CN116896279A - 一种复用桥臂储能型h-mmc系统的控制策略 - Google Patents
一种复用桥臂储能型h-mmc系统的控制策略 Download PDFInfo
- Publication number
- CN116896279A CN116896279A CN202310472792.1A CN202310472792A CN116896279A CN 116896279 A CN116896279 A CN 116896279A CN 202310472792 A CN202310472792 A CN 202310472792A CN 116896279 A CN116896279 A CN 116896279A
- Authority
- CN
- China
- Prior art keywords
- bridge arm
- energy storage
- storage type
- multiplexing
- control strategy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004146 energy storage Methods 0.000 title claims abstract description 118
- 238000011217 control strategy Methods 0.000 title claims abstract description 48
- 239000003990 capacitor Substances 0.000 claims abstract description 72
- 230000000087 stabilizing effect Effects 0.000 claims abstract description 8
- 239000000725 suspension Substances 0.000 claims description 5
- 238000000034 method Methods 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 4
- 230000002457 bidirectional effect Effects 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M5/00—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
- H02M5/02—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
- H02M5/04—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
- H02M5/22—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M5/275—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M5/293—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/002—Flicker reduction, e.g. compensation of flicker introduced by non-linear load
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/24—Arrangements for preventing or reducing oscillations of power in networks
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/28—Arrangements for balancing of the load in a network by storage of energy
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0068—Battery or charger load switching, e.g. concurrent charging and load supply
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/02—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0095—Hybrid converter topologies, e.g. NPC mixed with flying capacitor, thyristor converter mixed with MMC or charge pump mixed with buck
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
- H02M3/158—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M5/00—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
- H02M5/02—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
- H02M5/04—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
- H02M5/22—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M5/275—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M5/293—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M5/2932—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage, current or power
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/66—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
- H02M7/68—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
- H02M7/72—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/79—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/797—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2207/00—Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J2207/20—Charging or discharging characterised by the power electronics converter
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2207/00—Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J2207/50—Charging of capacitors, supercapacitors, ultra-capacitors or double layer capacitors
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Inverter Devices (AREA)
Abstract
本发明公开了一种复用桥臂储能型H‑MMC系统的控制策略。该复用桥臂储能型H‑MMC系统包括:H‑MMC、超级电容器、两个三相电力系统;复用桥臂储能型H‑MMC系统的控制策略由主调制波控制策略、超级电容储能控制策略和调制波计算三个部分组成;其中,主调制波控制策略由一次侧功率指令以及现有成熟的层次化子模块电容电压稳压均压控制策略和PIR桥臂电流跟踪控制策略构成;采用PI控制器对第i个桥臂第j个子模块的超级电容电压的额定值进行跟踪得到超级电容电压的调制波,通过分别对第i个桥臂第j个子模块中的S1/S2和S3/S4进行调制得到正、负输出端口调制信号,采用移相的正弦脉宽调制分别得到复用桥臂储能型全桥子模块中S1/S2和S3/S4的开关信号,完成控制过程;本发明给出了复用桥臂储能型H‑MMC系统拓扑结构和控制策略,具有实时补偿电网有功冲击的效果、提高系统惯量、子模块一致性好和复用变流桥臂储能节省成本的优点。
Description
技术领域
本发明属于AC/AC变流器储能领域,特别涉及一种复用桥臂储能型H-MMC系统的控制策略。
背景技术
我国西部北部拥有丰富的清洁能源资源,建设了大型的风能、光伏、水电和火电发电基地,需要将这些清洁能源供给电网进行有效地运用。然而,在高比例清洁能源发电并网时,会导致电网出现功率冲击。因此,安装储能装置来减少有功功率的变化已经成为解决功率冲击的有效手段。如今,研究如何安装储能装置以解决功率冲击问题已成为重要趋势。
传统的储能型MMC拓扑装置通常可以分为两类:一类是将储能载体直接并联在子模块电容两端;另一类是将储能载体经过双向DC/DC变换器并联在半桥子模块电容两端。但由于MMC存在直流母线且采用半桥子模块,该拓扑结构在面临直流故障时无法进行直流断开。相比之下,H-MMC是一种直接AC/AC的变流器,它没有直流母线,并且采用全桥子模块。相较于传统拓扑中将双向DC/DC变换器直接并联在半桥子模块电容两端,H-MMC不需要额外并联开关器件,只需复用桥臂即可实现双向DC/DC功能。
复用桥臂储能型H-MMC系统采用全桥子模块,无需增加额外开关器件,只需要并联一个储能电感和超级电容器即可构成复用桥臂储能型H-MMC全桥储能结构,即可实现储能功能;但是为了控制超级电容器的充放电过程,需要额外增加一级超级电容PI控制器,需要增加成本。
发明内容
针对上述背景技术描述的缺点和不足,本发明提出了一种复用桥臂储能型H-MMC系统的控制策略,具有实时补偿电网有功冲击的效果、提高系统惯量、子模块一致性好和复用变流桥臂储能节省成本的优点。
本发明所提供的技术方案如下:
一种复用桥臂储能型H-MMC系统的控制策略,其特征在于,所述的复用桥臂储能型H-MMC系统由H-MMC、超级电容器、两个三相电力系统组成;
所述复用桥臂储能型H-MMC系统由6个结构相同的桥臂首尾依次相接构成六边形结构,每个桥臂由M个级联的复用桥臂储能型全桥子模块和1个桥臂电感Lb_i之间串联组成,其中i表示第i个桥臂,i的取值范围为1,2,3…6;每个复用桥臂储能型全桥子模块称为ESSM_ij,其中j表示第j个复用桥臂储能型全桥子模块,j的取值范围为1,2,3…M;复用桥臂储能型全桥子模块由4个带有反并联二极管的IGBT(分别命名为S1、S2、S3、S4)、1个储能电感Lsc、1个超级电容器Csc和1个直流悬浮电容器Csm构成,其连接方式如下:S1、S3的集电极以及直流浮电容器Csm的正极相连,连接点形成复用桥臂储能型全桥子模块的上结点;S2、S4的发射极、直流浮电容器Csm的负极以及超级电容器Csc的负极相连,连接点形成复用桥臂储能型全桥子模块的下结点;超级电容器Csc的正极与储能电感Lsc相连;S1的发射极和S2的集电极相连,连接点形成复用桥臂储能型全桥子模块的正输出端口;S2的发射极、S4的集电极以及储能电感Lsc另一端相连,连接点形成复用桥臂储能型全桥子模块的负输出端口;
所述的复用桥臂储能型H-MMC系统中,o1节点为桥臂1与桥臂2之间的连接点;o2节点为桥臂2与桥臂3之间的连接点;o3节点为桥臂3与桥臂4之间的连接点;o4节点为桥臂4与桥臂5之间的连接点;o5节点为桥臂5与桥臂6之间的连接点;o6节点为桥臂6与桥臂1之间的连接点;复用桥臂储能型H-MMC系统的6个节点用于连接两个三相电力系统,其中,o6、o2、o4节点作为复用桥臂储能型H-MMC系统的一次侧三相输入端口;o1、o5、o3节点作为复用桥臂储能型H-MMC系统的二次侧三相输出端口;
所述的复用桥臂储能型H-MMC系统的控制策略由主调制波控制策略、超级电容储能控制策略和调制波计算三个部分组成;其中,主调制波控制策略由一次侧功率指令以及现有成熟的层次化子模块电容电压稳压均压控制策略和PIR桥臂电流跟踪控制策略构成;
所述的主调制波控制策略由如下步骤组成:
根据一次侧功率指令以及现有成熟的层次化子模块电容电压稳压均压控制策略和PIR桥臂电流跟踪控制策略可以获得桥臂电压主调制波ui_ref;
所述的超级电容储能控制策略由如下步骤组成:
(1)第i个桥臂第j个子模块中,超级电容电压的额定值usc_ijref设定为复用桥臂储能型全桥子模块电容电压额定值usm_ijref的一半,即超级电容电压的额定调制波m_ij取:
m_ij=usc_ijref/usm_ijref=0.5
(2)将超级电容电压的额定值usc_ijref和实际值usc_ij相减,两者的差值带入PI控制器,得到超级电容电压调制修正值m_ijadd:
m_ijadd=(usc_ijref-usc_ij)×(Kp+Ki×(1/s))
其中,Kp和Ki分别为PI控制器的比例系数和积分系数;
(3)由上述超级电容储能控制策略(1)-(2)可知,超级电容电压的调制波m_ijref:
m_ijref=m_ij+m_ijadd
所述的调制波计算由如下步骤组成:
(1)将ui_ref除以M得到第i个桥臂第j个子模块电压的调制波uij_ref:
(2)第i个桥臂第j个子模块中,S1/S2所连复用桥臂储能型全桥子模块的正输出端口调制信号为uij_1/2ref:
uij_1/2ref=m_ijref×usm_ijref+(1/2)×uij_ref
(3)S3/S4所连复用桥臂储能型全桥子模块的负输出端口调制信号为uij_3/4ref:
uij_3/4ref=m_ijref×usm_ijref-(1/2)×uij_ref
(4)将调制信号uij_1/2ref采用正弦脉宽调制得到复用桥臂储能型全桥子模块中S1/S2的开关信号;正弦脉宽调制波的初相角为(j-1)*(360/M)°;
(5)将调制信号uij_3/4ref采用正弦脉宽调制得到复用桥臂储能型全桥子模块中S3/S4的开关信号;正弦脉宽调制波的初相角为(j-1)*(360/M)°。
本发明的有益效果是:1)给出了复用桥臂储能型H-MMC系统的拓扑结构,针对该结构提出了相应控制和调制策略,可以实现在大功率场景下,超级电容储能电流的平滑控制和子模块电容电压稳压控制,快速有效解决电网中存在的中、高压电力系统中有功冲击问题;2)结构简单,节省成本,只在原有H-MMC系统中,对其全桥子模块进行改进,复用变流桥臂,在每个子模块的S4中并联了一个储能电感和超级电容,并未增加额外开关器件。
附图说明
图1为复用桥臂储能型H-MMC系统的拓扑结构图;
图2为复用桥臂储能型H-MMC系统的控制框图;
图3为复用桥臂全桥子模块电容电压波形;
图4为复用桥臂全桥超级电容电压波形。
具体实施方式
为了使本发明所解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图对本发明进行进一步详细说明。应当理解,此处所描述的具体实例仅仅用以解释本发明,并不用于限定本发明。
图1是复用桥臂储能型H-MMC系统的拓扑结构图,其特征在于,所述的复用桥臂储能型H-MMC系统由H-MMC、超级电容器、两个三相电力系统组成;其由6个结构相同的桥臂首尾依次相接构成六边形结构,每个桥臂由M个级联的复用桥臂储能型全桥子模块和1个桥臂电感Lb_i之间串联组成,其中i表示第i个桥臂,i的取值范围为1,2,3…6;每个复用桥臂储能型全桥子模块称为ESSM_ij,其中j表示第j个复用桥臂储能型全桥子模块,j的取值范围为1,2,3…M;复用桥臂储能型全桥子模块由4个带有反并联二极管的IGBT(分别命名为S1、S2、S3、S4)、1个储能电感Lsc、1个超级电容器Csc和1个直流悬浮电容器Csm构成,其连接方式如下:S1、S3的集电极以及直流浮电容器Csm的正极相连,连接点形成复用桥臂储能型全桥子模块的上结点;S2、S4的发射极、直流浮电容器Csm的负极以及超级电容器Csc的负极相连,连接点形成复用桥臂储能型全桥子模块的下结点;超级电容器Csc的正极与储能电感Lsc相连;S1的发射极和S2的集电极相连,连接点形成复用桥臂储能型全桥子模块的正输出端口;S2的发射极、S4的集电极以及储能电感Lsc另一端相连,连接点形成复用桥臂储能型全桥子模块的负输出端口;所述的复用桥臂储能型H-MMC系统中,o1节点为桥臂1与桥臂2之间的连接点;o2节点为桥臂2与桥臂3之间的连接点;o3节点为桥臂3与桥臂4之间的连接点;o4节点为桥臂4与桥臂5之间的连接点;o5节点为桥臂5与桥臂6之间的连接点;o6节点为桥臂6与桥臂1之间的连接点;复用桥臂储能型H-MMC系统的6个节点用于连接两个三相电力系统,其中,o6、o2、o4节点作为复用桥臂储能型H-MMC系统的一次侧三相输入端口;o1、o5、o3节点作为复用桥臂储能型H-MMC系统的二次侧三相输出端口。
在本实例中,一次侧系统电压等级为3.3kV,二次侧电力系统电压等级为10kV,复用桥臂储能型H-MMC系统的桥臂电感Lb_i为10mH,直流悬浮电容Csm为20mF,储能电感Lsc为1mH和超级电容器Csc为0.1F,每个桥臂复用桥臂储能型全桥子模块个数M为6,复用桥臂储能型全桥第i个桥臂第j个子模块电容电压额定值usm_ijref为2500V,Kp1=1、Ki1=20。
图2是复用桥臂储能型H-MMC系统的控制框图,控制策略由主调制波控制策略、超级电容储能控制策略和调制波计算三个部分组成;其中,主调制波控制策略由一次侧功率指令以及现有成熟的层次化子模块电容电压稳压均压控制策略和PIR桥臂电流跟踪控制策略构成;
所述的主调制波控制策略由如下步骤组成:
根据一次侧功率指令以及现有成熟的层次化子模块电容电压稳压均压控制策略和PIR桥臂电流跟踪控制策略可以获得桥臂电压主调制波ui_ref;
所述的超级电容储能控制策略由如下步骤组成:
(1)第i个桥臂第j个子模块中,超级电容电压的额定值usc_ijref设定为复用桥臂储能型全桥子模块电容电压额定值usm_ijref的一半,即超级电容电压的额定调制波m_ij取:
m_ij=usc_ijref/usm_ijref=0.5
(2)将超级电容电压的额定值usc_ijref和实际值usc_ij相减,两者的差值带入PI控制器,得到超级电容电压调制修正值m_ijadd:
mij_add=(usc_ijref-usc_ij)×(Kp+Ki×(1/s))
其中,Kp和Ki分别为PI控制器的比例系数和积分系数;
(3)由上述超级电容储能控制策略(1)-(2)可知,超级电容电压的调制波m_ijref:
m_ijref=m_ij+m_ijadd
所述的调制波计算由如下步骤组成:
(1)将ui_ref除以M得到第i个桥臂第j个子模块电压的调制波uij_ref:
(2)第i个桥臂第j个子模块中,S1/S2所连复用桥臂储能型全桥子模块的正输出端口调制信号为uij_1/2ref:
uij_1/2ref=m_ijref×usm_ijref+(1/2)×uij_ref
(3)S3/S4所连复用桥臂储能型全桥子模块的负输出端口调制信号为uij_3/4ref:
uij_3/4ref=m_ijref×usm_ijref-(1/2)×uij_ref
(4)将调制信号uij_1/2ref采用正弦脉宽调制得到复用桥臂储能型全桥子模块中S1/S2的开关信号;正弦脉宽调制波的初相角为(j-1)*(360/M)°;
(5)将调制信号uij_3/4ref采用正弦脉宽调制得到复用桥臂储能型全桥子模块中S3/S4的开关信号;正弦脉宽调制波的初相角为(j-1)*(360/M)°。
上述步骤中,一次侧功率指令可通过调度获得动态数值,Kp1=1、Ki1=20。
图3为复用桥臂全桥桥臂1子模块1电容电压波形,在1s到2s时间段内,可以看到该复用桥臂全桥子模块的电容电压平衡控制效果良好,桥臂子模块的电容电压U11基本上稳定在额定值2500V附近,波动幅度为4.7%,仅有少量波动,该波动范围符合要求。
图4为复用桥臂全桥桥臂1子模块1超级电容电压波形,在1s到2s时间段内,可以看到该复用桥臂全桥超级电容电压Usc_11在1250V附近波动,波动幅度为4%,其值在桥臂子模块的电容电压的50%附近波动,超级电容储能可以达到子模块电容的一半,与本专利的理论分析保持一致。
Claims (2)
1.一种复用桥臂储能型H-MMC系统的控制策略,其特征在于,所述的复用桥臂储能型H-MMC系统由H-MMC、超级电容器、两个三相电力系统组成;
所述复用桥臂储能型H-MMC系统由6个结构相同的桥臂首尾依次相接构成六边形结构,每个桥臂由M个级联的复用桥臂储能型全桥子模块和1个桥臂电感Lb_i之间串联组成,其中i表示第i个桥臂,i的取值范围为1,2,3…6;每个复用桥臂储能型全桥子模块称为ESSM_ij,其中j表示第j个复用桥臂储能型全桥子模块,j的取值范围为1,2,3…M;复用桥臂储能型全桥子模块由4个带有反并联二极管的IGBT(分别命名为S1、S2、S3、S4)、1个储能电感Lsc、1个超级电容器Csc和1个直流悬浮电容器Csm构成,其连接方式如下:S1、S3的集电极以及直流浮电容器Csm的正极相连,连接点形成复用桥臂储能型全桥子模块的上结点;S2、S4的发射极、直流浮电容器Csm的负极以及超级电容器Csc的负极相连,连接点形成复用桥臂储能型全桥子模块的下结点;超级电容器Csc的正极与储能电感Lsc相连;S1的发射极和S2的集电极相连,连接点形成复用桥臂储能型全桥子模块的正输出端口;S2的发射极、S4的集电极以及储能电感Lsc另一端相连,连接点形成复用桥臂储能型全桥子模块的负输出端口;
所述的复用桥臂储能型H-MMC系统中,o1节点为桥臂1与桥臂2之间的连接点;o2节点为桥臂2与桥臂3之间的连接点;o3节点为桥臂3与桥臂4之间的连接点;o4节点为桥臂4与桥臂5之间的连接点;o5节点为桥臂5与桥臂6之间的连接点;o6节点为桥臂6与桥臂1之间的连接点;复用桥臂储能型H-MMC系统的6个节点用于连接两个三相电力系统,其中,o6、o2、o4节点作为复用桥臂储能型H-MMC系统的一次侧三相输入端口;o1、o5、o3节点作为复用桥臂储能型H-MMC系统的二次侧三相输出端口;
所述的复用桥臂储能型H-MMC系统的控制策略由主调制波控制策略、超级电容储能控制策略和调制波计算三个部分组成;其中,主调制波控制策略由一次侧功率指令以及现有成熟的层次化子模块电容电压稳压均压控制策略和PIR桥臂电流跟踪控制策略构成;
所述的主调制波控制策略由如下步骤组成:
根据一次侧功率指令以及现有成熟的层次化子模块电容电压稳压均压控制策略和PIR桥臂电流跟踪控制策略可以获得桥臂电压主调制波ui_ref;
所述的超级电容储能控制策略由如下步骤组成:
(1)第i个桥臂第j个子模块中,超级电容电压的额定值usc_ijref设定为复用桥臂储能型全桥子模块电容电压额定值usm_ijref的一半,即超级电容电压的额定调制波m_ij取:
m_ij=usc_ijref/usm_ijref=0.5
(2)将超级电容电压的额定值usc_ijref和实际值usc_ij相减,两者的差值带入PI控制器,得到超级电容电压调制修正值m_ijadd:
m_ijadd=(usc_ijref-usc_ij)×(Kp+Ki×(1/s))
其中,Kp和Ki分别为PI控制器的比例系数和积分系数;
(3)由上述超级电容储能控制策略(1)-(2)可知,超级电容电压的调制波m_ijref:
m_ijref=m_ij+m_ijadd
所述的调制波计算由如下步骤组成:
(1)将ui_ref除以M得到第i个桥臂第j个子模块电压的调制波uij_ref:
(2)第i个桥臂第j个子模块中,S1/S2所连复用桥臂储能型全桥子模块的正输出端口调制信号为uij_1/2ref:
uij_1/2ref=m_ijref×usm_ijref+(1/2)×uij_ref
(3)S3/S4所连复用桥臂储能型全桥子模块的负输出端口调制信号为uij_3/4ref:
uij_3/4ref=m_ijref×usm_ijref-(1/2)×uij_ref
(4)将调制信号uij_1/2ref采用正弦脉宽调制得到复用桥臂储能型全桥子模块中S1/S2的开关信号;正弦脉宽调制波的初相角为(j-1)*(360/M)°;
(5)将调制信号uij_3/4ref采用正弦脉宽调制得到复用桥臂储能型全桥子模块中S3/S4的开关信号;正弦脉宽调制波的初相角为(j-1)*(360/M)°。
2.根据权利要求1所述的一种复用桥臂储能型H-MMC系统的控制策略,其特征在于一次侧系统电压等级为3.3kV,一次侧功率指令可通过调度获得动态数值,二次侧电力系统电压等级为10kV,复用桥臂储能型H-MMC系统的桥臂电感Lb_i为10mH,直流悬浮电容Csm为20mF,储能电感Lsc为1mH和超级电容器Csc为0.1F,每个桥臂复用桥臂储能型全桥子模块个数M为6,复用桥臂储能型全桥第i个桥臂第j个子模块电容电压额定值usm_ijref为2500V,Kp=1、Ki=20。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310472792.1A CN116896279A (zh) | 2023-04-27 | 2023-04-27 | 一种复用桥臂储能型h-mmc系统的控制策略 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310472792.1A CN116896279A (zh) | 2023-04-27 | 2023-04-27 | 一种复用桥臂储能型h-mmc系统的控制策略 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116896279A true CN116896279A (zh) | 2023-10-17 |
Family
ID=88309967
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310472792.1A Pending CN116896279A (zh) | 2023-04-27 | 2023-04-27 | 一种复用桥臂储能型h-mmc系统的控制策略 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116896279A (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117578898A (zh) * | 2023-11-24 | 2024-02-20 | 华北电力大学(保定) | 一种am-mmc的桥臂独立调制方法及控制系统 |
-
2023
- 2023-04-27 CN CN202310472792.1A patent/CN116896279A/zh active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117578898A (zh) * | 2023-11-24 | 2024-02-20 | 华北电力大学(保定) | 一种am-mmc的桥臂独立调制方法及控制系统 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101316074B (zh) | 风力发电系统的背靠背三电平中点箝位变流器 | |
CN102709941B (zh) | 一种准-z源级联多电平单相光伏并网发电系统的控制方法 | |
WO2022142812A1 (zh) | 多端海上风电柔性直流与储能协同并网系统及其控制方法 | |
CN104158211B (zh) | 基于模块化多电平变换器的多电源并网系统控制方法 | |
CN112072716A (zh) | 一种配电网末端电能路由器及其控制方法 | |
CN102916435B (zh) | 一种含z源网络的电池储能功率转换系统及其控制方法 | |
CN108418455B (zh) | 一种多电平逆变器的控制方法、装置以及逆变器 | |
CN106877371B (zh) | 一种具有储能功能的模块化多电平变流器的控制方法 | |
CN112467990B (zh) | 一种基于三有源桥变换器的直流电力弹簧拓扑及控制方法 | |
CN202488205U (zh) | 新型串并联变换型ups | |
CN108306281A (zh) | 一种基于双向全桥dc/dc变换器的部分隔离型四端口变换器及其控制方法 | |
CN107370391A (zh) | 面向中高压智能配电网的桥臂复用电力电子变压器 | |
WO2022188255A1 (zh) | 一种少模块数的串联mmc变流器拓扑结构 | |
CN108565883A (zh) | 一种基于statcom-ess的光伏低电压穿越装置及控制方法 | |
CN116896279A (zh) | 一种复用桥臂储能型h-mmc系统的控制策略 | |
CN106877726A (zh) | 一种具有故障穿越能力的储能型变流器拓扑的控制方法 | |
CN115411768A (zh) | 一种基于部分功率变换的四端口能量路由拓扑及控制策略 | |
CN2899271Y (zh) | 一种链式逆变器功率模块的控制电源 | |
Zhu et al. | Partial power conversion and high voltage ride-through scheme for a PV-battery based multiport multi-bus power router | |
CN111146808A (zh) | 一种多能源能量路由器电路拓扑结构和供电系统 | |
CN108832817A (zh) | 一种减少燃料电池低频电流纹波的功率变换控制器及方法 | |
CN115276246B (zh) | 一种链式储能系统及启动控制方法 | |
CN109412182A (zh) | 一种新型模块化无电解电容的光伏能量系统及其调制方法 | |
CN214591157U (zh) | 一种dc/dc变换器 | |
CN209313742U (zh) | 一种三相光伏并网发电逆变器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |