CN116885969A - 交直流电能变换系统 - Google Patents

交直流电能变换系统 Download PDF

Info

Publication number
CN116885969A
CN116885969A CN202311149631.5A CN202311149631A CN116885969A CN 116885969 A CN116885969 A CN 116885969A CN 202311149631 A CN202311149631 A CN 202311149631A CN 116885969 A CN116885969 A CN 116885969A
Authority
CN
China
Prior art keywords
power device
full
control
phase
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311149631.5A
Other languages
English (en)
Inventor
刘超
郝翔
曹家振
马鑫
邓小刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xi'an Weiguang Energy Technology Co ltd
Original Assignee
Xi'an Weiguang Energy Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xi'an Weiguang Energy Technology Co ltd filed Critical Xi'an Weiguang Energy Technology Co ltd
Priority to CN202311149631.5A priority Critical patent/CN116885969A/zh
Publication of CN116885969A publication Critical patent/CN116885969A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/79Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/797Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J5/00Circuit arrangements for transfer of electric power between ac networks and dc networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33571Half-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33573Full-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33584Bidirectional converters

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

本发明公开了交直流电能变换系统,包括中压交流接口、低压直流接口以及变流系统,所述变流系统连接中压交流接口以及低压直流接口,实现功率在两个接口间的变换;所述变流系统分为A相、B相和C相,A相、B相和C相均由N个功率模块级联而成。本发明的交直流电能变换系统,实现了单个功率模块内部多电平的运行,可有效执行隔离型拓扑结构的软开关运行,同时采用较低耐压的功率器件,满足低成本的应用需求,通过换流路径的优化实现装备的高频化运行,进而支撑无源器件的成本降低以及高功率密度,且能够应用至交直流配电网、分布式发电系统、储能系统、电动汽车等场景。

Description

交直流电能变换系统
技术领域
本发明属于电力电子技术领域,具体涉及交直流电能变换系统。
背景技术
由于交流电网易变压、易保护,而广泛应用至发输配电各个场景。然而,交流电网存在固有的缺陷,首先是交流电网的传输效率低,同样电压等级下,交流电网的损耗远超直流形式电网,其次,交流电网存在频率、相位等关键电气量,任一电气量出现较大偏差将带来运行可靠性问题,最后,交流电网线路建设成本高于直流电网。以上因素制约着交流电网的发展,特别是随着分布式发电系统、储能、电动汽车等新型负载等大量接入电力系统,对交流电网带来了更大的挑战。目前新兴的源、荷、储等往往呈现出直流的电能形式,构建直流电网能够实现以上直流电能的高效接入,同时有效克服交流电网传输效率、建设成本以及稳定性方面的问题,直流电网也是未来电网发展的重要趋势。
直流电网需要在系统层面具备多项优势,但是其发展受制于交直流变换电力装备。分布式电能、储能、电动汽车往往运行在配电网系统,配电压等级以10kV中压交流为主,而以上终端电能呈现出低压直流的电能形式,亟待构建中压交流至低压直流的电力装备满足日益增长的并网需求。
中国专利(申请号:202111309096 .6)公开了一种基于直流耦合的电能路由器,采用工频变压器+逆变器的形式实现交直流变换,但是以上方式基于工频变压器实现中低压的电能变换,变压器基于工频变换,成本、体积、效率等难以进一步优化;中国专利(申请号:202310004746.9)公开了高频交流母线型电能路由器的直流端口控制方法及装置,采用了基于模块化电力电子变压器以及高频隔离技术,且通过模块化实现了容量和电压的灵活配置,但是采用基于两电平的方法,为实现中压接入,需要大量的功率模块,进而制约了成本、体积等重要技术指标。中国专利(申请号:202011319149.8)公开了一种适用于中高压场合的多电平变换器拓扑及控制方法。采用隔离型DCDC电路串联的方式,但是该方法未解决中压接口器件耐压高带来的成本提升问题;中国专利(申请号:202010135950.0)公开了一种能源互联网用紧凑型电力电子变压器及其控制方法,采用维也纳整流+串联桥式电路隔离DCDC的电路形式,但是该方法仅支持单相的功率传递;中国专利(申请号:202080004858.9)公开了一种电力电子变压器及供电系统,提出了变换单元为基础的隔离DCDC变换单元的拓扑结构,但是该方法未能解决交流接入器件耐压的问题,同时大量的变换单元存在电压均衡的风险。以上专利通过多电平实现功率模块数量的降低,但是未能充分优化模块内部所有器件的耐压等级,且未能充分支持中压交直流、潮流双向的应用场景。
发明内容
本发明的目的是提供交直流电能变换系统,能够高效率的实现中压交流至低压直流的电能传递与变换。
本发明所采用的技术方案是,交直流电能变换系统,包括中压交流接口、低压直流接口以及变流系统,变流系统连接中压交流接口以及低压直流接口,实现功率在两个接口间的变换;变流系统分为A相、B相和C相,A相、B相和C相均由N个功率模块级联而成。
本发明的特点还在于,
功率模块,包含中压接入电路以及隔离DCDC电路,中压接入电路采用单相I型三电平电路,隔离DCDC电路采用三电平桥式电路;中压接入电路连接中压交流接口,中压接入电路中直流母线与隔离DCDC电路连接,隔离DCDC电路另一端直流输出连接至低压直流接口。
中压接入电路包括全控型功率器件Q1、全控型功率器件Q2、全控型功率器件Q3、全控型功率器件Q4、全控型功率器件Q5、全控型功率器件Q6、全控型功率器件Q7、全控型功率器件Q8、二极管D1、二极管D2、二极管D3、二极管D4;全控型功率器件Q1、全控型功率器件Q2、全控型功率器件Q3、全控型功率器件Q4串联后连接至直流母线,全控型功率器件Q5、全控型功率器件Q6、全控型功率器件Q7、全控型功率器件Q8串联后连接至直流母线;二极管D1、二极管D2串联后分别连接至全控型功率器件Q1和全控型功率器件Q2的连接处以及全控型功率器件Q3和全控型功率器件Q4的连接处,二极管D3和二极管D4串联后分别连接至全控型功率器件Q5和全控型功率器件Q6的连接处以及全控型功率器件Q7和全控型功率器件Q8的连接处;全控型功率器件Q2和全控型功率器件Q3的连接处以及全控型功率器件Q5和全控型功率器件Q6的连接处作为中压接入电路的输出;全控型功率器件Q2和全控型功率器件Q3的连接处为正极输出,全控型功率器件Q6和全控型功率器件Q7的连接处为负极输出。
隔离DCDC电路包括全控型功率器件S1、全控型功率器件S2、全控型功率器件S3、全控型功率器件S4、全控型功率器件S5、全控型功率器件S6、全控型功率器件S7、全控型功率器件S8、隔直电容以及高频变压器;全控型功率器件S1和全控型功率器件S2串联,全控型功率器件S3和全控型功率器件S4串联并连接低压直流母线,其输出端口连接高频变压器;全控型功率器件S5、全控型功率器件S6、全控型功率器件S7和全控型功率器件S8串联,全控型功率器件S5和全控型功率器件S6的连接处以及全控型功率器件S7和全控型功率器件S8的连接处形成输出,并连接隔直电容以及变压器的原边,隔直电容另一端与变压器原边的另一端连接。
N个功率模块采用串联连接,第N个功率模块的负极输出连接至第N+1个功率模块的正极输出,第一个功率模块的正极输出和第N个模块的负极输出作为总输出连接中压交流接口;A相、B相和C相的功率模块的低压直流接口进行并联。
本发明的有益效果是:本发明的交直流电能变换系统,实现了单个功率模块内部多电平的运行,可有效执行隔离型拓扑结构的软开关运行,同时采用较低耐压的功率器件,满足低成本的应用需求,通过换流路径的优化实现装备的高频化运行,进而支撑无源器件的成本降低以及高功率密度,且能够应用至交直流配电网、分布式发电系统、储能系统、电动汽车等场景。
附图说明
图1是本发明交直流电能变换系统的拓扑结构图;
图2是本发明交直流电能变换系统中功率模块拓扑结构图;
图3是本发明交直流电能变换系统中隔离DCDC电路的结构图;
图4是隔离DCDC电路的工作原理图;
图5是基于星接的交直流电能变换系统中压交流连接方式图;
图6是基于角接的交直流电能变换系统中压交流连接方式图;
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
实施例1
本发明交直流电能变换系统,如图1所示,包括中压交流接口、低压直流接口以及变流系统,其中变流系统连接中压交流接口以及低压直流接口,实现功率在两个接口间的变换。
变流系统依据中压接入分为A相、B相和C相,A相、B相和C相均由N个功率模块级联而成,功率模块的数量N依据不同电压等级、功率等级而确定。
实施例2
功率模块,如图2所示,包含中压接入电路以及隔离DCDC电路,中压接入电路采用单相I型三电平电路,隔离DCDC电路采用三电平桥式电路。
中压接入电路采用I型三电平电路用以实现采用同样耐压等级器件的同时,实现更高的输出电压。针对1000V以上的功率器件,如果继续提升电压等级,相同载流能力情况下,器件的成本会显著提高,因此采用该电路可以实现成本的降低。I型三电平电路可实现能量的双向流动,相对于维也纳整流等三电平电路,可以更好应用至储能、交直流配电网等需要能量双向流动的场景。同时中压接入电路由于在中压侧采用了移相调制的策略,及模块之间的I型三电平电路配置移相,进而保证输出的波形等效开关频率更高。因此,中压接入电路可以工作在低开关频率的模式下,从而有效降低了电路的开关损耗。
中压接入电路包括全控型功率器件Q1、全控型功率器件Q2、全控型功率器件Q3、全控型功率器件Q4、全控型功率器件Q5、全控型功率器件Q6、全控型功率器件Q7、全控型功率器件Q8、二极管D1、二极管D2、二极管D3、二极管D4;其中,全控型功率器件Q1、全控型功率器件Q2、全控型功率器件Q3、全控型功率器件Q4串联后连接至直流母线,全控型功率器件Q5、全控型功率器件Q6、全控型功率器件Q7、全控型功率器件Q8串联后连接至直流母线;
二极管D1、二极管D2串联后分别连接至全控型功率器件Q1和全控型功率器件Q2的连接处以及全控型功率器件Q3和全控型功率器件Q4的连接处,二极管D3和二极管D4串联后分别连接至全控型功率器件Q5和全控型功率器件Q6的连接处以及全控型功率器件Q7和全控型功率器件Q8的连接处;全控型功率器件Q2和全控型功率器件Q3的连接处以及全控型功率器件Q5和全控型功率器件Q6的连接处作为中压接入电路的输出。其中全控型功率器件Q2和全控型功率器件Q3的连接处为正极输出,全控型功率器件Q6和全控型功率器件Q7的连接处为负极输出;
如图3所示,隔离DCDC电路采用两个半桥串联的形式,针对串联半桥的输出,连接高频隔离电路,该高频隔离电路配置有高频变压器以及隔直电容。针对高频电路另外端口,连接全桥电路,通过该全桥电路连接后级低压直流母线。
隔离DCDC电路包括全控型功率器件S1、全控型功率器件S2、全控型功率器件S3、全控型功率器件S4、全控型功率器件S5、全控型功率器件S6、全控型功率器件S7、全控型功率器件S8、隔直电容以及高频变压器。其中,全控型器件S1-S4为副边器件,全控型功率器件S1和全控型功率器件S2串联,全控型功率器件S3和全控型功率器件S4串联并连接低压直流母线,其输出端口连接高频变压器;全控型功率器件S5、全控型功率器件S6、全控型功率器件S7和全控型功率器件S8串联,其中全控型功率器件S5和全控型功率器件S6的连接处以及全控型功率器件S7和全控型功率器件S8的连接处形成输出,并连接隔直电容以及变压器的原边,隔直电容另一端与变压器原边的另一端连接。
隔离DCDC电路是功率模块的核心电路结构,隔离DCDC电路的高频化、高效率、低成本直接影响功率模块的各项性能。采用本发明的拓扑结构,首先可有效支撑高频化,由于在隔离DCDC电路的原副边均采用全桥的模式,可以通过原副边之间的移相,实现开关器件的软开关,进而抑制了器件的开通损耗,可实现电路的高频运行。其次,在高效率方面,基于原副边移相的工作模式下,电路的电流波形呈现梯形波的形式,进而让高频回路的电流得到有效的传输,进而抑制了导通损耗。最后在低成本方面,通过该电路配置,在选用相同耐压器件的前提下,高压侧电压约为低压侧电压的2倍,进而提升了功率模块的电压等级,节省功率模块总数量,进而节省了功率模块的成本,其次,在中压侧配置串联半桥电路,高压侧器件的寄身参数低于传统的I型三电平电路、T型三电平电路。因此可以采用分立式器件应用于拓扑结构中,分立式器件的成本远低于模块封装形式的功率器件,进而降低了整体成本。
中压接入电路连接中压交流侧,中压接入电路中直流母线与隔离DCDC电路连接,隔离DCDC电路另一端直流输出连接至低压直流接口电路。针对中压交流和低压直流的级联方式,中压侧功率模块采用串联连接,第N个功率模块的负极输出连接至第N+1个功率模块的正极输出,而第一个功率模块的正极输出和第N个模块的负极输出作为总输出连接中压交流接口电路。针对低压侧的连接方式,每相功率模块的低压直流接口进行并联,同时与其他相输出的低压接口再进行并联,构成统一的低压直流母线,进而连接外部接口。
隔离DCDC电路的工作原理如图4所示,分别为S1-S8。命名S1-S4所在电路为副边,S5-S8所在电路为原边。电路原副边采用移相的调制策略,原副边之间的调制存在一定的相位差,通过该相位差控制隔离DCDC电路的输出功率。针对原边,S5和S8接受相同的PWM信号,S6和S7接受相同的PWM信号,两个PWM信号相互互补,在该调制模式下,串联半桥输出的电压为0V或高压侧电压。针对副边,S1和S4接受相同的PWM信号,S3和S2接受相同的PWM信号,两个PWM信号相互互补,在该调制模式下,副边输出的电压为正/负直流母线电压。
在该工作模式下,原副边输出的电压参考图中电压信号,其中由于隔直电压的作用原边输出的电压的直流分量将存储至隔直电容上,叠加至变压器上的电压为交流信号,保证了变压器不会饱和。同时由于电路移相的调制策略,需要有相应的电感在高频回路中抑制过大的高频回路电路,实际应用中可配置高频回路电感,也可以采用高频变压器的漏感。
实施例3
针对交直流智能变压器在中压侧的连接,包含角接和星接两种方式,图5及图6针对级联电路展示了两种连接方式。
具体而言,将ABC三相功率模块级联的输出命名为A,a,B,b,C,c。其中ABC对应三相功率模块输出的正极,abc对应三相功率模块输出的负极。如图5所示,采用了星接的连接方式,abc连接至一起,形成三相系统的中点,ABC分别连接至中压交流电网的三相接线。图6采用了角接的连接方式,交直流电能变换系统内部A与b相连,B与c相连,C与a相连,同时ABC分别连接至中压交流电网的三相接线。星接和角接的连接方式可适用于不同的应用场景,总体而言,星接的方式级联功率模块整体承受的电压较低,但是电流较大;角接的方式级联功率模块整体承受的电压较高,但是电流较小,可依据不同的应用场景进行配置。

Claims (5)

1.交直流电能变换系统,其特征在于,包括中压交流接口、低压直流接口以及变流系统,所述变流系统连接中压交流接口以及低压直流接口,实现功率在两个接口间的变换;所述变流系统分为A相、B相和C相,A相、B相和C相均由N个功率模块级联而成。
2.根据权利要求1所述的交直流电能变换系统,其特征在于,所述功率模块,包含中压接入电路以及隔离DCDC电路,中压接入电路采用单相I型三电平电路,隔离DCDC电路采用三电平桥式电路;所述中压接入电路连接中压交流接口,所述中压接入电路与隔离DCDC电路连接,隔离DCDC电路的直流输出连接至低压直流接口。
3.根据权利要求2所述的交直流电能变换系统,其特征在于,所述功率模块,所述中压接入电路包括全控型功率器件Q1、全控型功率器件Q2、全控型功率器件Q3、全控型功率器件Q4、全控型功率器件Q5、全控型功率器件Q6、全控型功率器件Q7、全控型功率器件Q8、二极管D1、二极管D2、二极管D3、二极管D4;所述全控型功率器件Q1、全控型功率器件Q2、全控型功率器件Q3、全控型功率器件Q4串联后连接至直流母线,所述全控型功率器件Q5、全控型功率器件Q6、全控型功率器件Q7、全控型功率器件Q8串联后连接至直流母线;所述二极管D1、二极管D2串联后分别连接至全控型功率器件Q1和全控型功率器件Q2的连接处以及全控型功率器件Q3和全控型功率器件Q4的连接处,所述二极管D3和二极管D4串联后分别连接至全控型功率器件Q5和全控型功率器件Q6的连接处以及全控型功率器件Q7和全控型功率器件Q8的连接处;所述全控型功率器件Q2和全控型功率器件Q3的连接处以及全控型功率器件Q5和全控型功率器件Q6的连接处作为中压接入电路的输出;所述全控型功率器件Q2和全控型功率器件Q3的连接处为正极输出,所述全控型功率器件Q6和全控型功率器件Q7的连接处为负极输出。
4.根据权利要求3所述的交直流电能变换系统,其特征在于,所述隔离DCDC电路包括全控型功率器件S1、全控型功率器件S2、全控型功率器件S3、全控型功率器件S4、全控型功率器件S5、全控型功率器件S6、全控型功率器件S7、全控型功率器件S8、隔直电容以及高频变压器;所述全控型功率器件S1和全控型功率器件S2串联,所述全控型功率器件S3和全控型功率器件S4串联并连接低压直流母线,其输出端口连接高频变压器;所述全控型功率器件S5、全控型功率器件S6、全控型功率器件S7和全控型功率器件S8串联,所述全控型功率器件S5和全控型功率器件S6的连接处以及全控型功率器件S7和全控型功率器件S8的连接处形成输出,并连接隔直电容以及变压器的原边,隔直电容另一端与变压器原边的另一端连接。
5.根据权利要求4所述的交直流电能变换系统,其特征在于, N个所述功率模块采用串联连接,第N个功率模块的负极输出连接至第N+1个功率模块的正极输出,第一个功率模块的正极输出和第N个模块的负极输出作为总输出连接中压交流接口;所述A相、B相和C相的功率模块的低压直流接口进行并联。
CN202311149631.5A 2023-09-07 2023-09-07 交直流电能变换系统 Pending CN116885969A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311149631.5A CN116885969A (zh) 2023-09-07 2023-09-07 交直流电能变换系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311149631.5A CN116885969A (zh) 2023-09-07 2023-09-07 交直流电能变换系统

Publications (1)

Publication Number Publication Date
CN116885969A true CN116885969A (zh) 2023-10-13

Family

ID=88272175

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311149631.5A Pending CN116885969A (zh) 2023-09-07 2023-09-07 交直流电能变换系统

Country Status (1)

Country Link
CN (1) CN116885969A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108832825A (zh) * 2018-07-06 2018-11-16 华北电力大学 一种高功率密度的多端口电力电子变压器拓扑
CN109193801A (zh) * 2018-09-12 2019-01-11 上海交通大学 交直流混合配电网组网系统及其控制方法
CN209217974U (zh) * 2018-10-09 2019-08-06 特变电工新疆新能源股份有限公司 一种四端口电力电子变压器拓扑结构
CN110635693A (zh) * 2019-10-08 2019-12-31 全球能源互联网研究院 一种直流升压变换电路及装置
CN111276992A (zh) * 2020-01-21 2020-06-12 全球能源互联网研究院有限公司 一种模块化多电平交流-直流变换系统
CN116633186A (zh) * 2023-07-24 2023-08-22 西安为光能源科技有限公司 电力电子变压器功率模块拓扑结构

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108832825A (zh) * 2018-07-06 2018-11-16 华北电力大学 一种高功率密度的多端口电力电子变压器拓扑
CN109193801A (zh) * 2018-09-12 2019-01-11 上海交通大学 交直流混合配电网组网系统及其控制方法
CN209217974U (zh) * 2018-10-09 2019-08-06 特变电工新疆新能源股份有限公司 一种四端口电力电子变压器拓扑结构
CN110635693A (zh) * 2019-10-08 2019-12-31 全球能源互联网研究院 一种直流升压变换电路及装置
CN111276992A (zh) * 2020-01-21 2020-06-12 全球能源互联网研究院有限公司 一种模块化多电平交流-直流变换系统
CN116633186A (zh) * 2023-07-24 2023-08-22 西安为光能源科技有限公司 电力电子变压器功率模块拓扑结构

Similar Documents

Publication Publication Date Title
CN107204626A (zh) 一种lcc‑mmc交错混合双极直流输电系统
CN103715930B (zh) 一种提升柔性直流输电系统容量的方法
CN105577012A (zh) 一种混合五电平变流器及其控制方法
CN103516230A (zh) 双向潮流控制的多电平互平衡固态变压器及其实现方法
CN113037117B (zh) 一种基于四有源桥的mmc-sst拓扑及控制方法
CN110798074A (zh) 一种级联型单相交流转直流隔离变换器
CN104753353A (zh) 一种适用于高电压和大功率双向传输变换器
CN116633186B (zh) 电力电子变压器功率模块拓扑结构
CN113346764B (zh) 一种基于高频磁耦合模块的中压变流器拓扑结构
CN111900884A (zh) 一种直流配网的电力电子变压设备及其控制方法
CN107800299A (zh) 基于mmc高频变换的模块化直流变换系统及其控制方法
US11509239B2 (en) Conversion device having reduced size and cost
CN111404409A (zh) 基于mmc的多端口电力电子变压器拓扑及其控制方法
US20230068564A1 (en) Conversion system and conversion device
CN111030483A (zh) 一种电力电子变压器及控制方法
CN108054946B (zh) 内置并联分时选择开关电压型单级多输入低频环节逆变器
Ratanpuri et al. A novel five-level hybrid dual active bridge converter with optimized switching principle
CN114268234B (zh) 高效低谐波的混合型模块化多电平换流器及其控制方法
CN111404381A (zh) 基于dab的电力电子变压器子模块拓扑及其控制方法
CN116885969A (zh) 交直流电能变换系统
CN110365238B (zh) 一种改进的高功率密度高效率的电力电子变压器拓扑结构
CN113241962A (zh) 一种基于三相四桥臂mmc的电力电子变压器及其控制方法
CN217590634U (zh) 一种新型的车载逆变器
Shao et al. A New Power Electronic Transformer for 10kV Distribution Grid Based on Three-phase Four Arms H-bridge Modular Multilevel Converte
CN215498758U (zh) 一种混合型地铁牵引双向供电装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20231013

RJ01 Rejection of invention patent application after publication