有利于提升制件使用寿命。
一种无粘结相超细超微粒硬质合金,是由以下质量百分比的原料制成:0.15%-0.18%的碳粉、0.32%-0.40%的纳米钛酸锶、3.6%-4.8%的超细钛碳化锡Ti2SnC陶瓷粉、0.8%-1.6%的六方氮化硼纳米片、余量为纳米碳化钨粉末;所述纳米碳化钨粉末的平均粒度为10-30nm。
更进一步地,所述无粘结相超细超微粒硬质合金的平均晶粒尺寸范围在50nm~150nm之间,硬度在2400-2800HV之间,弯曲强度范围在2000-2800 Mpa之间,断裂韧性KIC范围在12-18MPa·m1/2之间。
一种无粘结相超细超微粒硬质合金,其特征在于:是由以下质量百分比的原料制成:0.10%-0.18%的碳粉、0.2%-0.4%的纳米钛酸锶、0.5%-5.0%的超细钛碳化锡Ti2SnC陶瓷粉、0.2%-2.0%的六方氮化硼纳米片、0.2%-0.5%的纳米碳化钨掺杂石墨烯、余量为纳米碳化钨粉末;所述纳米碳化钨粉末的平均粒度为5.0-60nm;所述纳米碳化钨掺杂石墨烯是石墨烯表面原位生长纳米碳化钨颗粒形成的纳米碳化钨掺杂石墨烯粉料。
本申请中的无粘结相超细晶 WC硬质合金不仅具有优异综合性能,而且引入纳米碳化钨掺杂石墨烯可进一步改善硬质合金的硬度、抗弯强度,有利于提升制件整体的使用寿命。
本申请提供的无粘结相超细超微粒硬质合金的制备方法,是通过以下方案得以实现的:
一种无粘结相超细超微粒硬质合金的制备方法,包括以下步骤:
S1,按配比称量碳粉、纳米钛酸锶、超细钛碳化锡Ti2SnC陶瓷粉、六方氮化硼纳米片、纳米碳化钨粉末混合均匀后加入行星球磨机,通入高纯氩气置换行星球磨机内的空气,在高纯氮气保护下进行球磨分散处理,转速600-800rpm,球磨时间20-40min;
S2,将行星球磨所得纳米合金粉料装载于放电等离子烧结模具进行放电等离子快速烧结SPS处理,烧结工艺条件如下:烧结压力:60-80MPa、烧结真空度控制在0.05-10.0Pa;烧结程序如下:以100-200℃/min加热速率由室温加热至400-450℃,保温10-30s然后以160-200℃/min加热速率由400-450℃加热至1480-1520℃,保温10-30s然后以160-200℃/min加热速率由1480-1520℃加热至1760-1800℃,在1760-1800℃下烧结保温处理300-360s,自然冷却至常温即可得到相对密度≥99.50%的无粘结相超细超微粒硬质合金。
本申请的制备方法相对简单,生产成本相对较低,便于实现工业化生产制造,且采用本申请中提供的无粘结相超细超微粒硬质合金的制备方法,所制备的无粘结相超细晶WC硬质合金平均晶粒尺寸范围在50nm~150nm之间,硬度在2400-2800HV之间,弯曲强度范围在2000-2800 Mpa之间,断裂韧性KIC范围在12-18MPa·m1/2之间,具有优异的综合性能,有利于提升制件使用寿命和使用稳定性能,赋予其广阔的市场潜力。
综上所述,本申请具有以下优点:
1.本申请中制备的无粘结相超细晶 WC硬质合金具有优异综合性能。
2.本申请中制备的无粘结相超细晶 WC硬质合金平均晶粒尺寸范围在50nm~150nm之间,硬度在2200-2600HV之间,弯曲强度范围在2000-2800 Mpa之间,断裂韧性KIC范围在10-16MPa·m1/2之间,具有良好的综合性能,有利于提升制件使用寿命和使用稳定性能。
3.本申请的制备方法相对简单,生产成本相对较低,便于实现工业化生产制造。
具体实施方式
以下结合对比例和实施例对本申请作进一步详细说明。
制备例1:纳米碳化钨粉末的制备方法具体步骤如下:将80g柠檬酸加入1000g去离子水中,以240rpm磁力转速下加热到80℃直到柠檬酸完全溶解,得浓度为80g/L的柠檬酸水溶液,向柠檬酸水溶液中加入50g的仲钨酸铵(CAS号:11120-25-5,EC号:234-364-9),调整转速为600rpm,维持缩聚反应温度为80-82℃,反应直到观察到胶体形成,进行反应15min,过滤得湿凝胶,将所得的湿凝胶放入烘箱中,设定烘箱温度145℃,当烘箱内温度到达预设温度时,将湿凝胶放入烘箱中进行15h干燥处理即可得到干凝胶,所得干凝胶放置于马弗炉中,以8℃/min升温至加热240℃保温30min,然后以10℃/min加热至540℃下煅烧6.0h,即可得到粒径分布在10-50nm之间的氧化钨粉体。将煅烧后获得的粒径分布在10-50nm之间的纳米氧化钨粉体放置于管式炉中且通入一氧化碳气体,加热到700℃后还原和碳化1.0h,即可得到细纳米的碳化钨粉体。将所得粉体置于行星球磨罐,通入4N氩气进行保护下进行高能球磨处理30min,转速控制600rpm,获得平均粒径10nm的纳米碳化钨粉。
制备例2:纳米碳化钨粉末的制备方法具体步骤如下:将80g柠檬酸加入1000g去离子水中,以240rpm磁力转速下加热到80℃直到柠檬酸完全溶解,得浓度为80g/L的柠檬酸水溶液,向柠檬酸水溶液中加入42g的仲钨酸铵(CAS号:11120-25-5,EC号:234-364-9),调整转速为600rpm,维持缩聚反应温度为80-82℃,反应直到观察到胶体形成,进行反应15min,过滤得湿凝胶,将所得的湿凝胶放入烘箱中,设定烘箱温度180℃,当烘箱内温度到达预设温度时,将湿凝胶放入烘箱中进行24h干燥处理即可得到干凝胶,所得干凝胶放置于马弗炉中,以8℃/min升温至加热320℃保温30min,然后以10℃/min加热至620℃下煅烧8.0h,即可得到粒径分布在40-100nm之间的氧化钨粉体。将煅烧后获得的粒径分布在40-100nm之间的纳米氧化钨粉体放置于管式炉中且通入一氧化碳气体,加热到900℃后还原和碳化3.0h,即可得到细纳米的碳化钨粉体。将所得粉体置于行星球磨罐,通入4N氩气进行保护下进行高能球磨处理30min,转速控制700rpm,获得平均粒径30nm的纳米碳化钨粉。
制备例3: 纳米碳化钨掺杂石墨烯的制备方法如下:步骤一,取3.4g 偏钨酸铵和12g N, N- 二甲基甲酰胺加入盛有 100g的去离子水的1000mL的烧杯中,磁力搅拌至溶液澄清透明;步骤二,称取650mL氧化石墨烯水分散液(苏州碳丰石墨烯科技有限公司的氧化石墨烯水分散液,浓度3mg/mL,厚度:1.0nm,片层直径0.2-10 um,制备方法:Hummers法),将650mL氧化石墨烯水分散液加入1000mL的烧杯中在冰水浴中进行30min的超声分散处理,超声功率600W,频率34kHz,即得到均匀分散的油墨状混合液体,将烧杯放入微波炉中进行未必加热600s,微波炉功率1450 W,频率2450 Hz,波长为122mm,得到黑色固体粉末;步骤三,将得到黑色固体粉末放置到管式炉中,通入气流量为 48mL/min、体积比为9:1的氩气和氢气形成的混合气体,以1.5℃/min的加热速率升温600℃保温30min,然后以3℃/min的加热速率升温1200℃热处理200min后自然冷却得固体粉末,所得固体粉末置于行星球磨机中进行球磨处理,球磨转速80rpm,球磨时间4h研磨,即得平均粒径在50nm的纳米碳化钨掺杂石墨烯粉体材料。
实施例
一种无粘结相超细超微粒硬质合金是由以下质量百分比的原料制成:0.10%-0.18%的碳粉、0.2%-0.4%的纳米钛酸锶、0.5%-5.0%的超细钛碳化锡Ti2SnC陶瓷粉、0.2%-2.0%的六方氮化硼纳米片、余量为纳米碳化钨粉末。
纳米碳化钨粉末的平均粒度为5.0-60nm,优选地,平均粒度为5.0-30nm,进一步优先地,纳米碳化钨粉末的平均粒度为10nm左右。
纳米钛酸锶的平均粒度为100nm-200nm。
超细钛碳化锡Ti2SnC陶瓷粉的平均粒度为500nm-3000nm。
六方氮化硼纳米片的平均粒度为50nm-200nm。
优选方案,一种无粘结相超细超微粒硬质合金是由以下质量百分比的原料制成:是由以下质量百分比的原料制成:0.15%-0.18%的碳粉、0.32%-0.40%的纳米钛酸锶、3.6%-4.8%的超细钛碳化锡Ti2SnC陶瓷粉、0.8%-1.6%的六方氮化硼纳米片、余量为纳米碳化钨粉末;所述纳米碳化钨粉末的平均粒度为10-30nm。
无粘结相超细超微粒硬质合金平均晶粒尺寸范围在50nm~150nm之间,硬度在2400-2800HV,弯曲强度范围在2000-2800 Mpa之间,断裂韧性KIC范围在12-18MPa·m1/2之间。
为了进一步改善无粘结相超细超微粒硬质合金的硬度和抗弯强度,无粘结相超细超微粒硬质合金是由以下质量百分比的原料制成:0.10%-0.18%的碳粉、0.2%-0.4%的纳米钛酸锶、0.5%-5.0%的超细钛碳化锡Ti2SnC陶瓷粉、0.2%-2.0%的六方氮化硼纳米片、0.2%-0.5%的纳米碳化钨掺杂石墨烯、余量为平均粒度为5.0-60nm的纳米碳化钨粉末。纳米碳化钨掺杂石墨烯是石墨烯表面原位生长纳米碳化钨颗粒形成的纳米碳化钨掺杂石墨烯粉料。
实施例1:一种无粘结相超细超微粒硬质合金是由以下质量百分比的原料制成:0.15%的碳粉、0.2%的纳米钛酸锶(平均粒度50nm,中科言诺 高纯3N 纳米钛酸锶SrTiO3)、3.80%的超细钛碳化锡Ti2SnC陶瓷粉(盈峰锐煌金属材料,粒度5000目)、1.25%的六方氮化硼纳米片(平均粒度200nm,亚美纳米科技AM-HBN-073-2)、余量为制备例1中的纳米碳化钨粉末(平均粒度10nm)。
一种无粘结相超细超微粒硬质合金的制备方法,包括以下步骤:
S1,按配比称量碳粉、纳米钛酸锶、纳米钛碳化锡Ti2SnC陶瓷粉、六方氮化硼纳米片、纳米碳化钨粉末混合均匀后加入行星球磨机,通入高纯氩气置换行星球磨机内的空气,在高纯氮气保护下进行球磨分散处理,转速800rpm,球磨时间30min;
S2,将行星球磨所得纳米合金粉料装载于放电等离子烧结模具进行放电等离子快速烧结SPS处理,烧结工艺条件如下:烧结压力:60MPa、烧结真空度控制在5.0-10.0Pa;烧结程序如下:以100℃/min加热速率由室温加热至420℃,保温10s然后以160℃/min加热速率由420℃加热至1520℃,保温10s然后以200℃/min加热速率由1520℃加热至1780℃,烧结保温处理300s,自然冷却至常温,得到相对密99.58%的无粘结相超细超微粒硬质合金。按照GB/T 36165-2018《金属平均晶粒度的测定电子背散射衍射(EBSD)法》测试所制备的无粘结相超细超微粒硬质合金中碳化钨均晶粒度87nm。
实施例2与实施例1的区别在:无粘结相超细超微粒硬质合金是由以下质量百分比的原料制成:0.15%的碳粉、0.2%的纳米钛酸锶(平均粒度50nm,中科言诺 高纯3N 纳米钛酸锶SrTiO3)、3.80%的超细钛碳化锡Ti2SnC陶瓷粉(盈峰锐煌金属材料,粒度5000目)、1.25%的六方氮化硼纳米片(平均粒度200nm,亚美纳米科技AM-HBN-073-2)、余量为制备例2中的纳米碳化钨粉末(平均粒度30nm)。按照GB/T 36165-2018《金属平均晶粒度的测定电子背散射衍射(EBSD)法》测试所制备的无粘结相超细超微粒硬质合金中碳化钨均晶粒度109nm。
实施例3与实施例1的区别在:无粘结相超细超微粒硬质合金是由以下质量百分比的原料制成:0.15%的碳粉、0.2%的纳米钛酸锶(平均粒度50nm,中科言诺 高纯3N 纳米钛酸锶SrTiO3)、3.80%的超细钛碳化锡Ti2SnC陶瓷粉(盈峰锐煌金属材料,粒度5000目)、1.25%的六方氮化硼纳米片(平均粒度200nm,亚美纳米科技AM-HBN-073-2)、余量为纳米碳化钨粉末(平均粒度60nm,上海超威纳米科技,牌号CW-WC-001)。按照GB/T 36165-2018《金属平均晶粒度的测定电子背散射衍射(EBSD)法》测试所制备的无粘结相超细超微粒硬质合金中碳化钨均晶粒度146nm。
实施例4与实施例1的区别在:无粘结相超细超微粒硬质合金是由以下质量百分比的原料制成:0.15%的碳粉、0.32%的纳米钛酸锶(平均粒度50nm,中科言诺 高纯3N 纳米钛酸锶SrTiO3)、3.80%的超细钛碳化锡Ti2SnC陶瓷粉(盈峰锐煌金属材料,粒度5000目)、1.25%的六方氮化硼纳米片(平均粒度200nm,亚美纳米科技AM-HBN-073-2)、余量为制备例1中的纳米碳化钨粉末(平均粒度10nm)。
实施例5与实施例1的区别在:无粘结相超细超微粒硬质合金是由以下质量百分比的原料制成:0.15%的碳粉、0.4%的纳米钛酸锶(平均粒度50nm,中科言诺 高纯3N 纳米钛酸锶SrTiO3)、3.80%的超细钛碳化锡Ti2SnC陶瓷粉(盈峰锐煌金属材料,粒度5000目)、1.25%的六方氮化硼纳米片(平均粒度200nm,亚美纳米科技AM-HBN-073-2)、余量为制备例1中的纳米碳化钨粉末(平均粒度10nm)。
实施例6与实施例1的区别在:无粘结相超细超微粒硬质合金是由以下质量百分比的原料制成:0.15%的碳粉、0.2%的纳米钛酸锶(平均粒度50nm,中科言诺 高纯3N 纳米钛酸锶SrTiO3)、0.5%的超细钛碳化锡Ti2SnC陶瓷粉(盈峰锐煌金属材料,粒度5000目)、1.25%的六方氮化硼纳米片(平均粒度200nm,亚美纳米科技AM-HBN-073-2)、余量为制备例1中的纳米碳化钨粉末(平均粒度10nm)。
实施例7与实施例1的区别在:无粘结相超细超微粒硬质合金是由以下质量百分比的原料制成:0.15%的碳粉、0.2%的纳米钛酸锶(平均粒度50nm,中科言诺 高纯3N 纳米钛酸锶SrTiO3)、5%的超细钛碳化锡Ti2SnC陶瓷粉(盈峰锐煌金属材料,粒度5000目)、1.25%的六方氮化硼纳米片(平均粒度200nm,亚美纳米科技AM-HBN-073-2)、余量为制备例1中的纳米碳化钨粉末(平均粒度10nm)。
实施例8与实施例1的区别在:无粘结相超细超微粒硬质合金是由以下质量百分比的原料制成:0.15%的碳粉、0.32%的纳米钛酸锶(平均粒度50nm,中科言诺 高纯3N 纳米钛酸锶SrTiO3)、3.8%的超细钛碳化锡Ti2SnC陶瓷粉(盈峰锐煌金属材料,粒度5000目)、0.2%的六方氮化硼纳米片(平均粒度200nm,亚美纳米科技AM-HBN-073-2)、余量为制备例1中的纳米碳化钨粉末(平均粒度10nm)。
实施例9与实施例1的区别在:无粘结相超细超微粒硬质合金是由以下质量百分比的原料制成:0.15%的碳粉、0.32%的纳米钛酸锶(平均粒度50nm,中科言诺 高纯3N 纳米钛酸锶SrTiO3)、3.8%的超细钛碳化锡Ti2SnC陶瓷粉(盈峰锐煌金属材料,粒度5000目)、2.0%的六方氮化硼纳米片(平均粒度200nm,亚美纳米科技AM-HBN-073-2)、余量为制备例1中的纳米碳化钨粉末(平均粒度10nm)。
实施例10与实施例1的区别在:无粘结相超细超微粒硬质合金是由以下质量百分比的原料制成:0.15%的碳粉、0.32%的纳米钛酸锶(平均粒度50nm,中科言诺 高纯3N 纳米钛酸锶SrTiO3)、3.8%的超细钛碳化锡Ti2SnC陶瓷粉(盈峰锐煌金属材料,粒度5000目)、1.5%的六方氮化硼纳米片(平均粒度200nm,亚美纳米科技AM-HBN-073-2)、0.2%的纳米碳化钨掺杂石墨烯、余量为制备例1中的纳米碳化钨粉末(平均粒度10nm)。
实施例11与实施例1的区别在:无粘结相超细超微粒硬质合金是由以下质量百分比的原料制成:0.15%的碳粉、0.32%的纳米钛酸锶(平均粒度50nm,中科言诺 高纯3N 纳米钛酸锶SrTiO3)、3.8%的超细钛碳化锡Ti2SnC陶瓷粉(盈峰锐煌金属材料,粒度5000目)、1.5%的六方氮化硼纳米片(平均粒度200nm,亚美纳米科技AM-HBN-073-2)、0.36%的纳米碳化钨掺杂石墨烯、余量为制备例1中的纳米碳化钨粉末(平均粒度10nm)。
实施例12与实施例1的区别在:无粘结相超细超微粒硬质合金是由以下质量百分比的原料制成:0.15%的碳粉、0.32%的纳米钛酸锶(平均粒度50nm,中科言诺 高纯3N 纳米钛酸锶SrTiO3)、3.8%的超细钛碳化锡Ti2SnC陶瓷粉(盈峰锐煌金属材料,粒度5000目)、1.5%的六方氮化硼纳米片(平均粒度200nm,亚美纳米科技AM-HBN-073-2)、0.5%的纳米碳化钨掺杂石墨烯、余量为制备例1中的纳米碳化钨粉末(平均粒度10nm)。
对比例
对比例1与实施例1的区别在:无粘结相超细超微粒硬质合金是由以下质量百分比的原料制成:94%的纳米碳化钨粉末(平均粒度400nm,上海超威纳米科技,牌号CW-WC-002)、3%的碳化钛(品牌罗恩,纯度99%,平均粒度2-4μm,CAS:12070-08-5)、3%的碳化钒(CAS:11130-21-5,平均粒度500nm,武汉曙尔生物科技)。
无粘结相超细超微粒硬质合金的制备方法,包括以下步骤:
S1,按配比称量碳化钛、碳化钒、纳米碳化钨粉末混合均匀后加入行星球磨机,通入高纯氩气置换行星球磨机内的空气,在高纯氮气保护下进行球磨分散处理,转速800rpm,球磨时间30min;
S2,所得完成球磨的粉末进行冷压成型:以 60MPa 的压力进行冷压成型,烧结工艺:在氩气保护下,以10min/℃升温到600℃,保温30min,脱除成型剂聚乙二醇。再以5℃/min升温到1650℃,保温1.0h,然后随炉冷却到室温,即得相对密度98.78%的无粘结相超细超微粒硬质合金。按照GB/T 36165-2018《金属平均晶粒度的测定电子背散射衍射(EBSD)法》测试所制备的无粘结相超细超微粒硬质合金中碳化钨均晶粒度276nm。
对比例2与对比例1的区别在:无粘结相超细超微粒硬质合金的制备方法如下:
S1,按配比称量碳化钛、碳化钒、纳米碳化钨粉末混合均匀后加入行星球磨机,通入高纯氩气置换行星球磨机内的空气,在高纯氮气保护下进行球磨分散处理,转速800rpm,球磨时间30min;
S2,将行星球磨所得纳米合金粉料装载于放电等离子烧结模具进行放电等离子快速烧结SPS处理,烧结工艺条件如下:烧结压力:60MPa、烧结真空度控制在5.0-10.0Pa;烧结程序如下:以100℃/min加热速率由室温加热至420℃,保温10s然后以160℃/min加热速率由420℃加热至1520℃,保温10s然后以200℃/min加热速率由1520℃加热至1680℃,烧结保温处理300s,自然冷却至常温,得到相对密99.58%的无粘结相超细超微粒硬质合金。按照GB/T 36165-2018《金属平均晶粒度的测定电子背散射衍射(EBSD)法》测试所制备的无粘结相超细超微粒硬质合金中碳化钨均晶粒度226nm。
对比例3与实施例1的区别在:无粘结相超细超微粒硬质合金是由以下质量百分比的原料制成:0.15%的碳粉、0.2%的纳米钛酸锶(平均粒度50nm,中科言诺 高纯3N 纳米钛酸锶SrTiO3)、3.80%的超细钛碳化锡Ti2SnC陶瓷粉(盈峰锐煌金属材料,粒度5000目)、1.25%的六方氮化硼纳米片(平均粒度200nm,亚美纳米科技AM-HBN-073-2)、余量为纳米碳化钨粉末(平均粒度400nm,上海超威纳米科技,牌号CW-WC-002)。
对比例4与实施例1的区别在:无粘结相超细超微粒硬质合金是由以下质量百分比的原料制成:0.15%的碳粉、3.80%的超细钛碳化锡Ti2SnC陶瓷粉(盈峰锐煌金属材料,粒度5000目)、1.25%的六方氮化硼纳米片(平均粒度200nm,亚美纳米科技AM-HBN-073-2)、余量为制备例1中的纳米碳化钨粉末(平均粒度10nm)。
对比例5与实施例1的区别在:无粘结相超细超微粒硬质合金是由以下质量百分比的原料制成:0.15%的碳粉、0.1%的纳米钛酸锶(平均粒度50nm,中科言诺 高纯3N 纳米钛酸锶SrTiO3)、3.80%的超细钛碳化锡Ti2SnC陶瓷粉(盈峰锐煌金属材料,粒度5000目)、1.25%的六方氮化硼纳米片(平均粒度200nm,亚美纳米科技AM-HBN-073-2)、余量为制备例1中的纳米碳化钨粉末(平均粒度10nm)。
对比例6与实施例1的区别在:无粘结相超细超微粒硬质合金是由以下质量百分比的原料制成:0.15%的碳粉、0.5%的纳米钛酸锶(平均粒度50nm,中科言诺 高纯3N 纳米钛酸锶SrTiO3)、3.80%的超细钛碳化锡Ti2SnC陶瓷粉(盈峰锐煌金属材料,粒度5000目)、1.25%的六方氮化硼纳米片(平均粒度200nm,亚美纳米科技AM-HBN-073-2)、余量为制备例1中的纳米碳化钨粉末(平均粒度10nm)。
对比例7与实施例1的区别在:无粘结相超细超微粒硬质合金是由以下质量百分比的原料制成:0.15%的碳粉、0.32%的纳米钛酸锶(平均粒度50nm,中科言诺 高纯3N 纳米钛酸锶SrTiO3)、1.25%的六方氮化硼纳米片(平均粒度200nm,亚美纳米科技AM-HBN-073-2)、余量为制备例1中的纳米碳化钨粉末(平均粒度10nm)。
对比例8与实施例1的区别在:无粘结相超细超微粒硬质合金是由以下质量百分比的原料制成:0.15%的碳粉、0.32%的纳米钛酸锶(平均粒度50nm,中科言诺 高纯3N 纳米钛酸锶SrTiO3)、6.0%的超细钛碳化锡Ti2SnC陶瓷粉(盈峰锐煌金属材料,粒度5000目)、1.25%的六方氮化硼纳米片(平均粒度200nm,亚美纳米科技AM-HBN-073-2)、余量为制备例1中的纳米碳化钨粉末(平均粒度10nm)。
对比例9与实施例1的区别在:无粘结相超细超微粒硬质合金是由以下质量百分比的原料制成:0.15%的碳粉、0.32%的纳米钛酸锶(平均粒度50nm,中科言诺 高纯3N 纳米钛酸锶SrTiO3)、0.25%的超细钛碳化锡Ti2SnC陶瓷粉(盈峰锐煌金属材料,粒度5000目)、1.25%的六方氮化硼纳米片(平均粒度200nm,亚美纳米科技AM-HBN-073-2)、余量为制备例1中的纳米碳化钨粉末(平均粒度10nm)。
对比例10与实施例1的区别在:粘结相超细超微粒硬质合金是由以下质量百分比的原料制成:0.15%的碳粉、0.32%的纳米钛酸锶(平均粒度50nm,中科言诺 高纯3N 纳米钛酸锶SrTiO3)、3.8%的超细钛碳化锡Ti2SnC陶瓷粉(盈峰锐煌金属材料,粒度5000目)、余量为制备例1中的纳米碳化钨粉末(平均粒度10nm)。
对比例11与实施例1的区别在:无粘结相超细超微粒硬质合金是由以下质量百分比的原料制成:0.15%的碳粉、0.32%的纳米钛酸锶(平均粒度50nm,中科言诺 高纯3N 纳米钛酸锶SrTiO3)、3.8%的超细钛碳化锡Ti2SnC陶瓷粉(盈峰锐煌金属材料,粒度5000目)、0.1%的六方氮化硼纳米片(平均粒度200nm,亚美纳米科技AM-HBN-073-2)、余量为制备例1中的纳米碳化钨粉末(平均粒度10nm)。
对比例12与实施例1的区别在:无粘结相超细超微粒硬质合金是由以下质量百分比的原料制成:0.15%的碳粉、0.32%的纳米钛酸锶(平均粒度50nm,中科言诺 高纯3N 纳米钛酸锶SrTiO3)、3.8%的超细钛碳化锡Ti2SnC陶瓷粉(盈峰锐煌金属材料,粒度5000目)、2.5%的六方氮化硼纳米片(平均粒度200nm,亚美纳米科技AM-HBN-073-2)、余量为制备例1中的纳米碳化钨粉末(平均粒度10nm)。
对比例13与实施例1的区别在:无粘结相超细超微粒硬质合金是由以下质量百分比的原料制成:0.15%的碳粉、0.32%的纳米钛酸锶(平均粒度50nm,中科言诺 高纯3N 纳米钛酸锶SrTiO3)、3.8%的超细钛碳化锡Ti2SnC陶瓷粉(盈峰锐煌金属材料,粒度5000目)、1.5%的六方氮化硼纳米片(平均粒度200nm,亚美纳米科技AM-HBN-073-2)、0.05%的纳米碳化钨掺杂石墨烯、余量为制备例1中的纳米碳化钨粉末(平均粒度10nm)。
对比例14与实施例1的区别在:无粘结相超细超微粒硬质合金是由以下质量百分比的原料制成:0.15%的碳粉、0.32%的纳米钛酸锶(平均粒度50nm,中科言诺 高纯3N 纳米钛酸锶SrTiO3)、3.8%的超细钛碳化锡Ti2SnC陶瓷粉(盈峰锐煌金属材料,粒度5000目)、1.5%的六方氮化硼纳米片(平均粒度200nm,亚美纳米科技AM-HBN-073-2)、0.6%的纳米碳化钨掺杂石墨烯、余量为制备例1中的纳米碳化钨粉末(平均粒度10nm)。
对比例15与实施例12的区别在:无粘结相超细超微粒硬质合金是由以下质量百分比的原料制成:0.15%的碳粉、0.32%的纳米钛酸锶(平均粒度50nm,中科言诺 高纯3N 纳米钛酸锶SrTiO3)、3.8%的超细钛碳化锡Ti2SnC陶瓷粉(盈峰锐煌金属材料,粒度5000目)、1.5%的六方氮化硼纳米片(平均粒度200nm,亚美纳米科技AM-HBN-073-2)、0.5%的石墨烯(纳米石墨烯片,亚美纳米科技AM-C3-065-2)、余量为制备例1中的纳米碳化钨粉末(平均粒度10nm)。
性能检测试验
检测方法/试验方法
1、维氏硬度测试方法:采用KB-30S-FA型全自动显微硬度计按照GB/T 43402-2009金属维氏硬度试验标准进行维氏硬度HV10测量,载荷为98N,负载时间为15s 。
2、断裂韧性测试方法:利用压痕法来计算断裂韧性,计算公式如下公式(1):
KIC(MPa·m1/2)=0.0752*P/C1.5(1),其中,P 为载荷;C为裂纹半长(um )。
3、磨损率测试方法:利用MFT-5000 型摩擦磨损试验机测试试验样品的摩擦学性能,运动方式为往复式载荷为200N,单次对磨行程为8mm,对磨时间为15 min。对磨副采用氮化硅陶瓷球,直径为 10mm,硬度HV为2200。
利用非接触式超景深三维显微镜(KEYENCEVH-Z1000R)获取磨痕宽度深度和磨痕截面积,进而计算磨损率。磨损率计算W=△V/(F*L),其中,W为磨损率(m3/(N·m));△V为磨损体积(mm3);F 为载荷(N);L 为磨损总行程(m)。
4、弯曲强度测试方法:按照YB/T 5349-2006 金属弯曲力学性能试验方法进行测试,利用三点弯曲法在跨距为 30 mm,加载速率为 2 mm/min 条件下测量试件的抗弯强度。冲击韧性性能测试按照 GB/T 3808-2002 摆锤式冲击试验机(XJJ-5 冲击试验机)的检验标准进行。
数据分析
表1是实施例1-12和对比例1-15中硬质合金的测试参数表
结合实施例1-12和对比例1-15并结合表1可以看出,实施例1-3与对比例1相对比可知,本申请中制备的无粘结相超细超微粒硬质合金具有优异的综合性能,突破了应用领域限制,具有广阔的市场前景。
结合实施例1-12和对比例1-15并结合表1可以看出,实施例1-3与对比例1-2相对比可知,采用本申请中提供的放电等离子快速烧结SPS处理工艺制备的无粘结相超细超微粒硬质合金中WC晶粒的生长缓慢,WC平均晶粒尺寸更细小且粒径分布相对集中(晶粒尺寸分布变窄),进而赋予本申请中的无粘结相超细超微粒硬质合金优异的综合性能。
结合实施例1-12和对比例1-15并结合表1可以看出,实施例1-3与对比例1相对比可知,实施例1-3与对比例3相对比可知,采用平均粒径5.0-60nm纳米碳化钨粉末制备的无粘结相超细超微粒硬质合金具有优异的综合性能,优选地,纳米碳化钨粉平均粒径在10-30nm。
结合实施例1-12和对比例1-15并结合表1可以看出,实施例1和实施例4-5与对比例4-6相对比可知,纳米钛酸锶的可起到抑制WC晶粒的生长的作用,且也起到了增韧补强的作用,纳米钛酸锶的平均粒度控制在50nm-200nm为宜,添加量控制在0.2%-0.4%为宜。
结合实施例1-12和对比例1-15并结合表1可以看出,实施例1和实施例6-7与对比例7-9相对比可知,超细钛碳化锡Ti2SnC陶瓷粉的添加对所制备的无粘结相超细超微粒硬质合金的综合性能有着较为明显改善作用,其平均粒度控制在500nm-3000nm为宜,添加量0.5%-5.0%为宜,优选添加量范围在3.6%-4.2%。
结合实施例1-12和对比例1-15并结合表1可以看出,实施例4和实施例8-9与对比例10-12相对比可知,六方氮化硼纳米片的添加对所制备的无粘结相超细超微粒硬质合金的弯曲强度合和冲击韧性有着较为明显的改善作用,其平均粒度控制在50nm-200nm为宜,添加量0.2%-2.0%为宜,优选添加量范围在1.2%-1.6%。
结合实施例1-12和对比例1-15并结合表1可以看出,实施例4和实施例10-12与对比例13-15相对比可知,纳米碳化钨掺杂石墨烯的添加对所制备的无粘结相超细超微粒硬质合金的耐磨性、硬度、断裂韧性KIC、导热性能、弯曲强度和冲击韧性都有着不小提升,有利于提升无粘结相超细超微粒硬质合金的综合性能。纳米碳化钨掺杂石墨烯的添加量控制在0.2%-0.5%,优选地,添加量控制在0.32%-0.40%。
结合实施例1-12和对比例1-15并结合表1可以看出,实施例4和实施例10-12与对比例15相对比可知,单纯将石墨烯添加至无粘结相超细超微粒硬质合金中虽然可起到一定改善表面硬度、耐磨性和导热性能的作用,但是石墨烯与基体金属的相容性较差,会导致所制备的无粘结相超细超微粒硬质合金的断裂韧性KIC、弯曲强度和冲击韧性出现大幅下降。
综上所述,本申请中制备的无粘结相超细晶 WC硬质合金平均晶粒尺寸范围在50nm~150nm之间,硬度在2400-2800HV之间,弯曲强度范围在2000-2800 Mpa之间,断裂韧性KIC范围在12-18MPa·m1/2之间,具有良好的综合性能,有利于提升制件使用寿命和使用稳定性能,突破了应用领域限制,具有广阔的市场前景。

Claims (10)

1.一种无粘结相超细超微粒硬质合金,其特征在于:是由以下质量百分比的原料制成:0.10%-0.18%的碳粉、0.2%-0.4%的纳米钛酸锶、0.5%-5.0%的超细钛碳化锡Ti2SnC陶瓷粉、0.2%-2.0%的六方氮化硼纳米片、余量为纳米碳化钨粉末;所述纳米碳化钨粉末的平均粒度为5.0-60nm。
2.根据权利要求1所述的一种无粘结相超细超微粒硬质合金,其特征在于:所述纳米碳化钨粉末的平均粒度为10-30nm。
3.根据权利要求2所述的一种无粘结相超细超微粒硬质合金,其特征在于:所述纳米碳化钨粉末的平均粒度为10nm。
4.根据权利要求1所述的一种无粘结相超细超微粒硬质合金,其特征在于:所述纳米钛酸锶的平均粒度为50nm-200nm。
5.根据权利要求1所述的一种无粘结相超细超微粒硬质合金,其特征在于:所述超细钛碳化锡Ti2SnC陶瓷粉的平均粒度为500nm-3000nm。
6.根据权利要求1所述的一种无粘结相超细超微粒硬质合金,其特征在于:所述六方氮化硼纳米片的平均粒度为50nm-200nm。
7.根据权利要求1所述的一种无粘结相超细超微粒硬质合金,其特征在于:是由以下质量百分比的原料制成:0.15%-0.18%的碳粉、0.32%-0.40%的纳米钛酸锶、3.6%-4.8%的超细钛碳化锡Ti2SnC陶瓷粉、0.8%-1.6%的六方氮化硼纳米片、余量为纳米碳化钨粉末;所述纳米碳化钨粉末的平均粒度为10-30nm。
8.根据权利要求7所述的一种无粘结相超细超微粒硬质合金,其特征在于:所述无粘结相超细超微粒硬质合金的平均晶粒尺寸范围在50nm~150nm之间,硬度在2400-2800HV之间,弯曲强度范围在2000-2800 Mpa之间,断裂韧性KIC范围在12-18MPa·m1/2之间。
9.一种无粘结相超细超微粒硬质合金,其特征在于:是由以下质量百分比的原料制成:0.10%-0.18%的碳粉、0.2%-0.4%的纳米钛酸锶、0.5%-5.0%的超细钛碳化锡Ti2SnC陶瓷粉、0.2%-2.0%的六方氮化硼纳米片、0.2%-0.5%的纳米碳化钨掺杂石墨烯、余量为纳米碳化钨粉末;所述纳米碳化钨粉末的平均粒度为5.0-60nm;所述纳米碳化钨掺杂石墨烯是石墨烯表面原位生长纳米碳化钨颗粒形成的纳米碳化钨掺杂石墨烯粉料。
10.一种权利要求1-9中任一项所述的无粘结相超细超微粒硬质合金的制备方法,其特征在于:包括以下步骤:
S1,按配比称量碳粉、纳米钛酸锶、超细钛碳化锡Ti2SnC陶瓷粉、六方氮化硼纳米片、纳米碳化钨粉末混合均匀后加入行星球磨机,通入高纯氩气置换行星球磨机内的空气,在高纯氮气保护下进行球磨分散处理,转速600-800rpm,球磨时间20-40min;
S2,将行星球磨所得纳米合金粉料装载于放电等离子烧结模具进行放电等离子快速烧结SPS处理,烧结工艺条件如下:烧结压力:60-80MPa、烧结真空度控制在0.05-10.0Pa;烧结程序如下:以100-200℃/min加热速率由室温加热至400-450℃,保温10-30s然后以160-200℃/min加热速率由400-450℃加热至1480-1520℃,保温10-30s然后以160-200℃/min加热速率由1480-1520℃加热至1760-1800℃,在1760-1800℃下烧结保温处理300-360s,自然冷却至常温即可得到相对密度≥99.50%的无粘结相超细超微粒硬质合金。
CN202311196345.4A 2023-09-18 2023-09-18 一种无粘结相超细超微粒硬质合金及其制备方法 Active CN116924804B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311196345.4A CN116924804B (zh) 2023-09-18 2023-09-18 一种无粘结相超细超微粒硬质合金及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311196345.4A CN116924804B (zh) 2023-09-18 2023-09-18 一种无粘结相超细超微粒硬质合金及其制备方法

Publications (2)

Publication Number Publication Date
CN116924804A true CN116924804A (zh) 2023-10-24
CN116924804B CN116924804B (zh) 2023-11-21

Family

ID=88392702

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311196345.4A Active CN116924804B (zh) 2023-09-18 2023-09-18 一种无粘结相超细超微粒硬质合金及其制备方法

Country Status (1)

Country Link
CN (1) CN116924804B (zh)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU50085A1 (zh) * 1964-12-16 1966-02-16
JPH02126268A (ja) * 1988-11-07 1990-05-15 Canon Inc 磁性カプセルトナー
JP2004151443A (ja) * 2002-10-31 2004-05-27 Canon Inc トナー、画像形成方法及び画像形成装置
CN1724468A (zh) * 2005-06-15 2006-01-25 北京交通大学 机械活化低温合成碳化锡钛的方法
GB0907920D0 (en) * 2009-05-08 2009-06-24 Element Six Production Pty Ltd Ultra-hard diamond composites
WO2010024377A1 (ja) * 2008-08-29 2010-03-04 昭和電工株式会社 表面被覆サーメット部材及びその製造方法
CN102628138A (zh) * 2012-03-23 2012-08-08 华南理工大学 一种含微量钴的无粘结相碳化钨硬质合金及其制备方法
CN102912205A (zh) * 2012-04-09 2013-02-06 中南大学 一种Sr2Nb2O7增韧WC-8%Co硬质合金复合材料及其制备方法
US20130216894A1 (en) * 2012-02-16 2013-08-22 Yanbo Wang Inorganic nano sheet-enabled lithium-exchanging surface-mediated cells
WO2017069525A1 (ko) * 2015-10-22 2017-04-27 영남대학교 산학협력단 알루미늄 및 알루미늄 합금의 분말성형방법
US10016839B1 (en) * 2017-03-09 2018-07-10 King Fahd University Of Petroleum And Minerals Friction stir welding tool and a method of fabricating the same
US20190019037A1 (en) * 2017-07-14 2019-01-17 Nec Laboratories America, Inc. Spatio-temporal interaction network for learning object interactions
CN111057929A (zh) * 2019-12-20 2020-04-24 成都金钨硬质合金有限公司 一种微晶GW10u硬质合金及其制备方法
DE102019006084A1 (de) * 2019-02-12 2020-08-13 Elke Münch Mechanochemisches Verfahren
CN113490655A (zh) * 2019-03-06 2021-10-08 日油株式会社 陶瓷生片层叠助剂及陶瓷生片组合物

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU50085A1 (zh) * 1964-12-16 1966-02-16
JPH02126268A (ja) * 1988-11-07 1990-05-15 Canon Inc 磁性カプセルトナー
JP2004151443A (ja) * 2002-10-31 2004-05-27 Canon Inc トナー、画像形成方法及び画像形成装置
CN1724468A (zh) * 2005-06-15 2006-01-25 北京交通大学 机械活化低温合成碳化锡钛的方法
WO2010024377A1 (ja) * 2008-08-29 2010-03-04 昭和電工株式会社 表面被覆サーメット部材及びその製造方法
GB0907920D0 (en) * 2009-05-08 2009-06-24 Element Six Production Pty Ltd Ultra-hard diamond composites
US20130216894A1 (en) * 2012-02-16 2013-08-22 Yanbo Wang Inorganic nano sheet-enabled lithium-exchanging surface-mediated cells
CN102628138A (zh) * 2012-03-23 2012-08-08 华南理工大学 一种含微量钴的无粘结相碳化钨硬质合金及其制备方法
CN102912205A (zh) * 2012-04-09 2013-02-06 中南大学 一种Sr2Nb2O7增韧WC-8%Co硬质合金复合材料及其制备方法
WO2017069525A1 (ko) * 2015-10-22 2017-04-27 영남대학교 산학협력단 알루미늄 및 알루미늄 합금의 분말성형방법
US10016839B1 (en) * 2017-03-09 2018-07-10 King Fahd University Of Petroleum And Minerals Friction stir welding tool and a method of fabricating the same
US20190019037A1 (en) * 2017-07-14 2019-01-17 Nec Laboratories America, Inc. Spatio-temporal interaction network for learning object interactions
DE102019006084A1 (de) * 2019-02-12 2020-08-13 Elke Münch Mechanochemisches Verfahren
CN113490655A (zh) * 2019-03-06 2021-10-08 日油株式会社 陶瓷生片层叠助剂及陶瓷生片组合物
CN111057929A (zh) * 2019-12-20 2020-04-24 成都金钨硬质合金有限公司 一种微晶GW10u硬质合金及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
MURAKAWA: "Surface coatings of super hard materials for tool applications", SURFACE COATINGS FOR ADVANCED MATERIALS, pages 1 - 27 *
付乌有, 王子忱: "目前我国纳米科技发展状况", 内蒙古民族大学学报(自然科学版), no. 05, pages 463 - 466 *
周书助等: "陶瓷材料微波烧结研究进展与工业应用现状", 硬质合金, pages 174 - 181 *
鲜勇 等: "Fe和C元素对铜合金组织结构及力学性能的影响", 精密成形工程, pages 141 - 146 *

Also Published As

Publication number Publication date
CN116924804B (zh) 2023-11-21

Similar Documents

Publication Publication Date Title
Liu et al. Effect of Co content on microstructure and mechanical properties of ultrafine grained WC-Co cemented carbide sintered by spark plasma sintering
Khoshghadam-Pireyousefan et al. Application of a novel method for fabrication of graphene reinforced aluminum matrix nanocomposites: synthesis, microstructure, and mechanical properties
Lv et al. The influence of modification route on the properties of W-0.3 wt% Y2O3 powder and alloy prepared by nano-in-situ composite method
Yang et al. Synthesis of Y2O3-doped WC-Co powders by wet chemical method and its effect on the properties of WC-Co cemented carbide alloy
Yang et al. Effect of carbon content on microstructure and mechanical properties of WC-10Co cemented carbides with plate-like WC grain
WO2020186752A1 (zh) 一种等离子体球磨制备超细晶 WC-Co 硬质合金的方法
Xiao et al. A hybrid microstructure design strategy achieving W-ZrO2 (Y) alloy with high compressive strength and critical failure strain
Xiao et al. Microstructure and mechanical properties of W-ZrO2 alloys by different preparation techniques
He et al. Synthesis of WC composite powder with nano-cobalt coatings and its application in WC-4Co cemented carbide
Wang et al. Microstructure and preparation of an ultra-fine-grained W-Al2O3 composite via hydrothermal synthesis and spark plasma sintering
Qin et al. Fabrication of tungsten nanopowder by combustion-based method
Hu et al. Nano Mo–La–O particles strengthened Mo alloys fabricated via freeze-drying technology and low temperature sintering
Abu–Okail et al. Effect of GNPs content at various compaction pressures and sintering temperatures on the mechanical and electrical properties of hybrid Cu/Al2O3/xGNPs nanocomposites synthesized by high energy ball milling
Wu et al. Synthesis of tungsten carbide nanopowders by direct carbonization of tungsten oxide and carbon: Effects of tungsten oxide source on phase structure and morphology evolution
Wang et al. Effect of ZrO2 content on microstructure and mechanical properties of W alloys fabricated by spark plasma sintering
Yang et al. Study on preparation and properties of WC-8Co cemented carbide doped with rare earth oxide
Wang et al. Study on influencing factors and mechanism of high-quality tungsten carbide nanopowders synthesized via carbothermal reduction
Huang et al. Effect of surfactants on dispersion property and morphology of nano-sized nickel powders
Deng et al. Effects of oxide addition on structure and properties of WC–10Co cemented carbide obtained by in situ synthesized powder
Li et al. In-situ homogeneous synthesis of carbon nanotubes on aluminum matrix and properties of their composites
Yan et al. Synthesis of nano-diamond/alumina composite by detonation method
Chen et al. Enhanced mechanical properties and interface structure characterization of W–La2O3 alloy designed by an innovative combustion-based approach
Wu et al. Ultrafine/nano WC-Co cemented carbide: Overview of preparation and key technologies
Wang et al. Preparation of high-purity and ultrafine WC-Co composite powder by a simple two-step process
Xiao et al. Research on the effect of liquid-liquid doping processes on the doped powders and microstructures of W–ZrO2 (Y) alloys

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant