CN116895764A - 选择性沉积超薄金属氧化物稳定Pt合金燃料电池催化剂及其制备方法 - Google Patents

选择性沉积超薄金属氧化物稳定Pt合金燃料电池催化剂及其制备方法 Download PDF

Info

Publication number
CN116895764A
CN116895764A CN202310032932.3A CN202310032932A CN116895764A CN 116895764 A CN116895764 A CN 116895764A CN 202310032932 A CN202310032932 A CN 202310032932A CN 116895764 A CN116895764 A CN 116895764A
Authority
CN
China
Prior art keywords
metal oxide
alloy
fuel cell
cell catalyst
preparing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310032932.3A
Other languages
English (en)
Inventor
程年才
吴威
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN202310032932.3A priority Critical patent/CN116895764A/zh
Publication of CN116895764A publication Critical patent/CN116895764A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/923Compounds thereof with non-metallic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了选择性沉积超薄金属氧化物稳定Pt合金燃料电池催化剂及其制备方法。该方法包括:预先制备Pt合金颗粒,在Pt合金颗粒担载于碳载体并包裹上油胺;将催化剂置于原子层沉积系统,控制沉积程序以选择性的在Pt合金颗粒周围沉积厚度精确控制的超薄金属氧化物保护层而不覆盖合金颗粒;获得超薄氧化物保护层保护的Pt合金催化剂。本发明能够在原子尺度上选择性沉积于Pt合金颗粒周围,能够抑制合金颗粒在电催化过程中的迁移、脱落的同时避免过厚的金属氧化物造成Pt合金活性位点的损失;合金颗粒与氧化物之间的金属‑氧化物强相互作用增强了催化剂的稳定性和Pt合金的电子效应,促进催化反应的进行。

Description

选择性沉积超薄金属氧化物稳定Pt合金燃料电池催化剂及其 制备方法
技术领域
本发明属于燃料电池领域,具体涉及一种选择性沉积超薄金属氧化物稳定Pt合金燃料电池催化剂及其制备方法。
背景技术
质子交换膜燃料电池(PEMFC)因其产物清洁,燃料来源广泛具有极大的应用潜力,其可在各种操作条件下提供至少几十千瓦或更高的高功率以应用于车辆。其中,膜电极(MEA)是燃料电池的关键组件,其上的催化层是反应发生的场所,其性能好坏直接决定燃料电池的功率密度,因此,提升燃料电池膜电极的催化剂性能是当下的研究重点。
尽管目前对于燃料电池膜电极阴极催化剂已进行广泛研究,但阴极催化剂始终面临着动力学反应迟缓的关键问题,因而在燃料电池电堆中经常需要大量的Pt金属,造成成本增加。此外,燃料电池的长程使用中的耐久性问题也制约了燃料电池的发展,严重影响了燃料电池商业化进程。膜电极的耐久性不足主要由于燃料电池在工作状态下,催化剂中的Pt颗粒易于在载体上发生迁移、团聚、脱落和溶解等现象,导致催化剂的活性面积降低,进而造成催化剂失活,导致燃料电池性能下降。因此,在不降低甚至提升铂基催化剂性能的前提下,提高贵金属铂的利用率、降低成本、增强催化剂的稳定性是目前研究的重点。
金属与金属氧化物之间能够产生强相互作用,能够极大的增加催化剂的稳定性。同时,由于金属与金属氧化物之间的电荷传输,能够调节金属颗粒的电子结构,进一步增强催化剂的催化活性。将Pt基金属颗粒或合金颗粒与金属氧化物相结合,以增强催化剂的催化活性及稳定性是重要的发展方向。
中国专利CN201911213240.9公开了一种钛钨氧化物包覆碳纳米管载铂电催化剂的制备方法。该发明采用溶胶凝胶法在碳纳米管表面均匀包覆钛钨氧化物,再通过热处理形成结晶度高、电导率高的钛钨氧化物包覆层,并以此负载铂催化剂。一方面,高度结晶的钛钨氧化物均匀包覆碳纳米管,构建电子互传通道增强导电性,有效避免载体的腐蚀和抑制催化剂流失,极大的提高催化剂的活性、稳定性和铂利用率。然而,该发明没有解决担载在载体上的Pt基颗粒在催化过程中的脱落、溶解等问题,催化剂的稳定性需要得到进一步提高。此外,如何精确控制氧化层的厚度以保证催化剂的导电性仍然是一个挑战。
发明内容
本发明提供了一种选择性沉积超薄金属氧化物稳定Pt合金燃料电池催化剂的制备方法,通过选择性原子层沉积(ALD)在颗粒周围沉积金属氧化物保护层,以限制Pt颗粒在催化过程中的迁移、脱落等问题。厚度精确控制的氧化物保护层,也能够避免对颗粒表面活性位点的覆盖。
为实现上述目的,本发明采用如下技术方案:
S1、制备Pt基合金并担载于碳载体。
S2、将Pt基合金表面包覆抑制剂,以阻止金属前驱体在Pt表面的沉积。
S3、将包覆抑制剂的合金催化剂置于原子层沉积系统,一次沉积循环包含:通入金属前驱体使其吸附于载体;吹扫气吹扫多余金属前驱体;通入反应性气体将前驱体反应为金属氧化物;吹扫多余反应性气体。交替通入金属前驱体与反应性气体一定循环次数,以沉积一定厚度的金属氧化物保护层。获得金属氧化物保护的Pt合金催化剂。
进一步地,S1中制备Pt基合金并担载于碳载体的方法为液相制备方法、浸渍还原法或原子层沉积法,且铂载量为5wt%-80wt%。
进一步地,S1所述的Pt基合金中除Pt外的金属为钪、钛、钒、铬、锰、铁、钴、镍、铜、锌、钇、钼、钌、铑、钯、银、金、铱、镁、锡中的至少一种。
进一步地,S2所述金属前驱体包括钛、锡、锆、铝、钽、钼、银、铪的有机配合物。
进一步地,S2所述的抑制剂包含油胺、自组装单分子膜(SAMS)、氟化物等离子体、氢基。
进一步地,S3所述金属前驱体的通入脉冲范围为10ms-10s;所述吹扫气为氮气、氩气等惰性气体,所述吹扫气气体流量范围为5sccm-200sccm。
进一步地,S3所述反应性气体为水蒸汽或等离子氧气;所述原子层沉积系统中样品温度在125℃-300℃,优选200℃;所述原子层沉积系统中系统压强为30mTorr-2Torr;所述沉积程序循环次数为1-100次循环,优选10次;所述沉积保护层厚度为0.1nm-10nm, 优选1.5nm。
本发明的燃料电池催化剂制备方法和应用相对于现状具有以下有益效果:
(1)本发明的燃料电池催化剂的制备方法,通过选择性沉积超薄氧化物保护层于金属颗粒周围产生限域作用而不覆盖Pt合金表面,同时金属与金属氧化物之间的强相互作用,能够避免在催化过程中颗粒的团聚、迁移和脱落,提高催化稳定性。
(2)金属氧化物与Pt基合金之间产生电子效应,调节了Pt合金的电子结构,优化了对含氧中间体的吸附性质,提升了整体催化剂的性能。
(3)保护层的厚度能够在原子级别上得到精确的控制,精确控制的氧化物厚度既能够保证足够的保护作用,又能够避免保护层过厚导致Pt合金颗粒表面被氧化物保护层覆盖,造成活性位点的损失。
附图说明
图1为实施例1-3及对比例1-3所得催化剂样品的SEM图;
图2为利用实施例1-3与对比例1-3所得催化剂样品制备的单电池的性能测试结果图。
具体实施方式
下面结合具体实施例对本发明进行更清晰、完整的说明,但实施例并不作为本发明的限制。
实施例1
称取20ml水,100mg氮掺杂碳纳米管,27mg氯铂酸,15.8mg氯化钴于100ml烧杯,超声2h待完全分散均匀,冷冻干燥后置于管式炉中,在5%H2/95%N2气氛下,以5℃/min的升温速率升温至600℃,保温2h后,待冷却至室温后取出,获得氮掺杂碳纳米管载PtCo合金。
配置0.1mM的油胺乙醇溶液,加入100mg氮掺杂碳纳米管载PtCo合金,搅拌12h后使用乙醇洗涤三次,置于真空干燥箱中烘干12h,获得抑制剂包裹的PtCo合金催化剂。
将抑制剂包裹的PtCo合金催化剂置于原子层沉积系统中,腔体温度设置为200℃,前驱体输送管道温度设置为135℃,单次循环次包括:四(二甲氨基)锆以20ms脉冲在7sccm的氩气载气保护下通入反应腔体,随后利用氩气吹扫20s以保证前驱体的完全排出;10sccm氩气和10sccm氧气在等离子发生器下通入20s以保证四(二甲氨基)锆完全被反应,等离子发生器的功率设置为300W,再使用氩气吹扫20s;重复上述循环15次,从原子层沉积系统中取出,获得选择性沉积超薄金属氧化物稳定Pt合金燃料电池催化剂,沉积保护层厚度为1.5nm
实施例2
称取20ml水,100mg氮掺杂碳纳米管,27mg氯铂酸,15.8mg氯化钴于100ml烧杯,超声2h待完全分散均匀,冷冻干燥后置于管式炉中,在5%H2/95%N2气氛下,以5℃/min的升温速率升温至600℃,保温2h后,待冷却至室温后取出,获得氮掺杂碳纳米管载PtCo合金。
配置0.1mM的油胺乙醇溶液,加入100mg氮掺杂碳纳米管载PtCo合金,搅拌12h后使用乙醇洗涤三次,置于真空干燥箱中烘干12h,获得抑制剂包裹的PtCo合金催化剂。
将抑制剂包裹的PtCo合金催化剂置于原子层沉积系统中,腔体温度设置为200℃,前驱体输送管道温度设置为135℃,单次循环次包括:四(二甲氨基)锆以20ms脉冲在7sccm的氩气载气保护下通入反应腔体,随后利用氩气吹扫20s以保证前驱体的完全排出;10sccm氩气和10sccm氧气在等离子发生器下通入20s以保证四(二甲氨基)锆完全被反应,等离子发生器的功率设置为300W,再使用氩气吹扫20s;重复上述循环5次,从原子层沉积系统中取出,获得选择性沉积超薄金属氧化物稳定Pt合金燃料电池催化剂,沉积保护层厚度为0.5nm。
实施例3
称取20ml水,100mg氮掺杂碳纳米管,27mg氯铂酸,15.8mg氯化钴于100ml烧杯,超声2h待完全分散均匀,冷冻干燥后置于管式炉中,在5%H2/95%N2气氛下,以5℃/min的升温速率升温至600℃,保温2h后,待冷却至室温后取出,获得氮掺杂碳纳米管载PtCo合金。
配置0.1mM的油胺乙醇溶液,加入100mg氮掺杂碳纳米管载PtCo合金,搅拌12h后使用乙醇洗涤三次,置于真空干燥箱中烘干12h,获得抑制剂包裹的PtCo合金催化剂。
将抑制剂包裹的PtCo合金催化剂置于原子层沉积系统中,腔体温度设置为200℃,前驱体输送管道温度设置为135℃,单次循环次包括:四(二甲氨基)锆以20ms脉冲在7sccm的氩气载气保护下通入反应腔体,随后利用氩气吹扫20s以保证前驱体的完全排出;10sccm氩气和10sccm氧气在等离子发生器下通入20s以保证四(二甲氨基)锆完全被反应,等离子发生器的功率设置为300W,再使用氩气吹扫20s;重复上述循环25次,从原子层沉积系统中取出,获得选择性沉积超薄金属氧化物稳定Pt合金燃料电池催化剂,沉积保护层厚度为2.5nm。
对比例1
称取20ml水,100mg氮掺杂碳纳米管,27mg氯铂酸,15.8mg氯化钴于100ml烧杯,超声2h待完全分散均匀,冷冻干燥后置于管式炉中,在5%H2/95%N2气氛下,以5℃/min的升温速率升温至600℃,保温2h后,待冷却至室温后取出,获得氮掺杂碳纳米管载PtCo合金,记为对比例1。
对比例2
称取20ml水,100mg氮掺杂碳纳米管,27mg氯铂酸,15.8mg氯化钴于100ml烧杯,超声2h待完全分散均匀,冷冻干燥后置于管式炉中,在5%H2/95%N2气氛下,以5℃/min的升温速率升温至600℃,保温2h后,待冷却至室温后取出,获得氮掺杂碳纳米管载PtCo合金。
配置0.1mM的油胺乙醇溶液,加入100mg氮掺杂碳纳米管载PtCo合金,搅拌12h后使用乙醇洗涤三次,置于真空干燥箱中烘干12h,获得抑制剂包裹的PtCo合金催化剂。
将抑制剂包裹的PtCo合金催化剂置于原子层沉积系统中,腔体温度设置为200℃,前驱体输送管道温度设置为135℃,单次循环次包括:四(二甲氨基)锆以20ms脉冲在7sccm的氩气载气保护下通入反应腔体,随后利用氩气吹扫20s以保证前驱体的完全排出;10sccm氩气和10sccm氧气在等离子发生器下通入20s以保证四(二甲氨基)锆完全被反应,等离子发生器的功率设置为300W,再使用氩气吹扫20s;重复上述循环50次,从原子层沉积系统中取出,获得选择性沉积超薄金属氧化物稳定Pt合金燃料电池催化剂,沉积保护层厚度为5nm。
对比例3
称取20ml水,100mg氮掺杂碳纳米管,27mg氯铂酸,15.8mg氯化钴于100ml烧杯,超声2h待完全分散均匀,冷冻干燥后置于管式炉中,在5%H2/95%N2气氛下,以5℃/min的升温速率升温至600℃,保温2h后,待冷却至室温后取出,获得氮掺杂碳纳米管载PtCo合金。
将氮掺杂碳纳米管载PtCo合金置于原子层沉积系统中,腔体温度设置为200℃,前驱体输送管道温度设置为135℃,单次循环次包括:四(二甲氨基)锆以20ms脉冲在7sccm的氩气载气保护下通入反应腔体,随后利用氩气吹扫20s以保证前驱体的完全排出;10sccm氩气和10sccm氧气在等离子发生器下通入20s以保证四(二甲氨基)锆完全被反应,等离子发生器的功率设置为300W,再使用氩气吹扫20s;重复上述循环15次,从原子层沉积系统中取出,获得无包覆剂的选择性沉积超薄金属氧化物稳定Pt合金燃料电池催化剂,沉积保护层厚度为1.5nm。
将实施例和对比例制备的催化剂与nafion溶液以7:3比例混合,并加入适量的乙醇进行分散,配置成催化剂料浆;将配置成的催化剂料浆,分别喷涂到质子膜的两侧,喷涂量按照双面Pt载量为0.25mg/cm-2,做成催化剂膜将所得催化剂样品制备成并裁剪出面积为5×5 cm 的小催化剂膜 ,并组装成单电池,按照美国能源部测试标准进行极化曲线以及能量密度曲线测试。图2为利用实施例2和对比例1所得催化剂样品制备的单电池的性能测试结果。由图中可见,分散均匀、粒径较小的Pt-Co/C催化剂具有比碳载铂催化剂更优异的燃料电池性能。
图1为实施例1-3及对比例1-3的SEM图像。
对比例1为制备出的氮掺杂碳纳米管载PtCo合金,其上颗粒分布均匀,在进行选择性沉积5次循环的氧化锆后,由于沉积的氧化锆层过薄,SEM结果未出现明显变化;当沉积循环次数增加至实施例1的15次时,由于沉积厚度增加,样品衬度出现变化,增加至实施例3中的25次时,厚度明显增加,以至于PtCo颗粒的衬度降低。沉积更厚的厚度时,即对比例2中沉积50次循环后,PtCo小颗粒基本被完全覆盖,同时部分区域出现了氧化锆大颗粒这一结果证明了氧化锆厚度得到了精确控制。当选择性沉积于PtCo颗粒周围的氧化锆厚度过厚时,会导致大量PtCo合金表面活性位点被掩盖,致使性能下降。
对比例3中,由于未施加抑制剂,没有选择性将氧化锆沉积于PtCo颗粒周围,而在PtCo颗粒表面上也沉积有氧化锆,这会造成PtCo大量的活性位点被氧化锆覆盖,造成活性的缺失。同时SEM结果表明PtCo颗粒由于被氧化锆覆盖颗粒粒径略微增加,且分布更紧密。
图2为实施例1与对比例1的燃料电池测试性能对比
实施例1,实施例2与实施例3催化剂的峰值功率密度分别为952mW/cm2,907mW/cm2,862mW/cm2。结果选择性沉积15次氧化锆的催化剂的燃料电池性能最优,证明了氧化物的厚度控制对于增强Pt合金性能的影响,即当沉积厚度过薄时,无法形成最理想的相互作用,而厚度过厚时会遮掩部分活性位点反而影响了催化剂的性能。此外,耐久性测试表明随着沉积的氧化物层厚度越高,稳定性越强,但过厚的保护层即使能够保证催化剂稳定性增强,但催化性能的下降难以避免,进一步证明了对氧化物保护层厚度控制的重要性。
对比例1的峰值功率密度为908 mW/cm2,低于实施例1;同时稳定性也明显不如实施例1。证明了由于氧化物保护层与金属颗粒的强相互作用不仅能增强合金催化剂的性能,又能够增强稳定性。
对比例2的峰值功率密度为782mW/cm2,低于实施例1,证明厚度极高时大量掩盖了合金的活性位点,造成性能的损失。
对比例3的峰值功率密度为761mW/cm2,低于实施例1,当未施加抑制剂时,氧化锆直接沉积于Pt合金颗粒表面,导致大量活性位点被掩盖,性能出现了显著下降,证明了选择性沉积的关键作用。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (10)

1.一种选择性沉积超薄金属氧化物稳定Pt合金燃料电池催化剂的制备方法,其特征在于,包括以下步骤:
1)制备Pt基合金并担载于碳载体;
2)将Pt基合金表面包覆抑制剂;
3)将包覆抑制剂的Pt基合金置于原子层沉积系统,在包覆抑制剂的Pt基合金上沉积金属氧化物保护层,得到选择性沉积超薄金属氧化物稳定Pt合金燃料电池催化剂。
2.根据权利要求1所述的选择性沉积超薄金属氧化物稳定Pt合金燃料电池催化剂的制备方法,其特征在于,步骤1)中制备Pt基合金并担载于碳载体的方法为液相制备方法、浸渍还原法或原子层沉积法,且Pt负载量为5wt%-80wt%。
3.根据权利要求1所述的选择性沉积超薄金属氧化物稳定Pt合金燃料电池催化剂的制备方法,其特征在于,步骤2)所述的抑制剂为油胺、自组装单分子膜或氟化物。
4.根据权利要求1所述的选择性沉积超薄金属氧化物稳定Pt合金燃料电池催化剂的制备方法,其特征在于,步骤1)所述的Pt基合金中除Pt外的金属为钪、钛、钒、铬、锰、铁、钴、镍、铜、锌、钇、钼、钌、铑、钯、银、金、铱、镁、锡中的至少一种。
5.根据权利要求1所述的选择性沉积超薄金属氧化物稳定Pt合金燃料电池催化剂的制备方法,其特征在于,步骤3)所述金属氧化物为钛、锡、锆、铝、钽、钼、银、铪氧化物中的至少一种。
6.根据权利要求1所述的选择性沉积超薄金属氧化物稳定Pt合金燃料电池催化剂的制备方法,其特征在于,步骤3)中沉积具体步骤为:通入金属前驱体使其吸附于包覆抑制剂的Pt基合金上,吹扫多余金属前驱体,通入反应性气体将前驱体反应为金属氧化物,吹扫多余反应性气体,交替通入金属前驱体与反应性气体进行循环反应,得到厚度为0.1nm-10nm的金属氧化物保护层。
7.根据权利要求1所述的选择性沉积超薄金属氧化物稳定Pt合金燃料电池催化剂的制备方法,其特征在于,步骤3)所述金属前驱体的通入脉冲范围为10ms-10s。
8.根据权利要求1所述的选择性沉积超薄金属氧化物稳定Pt合金燃料电池催化剂的制备方法,其特征在于,步骤3)中吹扫所用的气体为氮气或氩气;吹扫气气体流量范围为5sccm-200sccm。
9.根据权利要求1所述的选择性沉积超薄金属氧化物稳定Pt合金燃料电池催化剂的制备方法,其特征在于,步骤3)中所述反应性气体为水蒸汽或等离子氧气,反应温度为125℃-300℃,反应的压力为30mTorr-2Torr。
10.一种如权利要求1-9任一项所述的制备方法制得的选择性沉积超薄金属氧化物稳定Pt合金燃料电池催化剂。
CN202310032932.3A 2023-01-10 2023-01-10 选择性沉积超薄金属氧化物稳定Pt合金燃料电池催化剂及其制备方法 Pending CN116895764A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310032932.3A CN116895764A (zh) 2023-01-10 2023-01-10 选择性沉积超薄金属氧化物稳定Pt合金燃料电池催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310032932.3A CN116895764A (zh) 2023-01-10 2023-01-10 选择性沉积超薄金属氧化物稳定Pt合金燃料电池催化剂及其制备方法

Publications (1)

Publication Number Publication Date
CN116895764A true CN116895764A (zh) 2023-10-17

Family

ID=88309495

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310032932.3A Pending CN116895764A (zh) 2023-01-10 2023-01-10 选择性沉积超薄金属氧化物稳定Pt合金燃料电池催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN116895764A (zh)

Similar Documents

Publication Publication Date Title
Esmaeilifar et al. Synthesis methods of low-Pt-loading electrocatalysts for proton exchange membrane fuel cell systems
US8361924B2 (en) Fine particles of core-shell structure and functional device incorporated therewith
KR101797782B1 (ko) 연료 전지를 위한 금속 산화물 도핑을 갖는 촉매
EP2031683B1 (en) Electrode material
US7879752B2 (en) Electrocatalyst
KR101287891B1 (ko) 연료전지용 촉매의 제조방법
CN115036522B (zh) 一种限域制备燃料电池用合金催化剂的方法
US20070042259A1 (en) Platinum-titanium-tungsten fuel cell catalyst
JP2009028599A (ja) 触媒、触媒の製造方法、膜電極複合体及び燃料電池
US8969234B2 (en) Method for preparing fuel cell electrode catalyst by simultaneous evaporation, method for preparing fuel cell electrode comprising catalyst prepared thereby and fuel cell comprising the same
Brouzgou et al. CO tolerance and durability study of PtMe (Me= Ir or Pd) electrocatalysts for H2-PEMFC application
JP5265926B2 (ja) 燃料電池触媒
US7662740B2 (en) Platinum-chromium-copper/nickel fuel cell catalyst
US20210008535A1 (en) Method for producing catalysts with nanoparticles of platinum and its alloys with metals
WO2019179530A1 (zh) 一种铂基合金催化剂及其制备方法、膜电极及燃料电池
Al-Akraa et al. A spin-coated TiOx/Pt nanolayered anodic catalyst for the direct formic acid fuel cells
Shu et al. High-performance MEA prepared by direct deposition of platinum on the gas diffusion layer using an atomic layer deposition technique
Chabi et al. Electrocatalysis of oxygen reduction reaction on Nafion/platinum/gas diffusion layer electrode for PEM fuel cell
CN109314253B (zh) 制备用于燃料电池的负载型催化剂材料的方法
García-Contreras et al. Pt, PtNi and PtCoNi film electrocatalysts prepared by chemical vapor deposition for the oxygen reduction reaction in 0.5 M KOH
Liu et al. Nitrogen doped titania stabilized Pt/C catalyst via selective atomic layer deposition for fuel cell oxygen reduction
Kim et al. Development of ultra–low highly active and durable hybrid compressive platinum lattice cathode catalysts for polymer electrolyte membrane fuel cells
CN116895764A (zh) 选择性沉积超薄金属氧化物稳定Pt合金燃料电池催化剂及其制备方法
Villamayor et al. Highly active ultralow loading Pt electrodes for hydrogen evolution reaction developed by magnetron sputtering
CN109921047A (zh) 一种质子交换膜燃料电池有序催化层及其制备和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination