CN116924803A - 一种Ti2AlC粉体材料及其制备方法 - Google Patents

一种Ti2AlC粉体材料及其制备方法 Download PDF

Info

Publication number
CN116924803A
CN116924803A CN202210706195.6A CN202210706195A CN116924803A CN 116924803 A CN116924803 A CN 116924803A CN 202210706195 A CN202210706195 A CN 202210706195A CN 116924803 A CN116924803 A CN 116924803A
Authority
CN
China
Prior art keywords
powder
alc
sintering
grinding
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210706195.6A
Other languages
English (en)
Inventor
白致铭
苗保记
曹燕格
郭洪波
张欣楠
曲佳旻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei Innovation Research Institute of Beihang University
Original Assignee
Hefei Innovation Research Institute of Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei Innovation Research Institute of Beihang University filed Critical Hefei Innovation Research Institute of Beihang University
Publication of CN116924803A publication Critical patent/CN116924803A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5611Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides
    • C04B35/5618Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides based on titanium aluminium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6265Thermal treatment of powders or mixtures thereof other than sintering involving reduction or oxidation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6268Thermal treatment of powders or mixtures thereof other than sintering characterised by the applied pressure or type of atmosphere, e.g. in vacuum, hydrogen or a specific oxygen pressure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/404Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明公开一种Ti2AlC粉体材料及其制备方法,包括以下步骤:按照TiH2:TiAl:C=1:(1.0~1.5):1的摩尔比称取原料,将上述粉末混合均匀,并真空干燥得到混合原料;将混合原料放入液压机中预压成圆柱状胚体,后放入冷等静压机中压制形成圆柱状胚体;将压制后的胚体置于管式炉中无压烧结,经冷却后即可制得Ti2AlC块体材料,将烧结获得的Ti2AlC块体机加工去除含杂质的表面,然后用破碎机进行破碎,破碎后的块体进行细磨获得微米尺度的Ti2AlC粉体材料。本发明制备得到的Ti2AlC粉体纯度达90wt%以上,可满足用于作为表面工程的材料、增强相材料、高温陶瓷材料、新型二元层状材料前驱体等。

Description

一种Ti2AlC粉体材料及其制备方法
技术领域
本发明属于陶瓷材料领域,涉及一种Ti2AlC粉体材料及其制备方法,具体涉及一种以TiAl粉和TiH2粉为钛源,采用无压烧结法合成Ti2AlC陶瓷粉体的方法。
背景技术
Ti2AlC陶瓷作为MAX相化合物中的一员,具有特殊的晶体结构。MAX相的晶体结构是在过渡金属碳氮化物Mn+1Xn纳米片层中,原子M和X构成八面体结构,X位于八面体的中心,而M和X间以强的共价键结合,从而使材料具有传统陶瓷材料高强度、高弹性模量等特点。其次,八面体层被A原子层分隔,且层与层之间以弱的金属键结合,使得材料具有金属材料导电导热,易于加工,延展性好等性能。因此,MAX相化合物内部同时存在着共价键、离子键、金属键,MAX相化合物材料兼具陶瓷和金属优点,既具有陶瓷材料的耐高温、抗氧化和强度高的特性,又具有金属的高导电、导热、易加工以及塑性高等特性。Ti2AlC陶瓷材料具有高的力学强度,良好的抗氧化性、抗化学和耐热腐蚀性以及良好的抗热冲击性,并在高温下具有抗损伤及自修护能力,同时还具有传统陶瓷材料所不具备的可加工性。基于上述优异特性使得Ti2AlC陶瓷材料在近十几年内成为研究的热点。目前,合成Ti2AlC的方法主要包括无压烧结法、热压烧结法、放电等离子烧结法和微波烧结法等,其中,无压烧结法操作简单,经济效益大,因而更适合用于工业化生产。合成Ti2AlC的常用原料主要是Ti粉、TiC粉、Al粉、Al4C3粉和C粉等几种粉体的组合。其中,作为提供钛铝碳中的钛元素的提供者,Ti粉是实验室制备碳铝钛所必需的一种原料。但是,在工业大量生产碳铝钛材料时,以Ti粉为原料会会存在以下两个问题:(1)Ti粉的价格高,因而提高了制备碳铝钛的成本。(2)Ti粉和Al粉以及C粉反应时会存在剧烈的放热反应;因此,若以Ti粉为原料制备大量的碳铝钛材料,会产生热爆反应,导致生产过程不可控制。因此,如何制备Ti2AlC粉体材料以解决目前Ti2AlC粉体材料合成中存在的工艺复杂、原材料成本高、纯度低等问题成为本领域亟待解决的技术难题。
发明内容
为了改善上述技术问题,本发明提供一种低成本、易操作的高纯Ti2AlC粉体材料及其制备方法。
为实现上述发明目的,本发明采用如下技术方案:
一种Ti2AlC粉体材料的制备方法,包括以TiAl粉和TiH2粉为钛源,以石墨粉为碳源,采用无压烧结法制备得到所述Ti2AlC粉体材料。
根据本发明的实施方案,所述TiAl粉、TiH2粉和石墨粉的摩尔比为n(TiH2):n(TiAl):n(C)=1:(1.0~1.5):1;示例性为1:1:1、1:1.2:1、1:1.5:1。
根据本发明的实施方案,所述烧结过程在惰性气氛保护下进行。例如,在氩气气氛下进行。
根据本发明的实施方案,所述烧结的温度为1100~1300℃,示例性为1100℃、1200℃、1300℃;所述烧结的保温时间为2-3h,示例性为2h、2.5h、3h。
根据本发明的实施方案,所述烧结的升温速率为1~10℃/min,示例性为5℃/min。
根据本发明的实施方案,所述无压烧结前,还包括将TiAl粉、TiH2粉和石墨粉混合后研磨。
优选地,所述球磨为湿法研磨。例如,所述湿法研磨的溶剂可以为乙醇;所述研磨的时间为20~40min。
根据本发明的实施方案,所述制备方法还包括对研磨后的产物进行干燥。例如,所述干燥的方式可以为真空干燥。进一步地,所述干燥的时间可以为5h。
根据本发明的实施方案,所述制备方法还包括对干燥后的产物进行干磨。例如,所述干磨的时间为5~15min,示例性为10min。
根据本发明的实施方案,所述制备方法还包括对干磨的粉体进行预成型。例如,先采用液压机预压成型,然后用冷等静压机压制成结构紧密的圆柱状胚体。进一步地,所述冷等静压成型的压力为200~250MPa,示例性为200MPa、220MPa、240MPa、250MPa;所述冷等静压成型的时间为100~150s,示例性为100s、120s、150s。
根据本发明的实施方案,所述制备方法还包括对烧结后的产物进行机加工。例如,将烧结获得的Ti2AlC块体机加工去除含杂质的表面,然后用破碎机进行破碎。
根据本发明的实施方案,所述制备方法还包括对机加工后得到的Ti2AlC进行磨粉,以制得Ti2AlC粉体材料。
根据本发明的实施方案,所述Ti2AlC粉体材料的制备方法,包括以下步骤:
a.配料:将TiAl粉、TiH2粉和石墨粉搅拌混合,将搅拌混合后的粉末加入乙醇进行湿法研磨20~40min;将混料进行干燥,将干燥后获得的粉体进行干磨5~15min;
b.成型:将步骤(a)制得的粉体用液压机预成型,然后用冷等静压机压制成圆柱状胚体;
c.烧结:将压制过的胚体进行无压烧结;
d.机加工:将烧结获得的Ti2AlC块体机加工去除含杂质的表面,然后用破碎机进行破碎;
e.磨粉:将破碎后的块体进行细磨获得微米尺度的Ti2AlC粉体材料。
本发明还提供由上述方法制备得到的Ti2AlC粉体材料。
根据本发明的实施方案,所述Ti2AlC粉体材料的粒径为10μm~50μm。
本发明的有益效果:
(1)本发明利用烧结前的混料和加压,使原材料混合均匀并且紧密接触;用TiAl粉和TiH2粉为钛源,避免了反应过程中的铝爆反应,烧结难度降低,易于掌握;且充分利用无压烧结的特点,操作简单,便于推广和大规模生产。
(2)本发明制备得到的Ti2AlC粉体纯度达90wt%以上,可满足用于作为表面工程的材料、增强相材料、高温陶瓷材料、新型二元层状材料前驱体等。
附图说明
图1为实施例1制备得到的Ti2AlC粉体材料的X射线衍射谱。
图2中(A)、(B)、(C)、(D)、(E)分别为实施例1、实施例2、实施例3、对比例3、对比例2制备得到的Ti2AlC粉体材料的X射线衍射谱。
图3为实施例1制备得到的Ti2AlC粉体材料的扫描电镜图。
具体实施方式
下文将结合具体实施例对本发明的技术方案做更进一步的详细说明。应当理解,下列实施例仅为示例性地说明和解释本发明,而不应被解释为对本发明保护范围的限制。凡基于本发明上述内容所实现的技术均涵盖在本发明旨在保护的范围内。
除非另有说明,以下实施例中使用的原料和试剂均为市售商品,或者可以通过已知方法制备。
本发明以下实施例及对比例中,制得的Ti2AlC粉体的纯度是通过GSAS软件对XRD数据精修并定量分析后计算得出。
对比例1
采用Ti粉、Al粉和石墨粉为反应原材料无压烧结合成Ti2AlC粉体材料的方法,包括以下步骤:
a.配料:首先按照n(Ti):n(Al):n(C)=2:1.3:1摩尔比称取原料,并且搅拌混合均匀,将搅拌混合均匀的粉末加入乙醇进行湿法研磨20~40min;将混料进行真空干燥,将干燥后获得的粉体用球磨机进行干磨10min;
b.烧结:将压制过的胚体放入管式炉中,进行无压烧结,烧结温度1200℃,升温速率5℃/min,保温时间3h;
c.机加工:将烧结获得的Ti2AlC粉体进行细磨获得微米尺度的Ti2AlC粉体材料。
对比例2
采用Ti粉、Al粉和石墨粉为反应原材料无压烧结合成Ti2AlC粉体材料的方法,包括以下步骤:
a.配料:首先按照n(Ti):n(Al):n(C)=2:1.3:1的摩尔比称取原料,并且搅拌混合均匀,将搅拌混合均匀的粉末加入乙醇进行湿法研磨20~40min;将混料进行真空干燥,将干燥后获得的粉体进行干磨10min;
b.成型:将配料好的粉体原料用液压机预成型,并将其装入橡胶模具中用冷等静压机施加200MPa的压力,压制100s,获得圆柱状胚体;
c.烧结:将压制过的胚体放入管式炉中,进行无压烧结,烧结温度1200℃,升温速率5℃/min,保温时间3h;
d.机加工:将烧结获得的Ti2AlC块体机加工去除含杂质的表面,然后用破碎机进行破碎;
e.磨粉:将破碎后的块体进行细磨获得微米尺度的Ti2AlC粉体材料。
对比例3
采用TiH2粉、TiAl粉和石墨粉为反应原材料无压烧结合成Ti2AlC粉体材料的方法,包括以下步骤:
a.配料:首先按照原料的摩尔比为n(TiH2):n(TiAl):n(C)=1:1.2:1称取原料,并且将原料搅拌混合均匀加入乙醇进行湿法研磨20~40min;将混料进行真空干燥,将干燥后获得的粉体进行干磨10min;
b.烧结:将压制过的胚体放入管式炉中,进行无压烧结,烧结温度1200℃,升温速率5℃/min,保温时间2h;
c.机加工:将烧结获得的Ti2AlC粉体进行细磨获得微米尺度的Ti2AlC粉体材料。
实施例1
采用TiH2粉、TiAl粉和石墨粉为反应原材料无压烧结合成Ti2AlC粉体材料的方法,包括以下步骤:
a.配料:首先按照原料的摩尔比为n(TiH2):n(TiAl):n(C)=1:1.2:1称取原料,并且将原料搅拌混合均匀加入乙醇进行湿法研磨20~40min;将混料进行真空干燥,将干燥后获得的粉体进行干磨10min;
b.成型:将配料好的粉体原料用液压机预成型,并将其装入橡胶模具中用冷等静压机施加200MPa的压力,压制120s,获得圆柱状胚体;
c.烧结:将压制过的胚体放入管式炉中,进行无压烧结,烧结温度1200℃,升温速率5℃/min,保温时间3h;
d.机加工:将烧结获得的Ti2AlC块体机加工去除含杂质的表面,然后用破碎机进行破碎;
e.磨粉:将破碎后的块体进行细磨获得微米尺度的Ti2AlC粉体材料。
实施例2
采用TiH2粉、TiAl粉和石墨粉为反应原材料无压烧结合成Ti2AlC粉体材料的方法,包括以下步骤:
a.配料:首先按照原料的摩尔比为n(TiH2):n(TiAl):n(C)=1:1:1称取原料,并且将原料搅拌混合均匀加入乙醇进行湿法研磨20~40min;将混料进行真空干燥,将干燥后获得的粉体进行干磨10min;
b.成型:将配料好的粉体原料用液压机预成型,并将其装入橡胶模具中用冷等静压机施加200MPa的压力,压制120s,获得圆柱状胚体;
c.烧结:将压制过的胚体放入管式炉中,进行无压烧结,烧结温度1200℃,升温速率5℃/min,保温时间3h;
d.机加工:将烧结获得的Ti2AlC块体机加工去除含杂质的表面,然后用破碎机进行破碎;
e.磨粉:将破碎后的块体进行细磨获得微米尺度的Ti2AlC粉体材料。
实施例3
采用TiH2粉、TiAl粉和石墨粉为反应原材料无压烧结合成Ti2AlC粉体材料的方法,包括以下步骤:
a.配料:首先按照原料的摩尔比为n(TiH2):n(TiAl):n(C)=1:1.5:1称取原料,并且将原料搅拌混合均匀加入乙醇进行湿法研磨20~40min;将混料进行真空干燥,将干燥后获得的粉体进行干磨10min;
b.成型:将配料好的粉体原料用液压机预成型,并将其装入橡胶模具中用冷等静压机施加200MPa的压力,压制120s,获得圆柱状胚体;
c.烧结:将压制过的胚体放入管式炉中,进行无压烧结,烧结温度1200℃,升温速率5℃/min,保温时间2h;
d.机加工:将烧结获得的Ti2AlC块体机加工去除含杂质的表面,然后用破碎机进行破碎;
e.磨粉:将破碎后的块体进行细磨获得微米尺度的Ti2AlC粉体材料。
实施例4
采用TiH2粉、TiAl粉和石墨粉为反应原材料无压烧结合成Ti2AlC粉体材料的方法,包括以下步骤:
a.配料:首先按照原料的摩尔比为n(TiH2):n(TiAl):n(C)=1:1.5:1称取原料,并且将原料搅拌混合均匀加入乙醇进行湿法研磨20~40min;将混料进行真空干燥,将干燥后获得的粉体进行干磨10min;
b.成型:将配料好的粉体原料用液压机预成型,并将其装入橡胶模具中用冷等静压机施加200MPa的压力,压制120s,获得圆柱状胚体;
c.烧结:将压制过的胚体放入管式炉中,进行无压烧结,烧结温度1300℃,升温速率5℃/min,保温时间2h;
d.机加工:将烧结获得的Ti2AlC块体机加工去除含杂质的表面,然后用破碎机进行破碎;
e.磨粉:将破碎后的块体进行细磨获得微米尺度的Ti2AlC粉体材料。
对比例1~3及实施例1~4中的实验条件参数及制得的Ti2AlC粉体材料的性能测定结果如下表1所示。
表1
通过上表数据分析发现,采用同样的无压烧结条件下,本发明通过采用冷等静压压制过的样品烧制后得到的Ti2AlC粉体材料的纯度比无冷等静压压制时有所提高;同样,采用TiH2粉、TiAl粉和C粉为原料烧制的Ti2AlC粉体材料的纯度比采用Ti粉、Al粉和C粉为原料时显著提高;且烧结温度为1200℃、保温时间为3h时,烧结制备得到的Ti2AlC粉体材料的纯度最高。
将按照上述方法所制备的制备Ti2AlC粉体材料通过X射线衍射、扫描电子显微镜进行测试,分析如下:
图1为实施例1中n(TiH2):n(TiAl):n(C)=1:1.2:1,在200MPa压力压制后,用无压烧结法在1200℃、保温3h条件下烧结后制备得到的Ti2AlC粉体材料的X射线衍射。由图中可以看出:本发明烧结后制备得到的Ti2AlC粉体材料几乎没有杂质峰,由此说明本实施例成功合成了高纯度的Ti2AlC粉体材料。
图2为不同工艺条件下合成Ti2AlC粉体材料的X射线衍射谱,其中:图2中(E)是对比例2在无预压处理、原料为Ti粉、Al粉和C粉、在无压条件下合成的Ti2AlC粉体材料的X射线衍射谱,从图中可以看出:对比例2制得的Ti2AlC粉体材料中存在有较多杂质峰,并且Ti2AlC粉体材料的衍射峰强度不高,由此说明无压条件下得到的Ti2AlC粉体材料中杂质种类多,纯度低;图2中(D)是对比例3在无预压力处理、原料为TiH2粉、TiAl粉和C粉、无压条件下合成的Ti2AlC粉体材料的X射线衍射谱,从图中可以看出:对比例3制得的Ti2AlC粉体材料的杂质峰减少,但Ti2AlC粉体材料的衍射峰强度仍不高,说明在原料为TiH2粉、TiAl粉和C粉的条件下得到的Ti2AlC粉体材料杂质种类少,但是纯度仍然低;图2中(C)、(B)、(A)分别是实施例3、实施例2和实施例1在有预压力处理、原料为TiH2粉、TiAl粉和C粉、在无压条件下烧结合成的Ti2AlC粉体材料的X射线衍射谱,从图中可以看出:本发明实施例1~3制得的Ti2AlC粉体材料中几乎没有杂质峰,并且Ti2AlC的衍射峰强度明显增强,由此说明:在预压处理且原料为TiH2粉、TiAl粉和C粉的条件下得到的Ti2AlC粉体材料杂质种类少,纯度高。
图3为实施例1中n(TiH2):n(TiAl):n(C)=1:1.2:1,在200MPa压力压制后,用无压烧结法在1200℃、保温3h条件下烧结后制备得到的Ti2AlC粉体材料的扫描电镜图,通过扫描电镜图可以明显观察到Ti2AlC晶体结构,晶粒细小,微观组织均匀,具有完整的层状结构。
以上,对本发明的实施方式进行了说明。但是,本发明不限定于上述实施方式。凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种Ti2AlC粉体材料的制备方法,其特征在于,包括以TiAl粉和TiH2粉为钛源,以石墨粉为碳源,采用无压烧结法制备得到所述Ti2AlC粉体材料。
2.如权利要求1所述的制备方法,其特征在于,所述TiAl粉、TiH2粉和石墨粉的摩尔比为n(TiH2):n(TiAl):n(C)=1:(1.0~1.5):1。
3.如权利要求1或2所述的制备方法,其特征在于,所述烧结过程在惰性气氛保护下进行。
优选地,所述烧结的温度为1100~1300℃,所述烧结的保温时间为2-3h。
4.如权利要求1-3任一项所述的制备方法,其特征在于,所述无压烧结前,还包括将TiAl粉、TiH2粉和石墨粉混合后研磨。
优选地,所述制备方法还包括对研磨后的产物进行干燥。
优选地,所述制备方法还包括对干燥后的产物进行干磨。
5.如权利要求1-4任一项所述的制备方法,其特征在于,所述制备方法还包括对干磨的粉体进行预成型。
优选地,先采用液压机预压成型,然后用冷等静压机压制成结构紧密的圆柱状胚体。
6.如权利要求5所述的制备方法,其特征在于,所述冷等静压成型的压力为200~250MPa;所述冷等静压成型的时间为100~150s。
7.如权利要求1-6任一项所述的制备方法,其特征在于,所述制备方法还包括对烧结后的产物进行机加工。
优选地,所述制备方法还包括对机加工后得到的Ti2AlC进行磨粉,以制得Ti2AlC粉体材料。
8.如权利要求1-7任一项所述的制备方法,其特征在于,包括以下步骤:
a.配料:首先将TiAl粉、TiH2粉和石墨粉搅拌混合均匀,将搅拌混合均匀的粉末加入乙醇进行湿法研磨20~40min;将混料进行真空干燥,将干燥后获得的粉体干磨5~15min;
b.成型:将步骤(a)制得的粉体用液压机预成型,然后用冷等静压机压制成圆柱状胚体;
c.烧结:将压制过的胚体进行无压烧结;
d.机加工:将烧结获得的Ti2AlC块体机加工去除含杂质的表面,然后用破碎机进行破碎;
e.磨粉:将破碎后的块体进行细磨获得微米尺度的Ti2AlC粉体材料。
9.权利要求1-8任一项所述的制备方法制备得到的Ti2AlC粉体材料。
10.如权利要求9所述的Ti2AlC粉体材料,其特征在于,所述Ti2AlC粉体材料的粒径为10μm~50μm。
CN202210706195.6A 2022-04-07 2022-06-21 一种Ti2AlC粉体材料及其制备方法 Pending CN116924803A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210363930 2022-04-07
CN2022103639308 2022-04-07

Publications (1)

Publication Number Publication Date
CN116924803A true CN116924803A (zh) 2023-10-24

Family

ID=88385228

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210706195.6A Pending CN116924803A (zh) 2022-04-07 2022-06-21 一种Ti2AlC粉体材料及其制备方法

Country Status (1)

Country Link
CN (1) CN116924803A (zh)

Similar Documents

Publication Publication Date Title
Alexandrov et al. Consolidation of nanometer sized powders using severe plastic torsional straining
CN100575515C (zh) 一种超细晶WC-Co硬质合金制备方法
Zhou et al. Preparation of Ti3AlC2 and Ti2AlC by self-propagating high-temperature synthesis
CN105859301B (zh) 一种氮化硅陶瓷及其制备方法
US20090011266A1 (en) Intermetallic Composite Formation and Fabrication from Nitride-Metal Reactions
CN110128146B (zh) 一种具有多功能的碳化硼基复相陶瓷及其反应热压烧结制备方法
Gao et al. Preparation and performance of MAX phase Ti3AlC2 by in-situ reaction of Ti-Al-C system
CN101033141A (zh) 低温无压烧结制备致密Ti3AlC2陶瓷的方法
CN112725660A (zh) 一种石墨烯增强铝基复合材料的粉末冶金制备方法
CN110436928B (zh) 高性能纳米孪晶碳化硼陶瓷块体材料及其制备方法
Tan et al. Effects of heat treatment on phase contents and mechanical properties of infiltrated B4C/2024Al composites
CN109251033A (zh) 一种微波合成Ti2AlC块体材料的方法
CN1367726A (zh) 放电表面处理用电极及其制造方法和放电表面处理方法
CN102153347B (zh) 一种快速合成Ti3SiC2亚微米粉体的方法
CN107513651B (zh) 一种钛颗粒增强镁基复合材料的制备方法
Liu et al. Synthesis and processing effects on microstructure and mechanical properties of forsterite ceramics
CN109136713A (zh) 一种制备高强度高韧性WC-Co硬质合金的方法
Li et al. Densification and grain growth during pressureless sintering of TiO2 nanoceramics
JP5356991B2 (ja) チタンシリコンカーバイドセラミックスの製造方法
Li et al. Effect of sintering temperature on hardness gradient of Si3N4 ceramics fabricated by spark plasma sintering
CN116924803A (zh) 一种Ti2AlC粉体材料及其制备方法
Sun et al. Synthesis and consolidation of ternary compound Ti3SiC2 from green compact of mixed powders
CN113416078A (zh) 一种非化学计量比硼化钛及利用该非化学计量比硼化钛制备的高熵硼化物陶瓷
CN115819089B (zh) 一种抗非晶化且高硬度、高韧性碳化硼复相陶瓷的制备方法
CN111454062B (zh) 一种AlMgB14陶瓷材料粉体的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination