CN116891976A - 一种耐磨性能良好的400Mpa级低温海工钢板及其制备方法 - Google Patents

一种耐磨性能良好的400Mpa级低温海工钢板及其制备方法 Download PDF

Info

Publication number
CN116891976A
CN116891976A CN202310918635.9A CN202310918635A CN116891976A CN 116891976 A CN116891976 A CN 116891976A CN 202310918635 A CN202310918635 A CN 202310918635A CN 116891976 A CN116891976 A CN 116891976A
Authority
CN
China
Prior art keywords
percent
temperature
less
steel
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310918635.9A
Other languages
English (en)
Inventor
柴铁洋
金耀辉
赵坦
徐海健
郝未杰
李俊博
李文斌
朱隆浩
李家安
杨洁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Angang Steel Co Ltd
Original Assignee
Angang Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Angang Steel Co Ltd filed Critical Angang Steel Co Ltd
Priority to CN202310918635.9A priority Critical patent/CN116891976A/zh
Publication of CN116891976A publication Critical patent/CN116891976A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/46Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting
    • B21B1/463Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting in a continuous process, i.e. the cast not being cut before rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B3/02Rolling special iron alloys, e.g. stainless steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/58Roll-force control; Roll-gap control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • C21D11/005Process control or regulation for heat treatments for cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

本发明公开了一种耐磨性能良好的400Mpa级低温海工钢板及其制造方法,属于钢铁材料制备领域。所述钢板的化学成分质量百分比如下:C:0.06%~0.1%、Si:0.7%~1.0%、Mn:0.5%~0.9%、P:≤0.012%、S:≤0.003%、Cu:0.3%~0.5%、Ni:0.4%~0.7%、Cr:0.55%~0.75%、Nb:0.015%~0.04%、Al:0.02%~0.05%、余量为Fe和不可避免的杂质。所述方法包括冶炼、连铸工艺,轧制工艺,冷却工艺。本发明能够较好地解决传统400Mpa级海洋工程结构用钢在极地地区易磨损、低温脆断等问题。

Description

一种耐磨性能良好的400Mpa级低温海工钢板及其制备方法
技术领域
本发明属于钢铁材料制备领域,特别是一种耐磨性能良好的400Mpa级低温海工钢板的成分设计及其制造方法。
背景技术
北冰洋的石油和天然气资源储量约占全球储量的四分之一,是当今世界上最具油气资源开发潜力的地区。近年来,由于全球变暖不断加剧,海冰融化使得人类对该地区的资源开发也不断增多。作为北极事务重要利益攸关方,北极地区油气资源的开发也对中国的可持续发展及能源安全具有重要的战略意义。由于极地海洋工程装备工作的过程中往往要承受冰层的动态、连续的冲击载荷,长时间会发生较为严重的冰载荷磨损,因此不仅要求海工用钢板具有较高的强度及低温韧性,还应具备良好的耐磨性能。
公开号为CN112322976A的专利《一种具有优良耐低温韧性的稀土耐磨钢NM400卷板及其生产方法》提出了具有优良耐低温韧性的稀土耐磨钢NM400卷板的生产方法。通过稀土微合金化成分设计,结合TMCP在线淬火技术,两段式冷却工艺,生产出的卷板具有优良的耐低温韧性及耐磨性能。但其厚度最大仅为9mm,无法满足海洋工程装备领域对大厚度钢板的需求。
公开号为CN107475635B的专利《一种耐低温高冲击韧性风电用钢及其生产方法》提出了一种耐低温高冲击韧性风电用钢的生产方法,其通过Al和Ni的复合作用,在普通CrMo钢的基础上提高其耐低温冲击韧性。但其只能保证在-40℃以上具备良好的冲击韧性,无法满足海洋工程装备在气温-60℃极寒地区的工作需求。
公开号为CN103695769B的专利《一种高强度FH40海洋工程用钢钢板及其生产方法》提出了FH40级别海洋工程用钢钢板,其厚度为60~100mm,-60℃V型冲击功为180~240J,低温韧性良好,但其无法保证在低温环境下使用具有较高的耐磨性能。
发明内容
本发明的目的在于针对现有技术的不足,提出一种具有良好耐磨性能及低温韧性的FH40海工用钢板及其制造方法。本发明钢板具有高强度(屈服强度≥390Mpa,抗拉强度510~660Mpa),高延伸率(断后延伸率≥20%),高硬度(维氏硬度值≥230),低温韧性优良(-60℃冲击吸收功≥100J),Z向断面收缩率优良(≥65%)等特性,能够较好地解决传统400Mpa级海洋工程结构用钢在极地地区易磨损、低温脆断等问题。
本发明的目的通过以下技术方案来实现:
一种耐磨性能良好的400Mpa级低温海工钢板,该钢板的化学成分质量百分比如下:C:0.06%~0.1%、Si:0.7%~1.0%、Mn:0.5%~0.9%、P:≤0.012%、S:≤0.003%、Cu:0.3%~0.5%、Ni:0.4%~0.7%、Cr:0.55%~0.75%、Nb:0.015%~0.04%、Al:0.02%~0.05%、余量为Fe和不可避免的杂质。
碳当量Ceq=C+Mn/6+(Cu+Ni)/15+(Cr+Mo+V)/5≤0.4%;
裂纹敏感系数Pcm=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5B≤0.22%。
钢板厚度为50~60mm。
本发明钢中各合金成分的作用机理如下:
C:C在钢中起到固溶强化的作用,是影响钢强度、硬度、韧性及淬透性的重要元素,并在一定范围内扩大γ相区。碳含量高于0.1%,钢的低温韧性会急剧降低;碳含量过低,则钢的淬硬性不足,硬度过低,耐磨性不足。从产品性能考虑,选用C元素含量为0.06%~0.1%。
Si:Si主要以固溶态的形式存在于奥氏体中,使珠光体等温转变“C”曲线右移,延长了珠光体转变的孕育期,促进贝氏体的形成,增加了钢的淬透性,可以提高钢中固溶体的强度,特别是屈服强度,从而提高钢的耐磨性能。另外一定量的Si对碳化物的析出起到抑制作用,能够提高过冷奥氏体的力学及热稳定性。但硅含量过高时将显著地降低钢的塑性、韧性和延展性,超过1%时还会使钢中出现块状铁素体组织,降低钢的低温韧性。因此优选Si元素含量为0.7%~1.0%。
Mn:Mn在控制轧制中是重要的元素,主要起细化晶粒作用,提高强度,增加韧性,锰能降低相变温度Ar3,扩大了加工温度范围,增大奥氏体变形区的压下道次和变形量,充分细化奥氏体晶粒。但钢中Mn元素添加量超过0.9%时,会导致贝氏体相变区缩小,导致控冷过程中贝氏体转变量减少形成马氏体,导致硬度升高韧塑性下降。因此选用Mn元素含量为0.5%~0.9%。
Cu:Cu元素可以有效提升钢铁材料的强度、韧性及抗腐蚀能力,特别是抗大气腐蚀性能。同时还可以优化焊接及加工性能。缺点是在热加工时容易产生热脆,Cu含量超过0.5%时塑性会显著降低。优选Cu元素含量为0.3%~0.5%。
Ni:Ni元素在钢中能够抑制碳化物析出,且提高奥氏体的稳定性,扩大奥氏体转变区。同时,Ni元素的晶格常数与γ-Fe相近,所以可成连续固溶体,产生细化晶粒及固溶强化的作用,有利于提高钢的淬硬性,从而提高钢的强度和硬度。此外,Ni元素也会显著改善钢的低温断裂韧性。因此选用Ni含量为0.4%~0.7%。
Cr:Cr元素是铁素体和碳化物形成元素,是抗磨材料最重要的元素之一。Cr元素可以提高钢的淬透性,并与C元素产生多种不同形式的碳化物析出,还能通过置换Fe元素进而形成(FeCr)3C、(FeCr)7C及(FeCr)23C等化学结构复杂的碳化物,Cr元素引起的不同形式的碳化物析出均可以显著增加低温海工钢钢的耐磨性能。但Cr含量过高会损害海工钢的低温韧性。这里优选Cr含量为0.55%~0.75%。
Nb:Nb元素是低温海工钢中常见的微合金化元素。能和C形成细小的碳化物,在钢的奥氏体化进程中能抑制晶粒的粗大化,钉扎奥氏体晶界和位错,从而显著细化形变奥氏体组织和产生弥散析出强化,提高钢的强度和韧性;还能阻止再结晶晶粒的长大及抑制再结晶进程,提高未再结晶区温度,并扩大两阶段区间的窗口。在本发明中Nb含量为0.015%~0.04%。
Al:Al元素用作炼钢时的脱氧剂,细化晶粒,抑制低碳钢的时效,特别是会降低钢的脆性转变温度,改善钢在低温时的韧性。此外,Al元素的添加可以显著提升层错能并限制金属材料中位错的运动,从而使位错密度增高,达到强化金属材料基础的效果。但Al含量过高会产生大型氧化物夹杂,对钢的韧性产生不利影响,所以优选Al元素含量为0.02%~0.05%。
P、S:P、S元素通常被认为是金属材料成分体系中难以避免的危害性元素,其中S元素含量较高时,会增加金属材料热脆性趋向,在高温进行压力加工时容易引起脆裂,并且容易偏析形成带状组织,恶化显微组织的连续性。P元素含量较高时,会明显降低钢的韧塑性,使钢材后期难以加工,同时导致钢材在较低温度下出现的冷脆现象。因此,在成分设计时需要尽量控制P元素含量≤0.012%,同时控制S元素含量≤0.003%。
上述耐磨性能良好的400Mpa级低温海工钢板的制备方法,包括如下步骤:
1)通过冶炼、连铸工艺对钢质洁净度控制及连铸坯质量控制技术
采用脱硫扒渣、双渣转炉脱磷、LF炉深脱硫、白渣精炼脱氧、板坯连铸工艺进行生产,全程采用全保护浇铸,减少连铸过程二次氧化,防止钢水吸氮,优化中间包流场。为降低板坯内部中心偏析,连铸过程中采用末端强冷和轻压下技术,连铸末端最末段冷却水量提升至170~200L/min,压下量6~9mm,并对中间包过热度等方面进行优化和控制,中包过热度控制在20℃~30℃,连铸坯厚度250~300mm,同时板坯下线后采用堆垛缓冷技术,堆垛缓冷速率15.2~16.8℃/h,缓冷后装入加热炉时的板坯温度(装炉温度)控制在490~550℃。
2)轧制工艺
将连铸坯推至加热炉中进行四段式加热,预热温度760~810℃,预热时间20~25min。加热段一温度1000~1100℃,加热时间40~45min。加热段二温度1130~1190℃,加热时间30~35min。均热段温度1040~1120℃,加热时间55~65min。适当降低加热段时间,避免铸态组织在加热阶段异常长大。
连铸坯出炉后进行高压水除磷3-4道,轧制过程采用两阶段控轧轧制技术,一阶段开轧温度为1030~1100℃,一阶段轧制连铸坯温度较高,采用大压下量轧制,一阶段最小单道次压下率≥15%。中间坯厚度控制为成品钢板厚度的2~3倍。中间坯进行水冷,冷却速率为3.5~5.2℃/s,以避免中间坯晶粒继续长大,起到保持晶粒细化的作用。二阶段开轧温度770~830℃,该阶段最小单道次压下率≥13%。终轧温度为750~810℃。一阶段轧制在奥氏体再结晶区进行,进行大压下量轧制,使奥氏体变形达到临界动态再结晶变形量时,变形奥氏体晶粒在轧制道次之间进行再结晶,反复进行而逐渐得到细化。二阶段轧制在Ar3以下的两相区轧制,未相变的奥氏体晶粒更加伸长,在晶内形成变形量更大的形变带,铁素体在形变带和晶界上形核,转变成细小等轴的晶粒,其相变后的组织由低碳贝氏体晶粒及铁素体晶粒组成,晶粒更加细化。
3)冷却工艺
轧制后控制冷却的入水温度为730~780℃,终点温度为440~520℃,冷却速率为8.5~11℃/s。采用控制冷却工艺,控制变形奥氏体晶粒和相变后的铁素体晶粒长大,以达到提高钢的强度而不损害韧性的要求。
4)缓冷工艺:控冷结束后立即放入缓冷槽,进槽温度不低于400℃,缓冷时间不少于24h。
本发明的有益效果:
1.本发明针对在极地工作的海洋结构物装备所面临的冰区冰层的动态、连续的冲击载荷,提出了一种全新的成分体系设计,以及相应的生产工艺,开发出的400Mpa级的钢板同时具有优良的低温韧性、屈强比、延展性及耐磨性能。生产的钢板屈服强度≥390MPa,抗拉强度510~660MPa,断面伸长率≥20%,Z向断面收缩率≥65%,钢板芯部-60℃夏比冲击功≥100J,维氏硬度值≥230。
2.本发明相比于传统低温海工钢减少了V、Ti等贵重金属的使用,同时采用控制轧制及控制冷却技术,无需再加热淬火、回火等热处理步骤,提高生产效率的同时降低了成本,节能降耗保护了环境。
3.钢板显微组织为贝氏体+铁素体混合组织。
附图说明
图1为实施例2制备的钢板的金相组织照片(500倍)。
具体实施方式
下述非限定性实施例可以使本领域的普通技术人员更全面地理解本发明,但不以任何方式限制本发明。
以下实施例用于具体说明本发明内容,这些实施例仅为本发明内容的一般描述,并不对本发明内容进行限制。
本发明实施例钢的化学成分见表1,本发明实施例钢的冶炼及坯料预处理参数见表2,本发明实施例钢板的板坯加热工艺见表3,本发明实施例钢板轧制及冷却工艺见表4,本发明实施例钢板力学性能见表5。
表1各实施例成分wt%
实施例 C Si Mn P S Cu Ni Cr Nb Alt
1 0.069 0.71 0.62 0.009 0.002 0.35 0.67 0.55 0.038 0.039
2 0.064 0.74 0.66 0.01 0.002 0.42 0.63 0.58 0.023 0.041
3 0.076 0.81 0.53 0.007 0.001 0.34 0.44 0.55 0.019 0.043
4 0.061 0.76 0.68 0.008 0.001 0.41 0.59 0.66 0.021 0.047
5 0.089 0.96 0.55 0.011 0.002 0.5 0.69 0.61 0.036 0.028
6 0.066 0.85 0.77 0.008 0.003 0.41 0.52 0.65 0.027 0.036
7 0.098 0.92 0.51 0.008 0.003 0.42 0.58 0.66 0.031 0.041
8 0.091 0.79 0.68 0.009 0.001 0.38 0.65 0.56 0.029 0.021
9 0.072 0.99 0.82 0.006 0.002 0.39 0.46 0.62 0.027 0.031
10 0.075 0.83 0.58 0.007 0.002 0.49 0.61 0.61 0.016 0.044
11 0.081 0.82 0.57 0.008 0.003 0.41 0.62 0.75 0.019 0.033
12 0.091 0.87 0.71 0.012 0.001 0.33 0.52 0.59 0.024 0.035
表2钢的冶炼及坯料预处理参数
表3加热工艺
表4轧制及冷却工艺
表5钢板力学性能

Claims (8)

1.一种耐磨性能良好的400Mpa级低温海工钢板,其特征在于,所述钢板的化学成分质量百分比如下:C:0.06%~0.1%、Si:0.7%~1.0%、Mn:0.5%~0.9%、P:≤0.012%、S:≤0.003%、Cu:0.3%~0.5%、Ni:0.4%~0.7%、Cr:0.55%~0.75%、Nb:0.015%~0.04%、Al:0.02%~0.05%、余量为Fe和不可避免的杂质。
2.根据权利要求1所述的钢板,其特征在于,碳当量Ceq≤0.4%。
3.根据权利要求1所述的钢板,其特征在于,所述钢板的裂纹敏感系数Pcm≤0.22%。
4.根据权利要求1所述的钢板,其特征在于,所述钢板的屈服强度≥390MPa,抗拉强度510~660MPa,断面伸长率≥20%,Z向断面收缩率≥65%,-60℃夏比冲击功≥100J,维氏硬度值≥230。
5.根据权利要求1所述的钢板,其特征在于,所述钢板的厚度为50~60mm。
6.权利要求1-5中任意一项所述的耐磨性能良好的400Mpa级低温海工钢板的制备方法,其特征在于,包括如下步骤:
1)冶炼、连铸工艺
2)轧制工艺
将连铸坯推至加热炉中进行四段式加热,其中预热温度760~810℃,预热时间20~25min;加热段一温度1000~1100℃,加热时间40~45min;加热段二温度1130~1190℃,加热时间30~35min;均热段温度1040~1120℃,加热时间55~65min;
连铸坯出炉后进行高压水除磷,轧制过程采用两阶段控轧轧制技术,一阶段开轧温度为1030~1100℃,一阶段最小单道次压下率≥15%;中间坯厚度控制为成品钢板厚度的2~3倍;中间坯进行水冷,冷却速率为3.5~5.2℃/s;二阶段开轧温度770~830℃,二阶段最小单道次压下率≥13%;终轧温度为750~810℃;
3)冷却工艺
轧制后控制冷却的入水温度为730~780℃,终点温度为440~520℃,冷却速率为8.5~11℃/s。
7.根据权利要求6所述的制备方法,其特征在于,步骤1)中,采用脱硫扒渣、双渣转炉脱磷、LF炉深脱硫、白渣精炼脱氧、连铸工艺进行生产,全程采用全保护浇铸;连铸过程中采用末端强冷和压下技术,连铸末端最末段冷却水量提升至170~200L/min,压下量6~9mm,中包过热度控制在20℃~30℃,连铸坯厚度250~300mm,同时板坯下线后采用堆垛缓冷技术,堆垛缓冷速率15.2~16.8℃/h,缓冷后装入加热炉时的板坯温度控制在490~550℃。
8.根据权利要求6所述的制备方法,其特征在于,还包括:步骤4)缓冷工艺:控冷结束后放入缓冷槽,进槽温度不低于400℃,缓冷时间不少于24h。
CN202310918635.9A 2023-07-25 2023-07-25 一种耐磨性能良好的400Mpa级低温海工钢板及其制备方法 Pending CN116891976A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310918635.9A CN116891976A (zh) 2023-07-25 2023-07-25 一种耐磨性能良好的400Mpa级低温海工钢板及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310918635.9A CN116891976A (zh) 2023-07-25 2023-07-25 一种耐磨性能良好的400Mpa级低温海工钢板及其制备方法

Publications (1)

Publication Number Publication Date
CN116891976A true CN116891976A (zh) 2023-10-17

Family

ID=88314776

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310918635.9A Pending CN116891976A (zh) 2023-07-25 2023-07-25 一种耐磨性能良好的400Mpa级低温海工钢板及其制备方法

Country Status (1)

Country Link
CN (1) CN116891976A (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1986864A (zh) * 2005-12-22 2007-06-27 宝山钢铁股份有限公司 一种高强度低合金耐大气腐蚀钢及其生产方法
CN100999807A (zh) * 2006-01-11 2007-07-18 株式会社神户制钢所 焊接热影响部的韧性优异的耐气候性钢板
JP2008297571A (ja) * 2007-05-29 2008-12-11 Jfe Steel Kk 加工性に優れた耐磨耗鋼板およびその製造方法
KR20150053616A (ko) * 2013-11-08 2015-05-18 주식회사 포스코 강재 및 이의 제조 방법
CN105803307A (zh) * 2016-03-17 2016-07-27 山东钢铁股份有限公司 一种电厂风机专用钢及其制造方法
CN107385329A (zh) * 2017-06-30 2017-11-24 江阴兴澄特种钢铁有限公司 一种大厚度q500gje高强度建筑结构用钢板及其制造方法
CN109957727A (zh) * 2017-12-25 2019-07-02 广东韶钢松山股份有限公司 一种高韧性海洋船用抽砂管钢板及其生产方法
CN112195396A (zh) * 2020-09-10 2021-01-08 江阴兴澄特种钢铁有限公司 一种兼具抗hic及耐冲刷深海钻探隔水管用x80管线用钢板及其制造方法
CN113846260A (zh) * 2021-08-30 2021-12-28 湖南华菱湘潭钢铁有限公司 一种工程机械用高强度钢板的生产方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1986864A (zh) * 2005-12-22 2007-06-27 宝山钢铁股份有限公司 一种高强度低合金耐大气腐蚀钢及其生产方法
CN100999807A (zh) * 2006-01-11 2007-07-18 株式会社神户制钢所 焊接热影响部的韧性优异的耐气候性钢板
JP2008297571A (ja) * 2007-05-29 2008-12-11 Jfe Steel Kk 加工性に優れた耐磨耗鋼板およびその製造方法
KR20150053616A (ko) * 2013-11-08 2015-05-18 주식회사 포스코 강재 및 이의 제조 방법
CN105803307A (zh) * 2016-03-17 2016-07-27 山东钢铁股份有限公司 一种电厂风机专用钢及其制造方法
CN107385329A (zh) * 2017-06-30 2017-11-24 江阴兴澄特种钢铁有限公司 一种大厚度q500gje高强度建筑结构用钢板及其制造方法
CN109957727A (zh) * 2017-12-25 2019-07-02 广东韶钢松山股份有限公司 一种高韧性海洋船用抽砂管钢板及其生产方法
CN112195396A (zh) * 2020-09-10 2021-01-08 江阴兴澄特种钢铁有限公司 一种兼具抗hic及耐冲刷深海钻探隔水管用x80管线用钢板及其制造方法
CN113846260A (zh) * 2021-08-30 2021-12-28 湖南华菱湘潭钢铁有限公司 一种工程机械用高强度钢板的生产方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王生朝;蔡素莉;: "HB400耐磨钢的生产工艺研究", 湖南工业大学学报, no. 06, 15 November 2010 (2010-11-15), pages 1 - 4 *

Similar Documents

Publication Publication Date Title
CN107475620B (zh) 低温压力容器用调质型A537Cl2钢板及其生产方法
CN110295320B (zh) 一种lf-rh精炼工艺生产的大壁厚x52ms抗酸管线钢板及其制造方法
CN112877601B (zh) 一种优良低温韧性的低屈强比海工钢板及其制造方法
CN111441000A (zh) 一种屈服强度690MPa级低屈强比高强钢板及其制造方法
CN113637917B (zh) 一种690MPa级低温冲击性能优良的超高强度特厚船板钢及其生产方法
CN102560284B (zh) 高强度高韧性x100管线钢热轧钢带及其制造方法
CN111455269A (zh) 屈服强度960MPa级甚高强度海工钢板及其制造方法
CN113549828B (zh) 一种低屈强比超高强海工钢及其制造方法
CN109652733B (zh) 一种690MPa级特厚钢板及其制造方法
CN110760765B (zh) 超低成本、高延伸率及抗应变时效脆化600MPa级调质钢板及其制造方法
CN111057965B (zh) 一种低屈强比的海洋工程用钢及其制备方法
CN110195193A (zh) 低成本、高韧性及优良焊接性800MPa级调质钢板及其制造方法
CN112251670A (zh) 一种延伸性能良好的690MPa级钢板及其制造方法
CN113549846A (zh) 一种低温性能优异的550MPa级海工钢及其制造方法
CN111961957B (zh) 一种既具耐海水腐蚀又具抗大变形的x80级管线钢板及其制造方法
KR20240099374A (ko) 내후성이 우수한 고강도 스틸 및 이의 제조방법
CN115074630B (zh) 一种具有高延展性的fh36级海洋工程用钢及制造方法
CN109423572B (zh) 高止裂、抗应变时效脆化特性的耐海水腐蚀钢板及其制造方法
CN111155022B (zh) 一种具有低温韧性的390MPa级极地船体结构钢及其制备方法
CN116815046A (zh) 一种抗氢致开裂性能优异的fh36海工钢及其制造方法
CN115558863B (zh) 一种屈服强度≥750MPa的低屈强比海工钢及其生产工艺
CN114875331B (zh) 一种具有优良心部疲劳性能的610MPa级厚钢板及其生产方法
CN114058960B (zh) 一种25~60mm厚1000MPa级高强度高韧性易焊接纳米钢及其制备方法
CN113930684B (zh) 经济型耐时效高应变析出强化管线钢及其生产方法
CN112375997B (zh) 一种低成本和超低温条件下使用的x70m管线钢板的制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination