CN116850166B - Ntp42用于制备抗葡萄球菌感染药物中的应用 - Google Patents

Ntp42用于制备抗葡萄球菌感染药物中的应用 Download PDF

Info

Publication number
CN116850166B
CN116850166B CN202310597469.7A CN202310597469A CN116850166B CN 116850166 B CN116850166 B CN 116850166B CN 202310597469 A CN202310597469 A CN 202310597469A CN 116850166 B CN116850166 B CN 116850166B
Authority
CN
China
Prior art keywords
ntp42
staphylococcus
staphylococcus aureus
mic
inhibiting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310597469.7A
Other languages
English (en)
Other versions
CN116850166A (zh
Inventor
李佩玉
余治健
刘小菊
蓝棋棋
黄金连
彭壬海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Union Shenzhen Hospital of Huazhong University of Science and Technology
Original Assignee
Union Shenzhen Hospital of Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Union Shenzhen Hospital of Huazhong University of Science and Technology filed Critical Union Shenzhen Hospital of Huazhong University of Science and Technology
Priority to CN202310597469.7A priority Critical patent/CN116850166B/zh
Publication of CN116850166A publication Critical patent/CN116850166A/zh
Application granted granted Critical
Publication of CN116850166B publication Critical patent/CN116850166B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/16Amides, e.g. hydroxamic acids
    • A61K31/18Sulfonamides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/16Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/20Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials
    • A61L2300/216Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials with other specific functional groups, e.g. aldehydes, ketones, phenols, quaternary phosphonium groups
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/404Biocides, antimicrobial agents, antiseptic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/60Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
    • A61L2300/606Coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Surgery (AREA)
  • Communicable Diseases (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oncology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本发明提供了NTP42用于制备抗葡萄球菌感染药物中的应用,所述NTP42,CAS编号为2055599‑51‑2;所述NTP42具有抑制葡萄球菌的生长以及抑制金葡菌生物被膜的形成的作用。本发明的技术方案公开了NTP42的医药新用途,NTP42具有抑制葡萄球菌的生长以及抑制金黄色葡萄球菌生物被膜的形成的作用,抑菌活性等同于一线抗生素万古霉素;而且,NTP42能够低浓度下显著性地抑制金葡菌生物被膜的形成。

Description

NTP42用于制备抗葡萄球菌感染药物中的应用
技术领域
本发明属于医药技术领域,尤其涉及NTP42用于制备抗葡萄球菌感染药物中的应用。
背景技术
葡萄球菌是临床较常见的感染菌,主要包括金黄色葡萄球菌(Staphylococcusaureus,S.aureus)(以下简写为金葡菌)和凝固酶阴性葡萄球菌(Coagulase negativestaphylococcus,CoNS)。金黄色葡萄球菌是临床上最常见的致病性革兰氏阳性菌之一,可引起局部软组织化脓性感染、肺炎、心内膜炎、骨髓炎、脓毒性关节炎等一系列疾病,严重者可导致菌血症、脓毒性休克等全身感染甚至死亡,引起的感染性疾病给人类带来了较大的威胁。凝固酶阴性葡萄球菌常见的有表皮葡萄球菌、腐生葡萄球菌、溶血葡萄球菌等,过去认为其不致病,但近年来已证实CoNS已成为医源性感染的常见重要病原菌,尤其是随着第三代头孢菌素等高效广谱抗菌药物的广泛使用,耐甲氧西林葡萄球菌(Meticillin-resistant Staphylococcus,MRS)在全球范围内不断增加,耐甲氧西林凝固酶阴性葡萄球菌(Meticillin-resistant coagulase negative Staphylococcus,MRCNS)的检出率和多重耐药性呈逐年增高趋势,已成为医院感染的主要原菌之一。
CoNS可引起泌尿系统感染,尿道感染仅次于大肠埃希菌;可引起细菌性心内膜炎,主要为表皮葡萄球菌;可引起败血症,引起的感染仅次于大肠埃希菌和金葡菌;还可引起术后、移植及植入医用器械引起的感染。根据2023年最新发布的2022年CHINET中国细菌耐药监测结果,排名前五的临床分离株分别为大肠埃希菌、肺炎克雷伯菌、金黄色葡萄球菌、铜绿假单胞菌和鲍曼不动杆菌,其中唯一的革兰氏阳性菌是金黄色葡萄球菌。其中,耐甲氧西林金黄色葡萄球菌(Methicillin-resistant Staphylococcus aureus,MRSA)全国平均检出率为28.7%,是一种常见的“超级细菌”,其对抗菌药的耐药率普遍高于对甲氧西林敏感的金黄色葡萄球菌(Methicillin-susceptible Staphylococcus aureus,MSSA)。英国在应对耐药感染报告中发布警告称,2050年全球将有1000万人死于超级耐药细菌感染。由此可见,细菌对抗菌药物的耐药形势日趋严重和普遍,抗微生物耐药(AMR)已成为感染治疗效果差或治疗失败的重要原因之一,是全球公共健康领域面临的重大挑战。为遏制耐药蔓延,2022年10月25日,国家卫健委联合教育部、科技部等13部门发布《遏制微生物耐药国家行动计划(2022-2025年)》,其中的主要任务包括加强微生物耐药防控的科技研发等。因此,为应对未来可能出现的迫在眉睫的全球耐药危机,开发能高效抑制耐甲氧西林葡萄球菌等耐药细菌的新型抗菌药物已经成为当前的研究热点,也是当前临床面临的一个严峻挑战和迫切任务。
发明内容
针对以上技术问题,本发明公开了NTP42用于制备抗葡萄球菌感染药物中的应用,NTP42具有抑制葡萄球菌的生长以及抑制金葡菌生物被膜的形成的作用。
对此,本发明采用的技术方案为:
NTP42用于制备抗葡萄球菌感染药物中的应用,所述NTP42,CAS编号为2055599-51-2;所述NTP42具有抑制葡萄球菌的生长以及抑制金葡菌生物被膜的形成的作用。
其中,所述NTP42的结构式如式(1)所示:
NTP42是一种血栓素(TXA2)前列腺受体(Thromboxane prostanoid receptor,TP)的拮抗剂,拮抗用TP激动剂U46619刺激细胞后TP介导的Ca2+流通,用于治疗肺动脉高压(PAH)。有研究表明在大鼠模型中,NTP42可以降低诺百合碱诱导的PAH,包括平均肺动脉压和右收缩心室压,且能够显著减少动物的肺血管重塑、炎性肥大细胞的浸润和纤维化。而且,将NTP42与现有的治疗PAH的药物西地那非联合使用,显著降低了平均肺动脉压和右心室收缩压,表现出比单独使用药物更大的益处,证实联合使用NTP42和西地那非在治疗或抵消PAH的关键病因方面具有更大的益处。此外,一种新型的NTP42口服制剂能通过拮抗TP信号传导,缓解肺部的病变,减少右心室重塑,改善心脏功能,对心脏有一定的保护作用,可能成为肺动脉高压和其他心脏病的改善疗法。综上,NTP42目前只发现具有治疗肺动脉高压方面的作用,至今未见NTP42在抗金葡菌或其他细菌方面的任何报道。
经过大量的实验研究发现,NTP42具有强效抑制金葡菌、表皮葡萄球菌生长的效果,抑菌活性等同于甚至优于一线抗生素万古霉素。而且,NTP42能够低浓度下显著性地抑制金葡菌生物被膜的形成;4倍MIC或8倍MIC的NTP42在24h能够显著性地杀灭金葡菌,将菌落数从109降低至两百个菌落左右,杀菌效果和万古霉素类似。此外,NTP42还能高效抑制人葡萄球菌、头状葡萄球菌、溶血葡萄球菌的生长。
作为本发明的进一步改进,所述葡萄球菌为金葡菌、表皮葡萄球菌、人葡萄球菌、头状葡萄球菌或溶血葡萄球菌中的至少一种。
作为本发明的进一步改进,所述NTP42在处理体系中的浓度为不小于0.39μM。
作为本发明的进一步改进,所述药物为药物组合物或制剂。进一步的,所述药物为注射剂、片剂、丸剂、胶囊、悬浮剂、颗粒剂、喷剂或乳剂。
本发明还公开了NTP42用于制备抑制革兰氏阳性细菌的涂料中的应用,所述涂料用于医疗器械的表面,所述NTP42的CAS编号为2055599-51-2,所述NTP42具有抑制葡萄球菌的生长以及抑制金葡菌生物被膜的形成的作用。
作为本发明的进一步改进,所述涂料中,所述NTP42的浓度为不小于0.39μM。
本发明还公开了NTP42用于制备抗革兰氏阳性细菌抗菌剂的应用,所述NTP42的CAS编号为2055599-51-2,结构式如式(1)所示;所述NTP42具有抑制葡萄球菌的生长以及抑制金葡菌生物被膜的形成的作用。
与现有技术相比,本发明的有益效果为:
本发明的技术方案公开了NTP42的医药新用途,NTP42具有抑制葡萄球菌的生长以及抑制金葡菌生物被膜的形成的作用,对金葡菌生长和表皮葡萄球菌的抑菌活性等同于甚至优于一线抗生素万古霉素;而且,NTP42能够低浓度下显著性地抑制金葡菌生物被膜的形成;4倍MIC或8倍MIC的NTP42在24h能够显著性地杀灭金葡菌,将菌落数从109降低至两百个菌落左右,杀菌效果和万古霉素类似;NTP42安全性较高,CC50大于100μM,具备研发和转化的医用价值;机制方面,NTP42不靶向细胞膜,蛋白质组学分析提示了一些关键蛋白可能在NTP42发挥抗菌活性的过程中发挥了重要作用。此外,NTP42还能高效抑制人葡萄球菌、头状葡萄球菌、溶血葡萄球菌的生长。
附图说明
图1是本发明实施例NTP42对金黄色葡萄球菌的生长抑制作用结果图;其中A-I分别为金黄色葡萄球菌CHS101、CHS684、CHS791、SA113、YUSA13、YUSA128、YUSA139、YUSA145、YUSA213。N=3,数据以Mean±SEM表示。
图2是本发明实施例NTP42抑制金黄色葡萄球菌的生物被膜形成的实验结果图;其中A为不同浓度NTP42处理后MRSA的OD600值,B为不同浓度NTP42处理后的1%结晶紫染色后的OD570值。N=8,数据以Mean±SEM表示。*P<0.05,**P<0.01,#P<0.0001。
图3是本发明实施例的NTP42对金黄色葡萄球菌的杀菌效果分析图;其中,A为NTP42作用不同时间后的YUSA145菌落数;B为NTP42作用后YUSA145菌落降低倍数统计结果;C为NTP42作用一定时间后的SA113菌落数;D为NTP42作用后菌落降低倍数统计结果。
图4是本发明实施例的NTP42药物安全性分析图;其中,A为溶血状况图,B为溶血率,C为NTP42在A549细胞上的毒性;D为NTP42在HepG2细胞上的毒性;E为NTP42在LX-2细胞上的毒性。N=6,数值均为Mean±SEM。
图5是本发明实施例的NTP42不靶向细胞膜分析结果;其中A为NTP42处理后SA113膜的通透性,B为NTP42处理后YUSA145膜的通透性;C为膜磷脂加入后对NTP42最低抑菌浓度MIC的改变倍数。D为NTP42处理后SA113膜的通透性;E为NTP42处理后SA113膜的通透性。N=3。数值为Mean±SEM。
图6是本发明实施例的NTP42处理金葡菌YUSA145后的差异蛋白分析结果;其中,A为差异蛋白火山图;B为差异蛋白数目统计柱状图;C为KEGG通路富集分析基因占比图;D为KEGG富集分析显著通路图;E为分子功能富集分析显著通路图;F为分子功能富集通路分析基因占比图。cutoff值设为差异表达2倍。
图7是本发明实施例的NTP42处理金葡菌YUSA145后的差异蛋白分析结果;其中,A为细胞组分富集分析基因占比;B为显著差异通路富集;C为蛋白互作分析。cutoff值设为差异表达2倍。
具体实施方式
下面对本发明的较优的实施例作进一步的详细说明。
实施例1
NTP42对对金黄色葡萄球菌以及对表皮葡萄球菌的最低抑制浓度MIC。
根据美国临床和实验室标准化协会(CLSI)的指南第31版抗菌药物敏感性试验的性能标准,采用CAMHB培养基,肉汤对倍稀释法测定NTP42对临床分离菌的最低抑菌浓度(MIC);使用96孔板,浓度排板设置为:1×MIC、1/2×MIC、1/4×MIC、1/8×MIC、control、Blank(各3个生物学重复);稀释药物和对照抗生素:第一排各加入配置好的药物稀释液200μl,从一排吸取100μl依次至相应浓度,各吹打混匀10次;样本组、Control组、Blank组分别加入1:1000稀释的CAMHB菌液100μl,终浓度1:2000,37℃培养18-24h,以肉眼观察无混浊、无沉淀、液体澄清判断其最低抑菌浓度(MIC)结果,并与对照进行对比。
表3.NTP42抑制金黄色葡萄球菌菌株的最小抑制浓度(MIC)的分布统计
表4.NTP42抑制表皮葡萄球菌菌株的最小抑制浓度(MIC)的分布统计
NTP42抑制金黄色葡萄球菌的最小抑制浓度对比结果如表1所示,NTP42抑制表皮葡萄球菌的最小抑制浓度如表2所示,NTP42、利奈唑胺、万古霉素抑制金黄色葡萄球菌的最小抑制浓度(MIC)的分布统计如表3所示,NTP42、万古霉素抑制表皮葡萄球菌的最小抑制浓度(MIC)的分布统计表4所示。
结果显示,NTP42对11株金黄色葡萄球菌MRSA和10株MSSA具有比较好的抑制活性,MIC范围为0.39-3.125μM;而对照抗生素利奈唑胺(Linezolid,LZD)对金葡菌的MIC分布范围为4-16μg/ml(11.86-47.43μM),抑菌活性远远小于NTP42;另一个临床常用对照一线抗生素万古霉素(Vancomycin,Van)对金葡菌的MIC范围为1-4μg/ml(0.69-2.76μM),抑菌活性与NTP42类似(如表1和表3所示)。首次证实NTP42具有强效抑制金黄色葡萄球菌生长的效果,高效的抗菌活性可媲美临床常用一级抗生素万古霉素Van。此外,NTP42对14株表皮葡萄球菌(13株耐甲氧西林凝固酶阴性的葡萄球菌MRCNS和1株凝固酶阴性的葡萄球菌CNS)的MIC范围为0.78-3.125μM,而对照组万古霉素的为1-8μg/ml(0.69-5.52μM)(如表2和表4意识)。结果显示,NTP42抑制表皮葡萄球菌的活性优于或等于万古霉素的抗菌活性。
为了检测是否对其他种类的葡萄球菌有抑制效果,我们检测了NTP42对15株人葡萄球菌、4株头状葡萄球菌、4株溶血葡萄球菌的最低抑制浓度MIC,结果如表5和表6所示,发现其抑制头状葡萄球菌的MIC范围为0.39-1.56μM,抑制人葡萄球菌的MIC范围为3.125-12.5μM,抑制溶血葡萄球菌为12.5μM,显示其对头状葡萄球菌的抑制效果较高,人葡萄球菌其次(如表5、表6)。实验再一次证明了NTP42对多种葡萄球菌具有高效的抑制效果。
表5.NTP42对其他种类葡萄球菌的最小抑制浓度(MIC)
表6.NTP42抑制其他葡萄球菌菌株的最小抑制浓度(MIC)的分布统计
实施例2
采用生长曲线法测定NTP42对金黄色葡萄球菌生长抑制的影响,具体步骤包括:
过夜培养的金黄色葡萄球菌CHS101、CHS684、CHS791、SA113、YUSA13、YUSA128、YUSA139、YUSA145、YUSA213过夜培养,将过夜培养的菌液按1∶500稀释后100μl加入到特制蜂窝状100孔板中(设3复孔),再将NTP42药物分别稀释至一定浓度(1×MIC、1/2×MIC、1/4×MIC、1/8×MIC),等体积加入到孔板中,将孔板放入生长曲线分析仪(芬兰Bioscreen),连续测定OD600吸光度24h,根据测量值绘制各菌株的生长曲线。
为了验证NTP42是否能够抑制金葡菌生长,本实施例使用不同浓度(1/8×MIC-1×MIC)的NTP42处理金葡菌,在不同时间点检测其OD值。结果如图1数所示,发现,NTP42能够在1×MIC浓度下完全抑制CHS101(0.39μM)、CHS684(1.56μM)、CHS791(6.25μM)、SA113(0.39μM)、YUSA13(0.78μM)、YUSA128(0.78μM)YUSA139(1.56μM)、YUSA213(1.56μM)的生长。而对于YUSA145(0.78μM),前期完全能够抑制,22-24h稍微有点细菌生长。这表明,NTP42能够高效抑制金黄色葡萄球菌的生长。
实施例3
NTP42对金黄色葡萄球菌生物被膜形成的影响实验。
本实施例的步骤为:将过夜培养的3株MSSA和4株MRSA菌株用TSBG稀释1∶100后的100μl加入96孔板中,再加入稀释一定倍数的NTP42100μl,设置空白对照组;37℃静置培养24h后分别测定不同浓度NTP42处理后细菌的OD600值,结果如图2A;吸去上清,0.9%NaCl或PBS缓冲液洗2次后,干燥;再用100μl甲醇固定15min;吸去甲醇稍微干燥后加入100μl0.5%结晶紫染色10min,洗去结晶紫,烘干后检测分别检测不同浓度NTP42处理后的生物被膜OD570值,结果如图2B。
生物被膜形成是抗感染治疗的一个难点,因此,评估药物的有效性必须要监测其抑制生物被膜的能力。本实施例使用不同浓度的NTP42处理金葡菌24h后,测定OD600,检测细菌生长状态,固定后,使用结晶紫染色,干燥后测定OD570,检测生物被膜生成。通过图2的结果发现NTP42一部分通过抑制细菌生长达到减少生物被膜的作用,例如SA113、YUSA145、YUSA139。另一部分,也能够相应减少生物被膜的生成,例如1/4×MIC处理CHS101和YUSA152,细菌未减少,但是生物被膜明显减少。由此可见,NTP42能够显著抑制生物被膜的形成。
实施例4
NTP42对金黄色葡萄球菌的杀菌活性实验。
具体步骤为:将过夜培养的菌液加入4×MIC和8×MIC浓度的NTP42以及8×MIC浓度的万古霉素Van。在37℃、220rpm摇床培养并且分别于3h、6h、8h、24h吸取100μl菌液,加入900μl无菌生理盐水混匀,再用无菌生理盐水梯度稀释并涂布于TSB平板进行菌落计数。
结果如图3所示。对NTP42的杀菌活性研究发现,4×MIC NTP42、8×MIC NTP42、8×MIC Van在3h可将MRSA菌株YUSA145菌落从108降低至106,分别降低了173、122和135倍;在6h可分别降低993、1100、689倍。早期NTP42的杀菌效果优于或等于Van;在24h,虽然万古霉素的杀菌效果优于NTP42,但NTP42仍可将YUSA145的菌落数降低约5个数量级,如图3A和图3B所示。对于MSSASA113菌株,4×MIC NTP42、8×MIC NTP42、8×MIC Van在3h可将菌落数降低379、210、224倍,6h降低6347、6715、2401倍,8h降低7.2万、8.6万、6万倍;在24h,NTP42和Van均能使菌落数从109数量级降低至102,4×MIC NTP42、8×MIC NTP42、8×MIC Van分别只有200、259、850个菌落,如图3C和图3D所示。对于SA113菌株,NTP42杀菌效果优于Van。综合来看,NTP42杀菌效果与万古霉素杀菌效果类似,均对金葡菌具有高效的杀菌活性,而且4×MIC NTP42、8×MIC NTP42效果类似。
实施例5
为了检测NTP42的药物毒性,本实施例使用溶血实验和CCK-8实验进行检测,具体步骤为:使用不同浓度的NTP42加入到含有4%绵羊红细胞的PBS中,37℃孵育1h,离心,取上清,OD540 nm处测吸光度。以2%的Triton X-100作为阳性对照,PBS为阴性对照。采用如下公式计算溶血率:实验组-阴性对照组/阳性对照组-阴性对照组*100%,结果如图4A和图4B。
将悬浮或贴壁靶细胞铺于96孔板,每孔1.25万个细胞,悬浮立即加入稀释好的待测药物,贴壁细胞需贴壁24h再加入,同时设置无药物的空白对照组;将培养板继续在37℃,5% CO2条件下培养24h;向每孔加入10μl CCK8(MCE)溶液,培养继续培养1-1.5h后测定在450nm处的吸光度(OD450);根据吸光度数值计算药物的细胞毒性,N=6,计算公式:存活率(%)=(实验组吸光度-空白组吸光度)/(对照组吸光度-空白组吸光度)*100%,结果如图4C、图4D和图4E。
发现在NTP42即使在最高浓度100-200μM浓度下,也不造成溶血,安全性较高,如图4A和图4B所示。而且对人肝星形细胞LX-2、人非小细胞肺癌细胞A549、人肝癌细胞HepG2的毒性都非常低,如图4C、图4D和图4E所示。在100μM浓度下,对A549和LX-2细胞具有毒性,和对照相比具有显著性差异,但致死50%宿主细胞所需要药物的最小浓度(CC50)仍大于100μM,远远高于其作用浓度。对于超级细菌,在众多研究、临床案例中发现,高强度的抗生素较普通抗生素,对人体的副作用更大,极容易出现更严重的连锁反应,比如肝肾功能衰竭、损害免疫系统等。因此,高安全性的抗生素是新型抗菌药物研发的一个必要条件。NTP42的高安全性使得其更加具有开发和研究的价值。
实施例6
NTP42不靶向细胞膜实验。
通过检测NTP42处理后碘化丙啶(Propidium Iodide,PI)的荧光值来检测膜通透性的改变,具体步骤为:将过夜复苏的金葡菌株YUSA145重新接种并摇到对数期。用生理盐水洗两次并重悬到10倍初始体积的生理盐水中。往黑色不透明底的96孔板中每个孔加入200μl重悬液。重悬液加入DIBAC4(3)或PI使得浓度为1μM。高内涵测荧光强度10min,测试间隔2min。取出孔板快速加入配好的对应浓度的药,以0.1%的Triton X-100为阳性对照,DMSO为阴性对照。高内涵测荧光强度至70min,测试间隔2min。
结果如图5所示,发现NTP42处理SA113和YUSA145菌株后,PI染料荧光无变化,但阳性对照组0.1% TritonX-100处理后,PI荧光值随着时间的增加,荧光强度增加,结果揭示NTP42完全不引起膜通透性的变化(如图5A和图5B)。通过磷脂联合试验检测NTP42与二磷脂酰甘油(心磷脂CL)、磷脂酰胆碱(卵磷脂PC)、磷脂酰乙醇胺(脑磷脂PE)、磷脂酰甘油(PG)处理后是否改变NTP42对SA113的最小抑菌浓度(MIC),结果发现仅在PC加到128μg/ml时NTP42的MIC才提升2倍,其他均无变化(如图5C)。此外,使用DiBAC4(3)膜电位染料检测不同浓度的NTP42处理SA113和YUSA145菌株后的膜电位变化,发现处理后同样只有阳性对照组0.1%TritonX-100能引起荧光强度的增加,体现了膜电位的改变。NTP42处理后,荧光强度没有变化,进一步揭示了NTP42处理不能影响膜电位(如图5D和图5E)。通过以上三个实验,我们得出NTP42具有高效抑菌活性的机制不包括靶向细胞膜。
实施例7
NTP42对金葡菌的蛋白质组学靶点分析实验。
由于NTP42不靶向细胞膜,因此我们需要通过其他方法探究NTP42具有高效抑菌活性的机制。首先我们通过蛋白质组学的方法进行探究,1/2×MIC的NTP42处理2h后,收集菌体进行蛋白质组学测序。
具体步骤包括:1/2×MIC的NTP42处理金葡菌YUSA145 2小时后,收集菌体,裂解,提取蛋白,使用高分辨质谱仪QE分析蛋白表达水平,结果如图6和图7所示。
结果发现,上调蛋白有69个,下调蛋白有148个(如图6A和图6B)。对这些差异蛋白进行富集分析,KEGG分析发现,其主要有四个通路:氧化磷酸化信号通路、氨基糖和核苷酸糖代谢通路、磷酸转移酶系统以及金葡菌感染信号通路(如图6C和6D)。对其进行分子功能富集分析,结果发现几乎均与跨膜转运和运输信号通路相关,包括离子、阴离子、羧酸、有机酸、氨基酸、底物特异性的跨膜转运(如图6E和图6F)。对其进行细胞组分进行分析,发现53个差异蛋白显著分布在细胞外周,47个差异蛋白显著分布在质膜上(如图7A、7B)。根据蛋白质网络互作分析,可以看出蛋白与蛋白相互作用以及相对应的通路,和前面的通路富集分析基本一致(如图7C)。去除假定和未知的蛋白,上调蛋白有35个,下调蛋白有92个,如表7和表8所示。蛋白质组为后续靶点的筛选和寻找提供了一定的依据。
表7上调蛋白
ID FoldChange Log2FoldChange Uniprot Genename
POA088 9.51 3.25 POA088 msrB
Q2FWN3 5.50 2.46 Q2FWN3 groS
Q93Q23 4.99 2.32 Q93Q23 mgt
Q2FUY3 4.35 2.12 Q2FUY3 SAOUHSC_02962
Q2G1J2 4.11 2.04 Q2G1J2 isdI
Q2G223 3.63 1.86 Q2G223 SAOUHSC_02976
Q2GO17 3.03 1.6 Q2GO17 SAOUHSC_00578
Q2FVV8 3.01 1.59 Q2FVV8 SAOUHSC_02583
Q2FYLO 2.99 1.58 Q2FYLO SAOUHSC_01430
POAOF4 2.85 1.51 POAOF4 rpIK
Q2FZK3 2.73 1.45 Q2FZK3 fmtA
Q2G012 2.71 1.44 Q2G012 emp
Q2G2T3 2.58 1.37 Q2G2T3 rplI
Q2FUV3 2.58 1.37 Q2FUV3 SAOUHSC_02998
Q2G113 2.57 1.36 Q2G113 rpsF
Q2G2S6 2.53 1.34 Q2G2S6 prsA
Q2G1X7 2.51 1.33 Q2G1X7 queE
Q2G2K6 2.48 1.31 Q2G2K6 ureB
Q2G121 2.48 1.31 Q2G121 SAOUHSC_00339
Q2FZG6 2.41 1.27 Q2FZG6 def
Q2FZ62 2.39 1.26 Q2FZ62 SAOUHSC_01189
Q2FYG2 2.35 1.23 Q2FYG2 SAOUHSC_014如
Q2GOK8 2.27 1.18 Q2GOK8 nagB
Q2FY68 2.20 1.14 Q2FY68 proC
Q2FVI7 2.17 1.12 Q2FVI7 SAOUHSC_02723
Q2FWD2 2.17 1.12 Q2FWD2 SAOUHSC_02367
Q2FVL9 2.16 1.11 Q2FVL9 SAOUHSC_02683
Q2FWC3 2.11 1.08 Q2FWC3 IuxS
Q2FY33 2.11 1.08 Q2FY33 gcvT
Q2G081 2.08 1.06 Q2G081 queF
Q2FYI5 2.07 1.05 Q2FYI5 gpsB
Q2G1X6 2.07 1.05 Q2G1X6 queC
Q2FZT8 2.07 1.05 Q2FZT8 SAOUHSC_00902
Q2FXTO 2.06 1.04 Q2FXT0 rpmA
Q2FXK7 2.01 1.01 Q2FXK7 SAOUHSC_01828
表8下调蛋白
实施例8
NTP42诱导耐药全基因组测序实验。
诱导耐药亦是检测靶点的方法之一。体外NTP42连续诱导革兰氏阳性细菌,使其发生耐药突变,再进行全基因测序,分析突变基因,根据突变基因的功能,分析NTP42潜在的发挥效果的机制。根据突变基因构建基因敲除或回复株,检测NTP42抑菌的表型。因此,为了探究NTP42可能作用的靶点,我们使用亚抑菌浓度的NTP42进行诱导传代,诱导不同代数,直至MIC浓度升高至少4倍。目前诱导了28代(如表9),仍未出现耐药株,因此将继续诱导。目前诱导的结果来看,在一定程度上,也说明NTP42可能不易导致细菌耐药。
表9 NTP42诱导金葡菌情况统计表
NTP42 YUSA145 SA113
MIC(μM) 0.78 0.39
连续诱导代数 28 28
诱导最后浓度(μM) 0.78-18代 0.78-10代
诱导后MIC(μM) 0.78 0.39
上述实施例的实验均使用GraphPad Prism8.0软件进行数据处理及绘制图像。P<0.05被认为具有统计学差异。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (4)

1. NTP42用于制备抗葡萄球菌感染药物中的应用,其特征在于:所述NTP42,CAS编号为2055599-51-2; 所述葡萄球菌为金黄色葡萄球菌、表皮葡萄球菌、人葡萄球菌、头状葡萄球菌或溶血葡萄球菌中的至少一种。
2.根据权利要求1所述的NTP42用于制备抗葡萄球菌感染药物中的应用,其特征在于:所述药物为注射剂、片剂、丸剂、胶囊、悬浮剂、颗粒剂、喷剂或乳剂。
3. NTP42用于制备抑制葡萄球菌的涂料中的应用,其特征在于:所述涂料用于医疗器械的表面,所述NTP42的CAS编号为2055599-51-2,所述葡萄球菌为金黄色葡萄球菌、表皮葡萄球菌、人葡萄球菌、头状葡萄球菌或溶血葡萄球菌中的至少一种。
4. NTP42用于制备抗葡萄球菌抗菌剂的应用,其特征在于:所述NTP42的CAS编号为2055599-51-2,所述葡萄球菌为金黄色葡萄球菌、表皮葡萄球菌、人葡萄球菌、头状葡萄球菌或溶血葡萄球菌中的至少一种。
CN202310597469.7A 2023-05-25 2023-05-25 Ntp42用于制备抗葡萄球菌感染药物中的应用 Active CN116850166B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310597469.7A CN116850166B (zh) 2023-05-25 2023-05-25 Ntp42用于制备抗葡萄球菌感染药物中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310597469.7A CN116850166B (zh) 2023-05-25 2023-05-25 Ntp42用于制备抗葡萄球菌感染药物中的应用

Publications (2)

Publication Number Publication Date
CN116850166A CN116850166A (zh) 2023-10-10
CN116850166B true CN116850166B (zh) 2024-04-05

Family

ID=88217840

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310597469.7A Active CN116850166B (zh) 2023-05-25 2023-05-25 Ntp42用于制备抗葡萄球菌感染药物中的应用

Country Status (1)

Country Link
CN (1) CN116850166B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114259485A (zh) * 2021-12-14 2022-04-01 华中科技大学协和深圳医院 苯溴马隆用于抗金黄色葡萄球菌及其生物被膜感染的用途
CN115869306A (zh) * 2022-12-23 2023-03-31 华中科技大学协和深圳医院 Iowh-032用于制备抗革兰氏阳性细菌感染药物中的应用
CN116019811A (zh) * 2023-02-07 2023-04-28 华中科技大学协和深圳医院 Gsk-j4用于制备抗革兰氏阳性菌感染药物中的应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6837190B2 (ja) * 2015-06-16 2021-03-03 エイティーエックスエー セラピューティクス リミテッド トロンボキサン受容体アンタゴニスト

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114259485A (zh) * 2021-12-14 2022-04-01 华中科技大学协和深圳医院 苯溴马隆用于抗金黄色葡萄球菌及其生物被膜感染的用途
CN115869306A (zh) * 2022-12-23 2023-03-31 华中科技大学协和深圳医院 Iowh-032用于制备抗革兰氏阳性细菌感染药物中的应用
CN116019811A (zh) * 2023-02-07 2023-04-28 华中科技大学协和深圳医院 Gsk-j4用于制备抗革兰氏阳性菌感染药物中的应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
24种抗菌药对临床分离葡萄球菌的体外抗菌活性;李胜利, 张婴元, 周乐, 吴培澄, 吴卫红;中国抗感染化疗杂志;20010615;第1卷(第02期);75-78 *
Efficacy of the thromboxane receptor antagonist NTP42 alone, or in combination with sildenafil, in the sugen/hypoxia-induced model of pulmonary arterial hypertension;Eamon P. Mulvaney等;European Journal of Pharmacology;20201215;第889卷(Article Number:173658);1-12 *

Also Published As

Publication number Publication date
CN116850166A (zh) 2023-10-10

Similar Documents

Publication Publication Date Title
Asif et al. Insight into Acinetobacter baumannii: pathogenesis, global resistance, mechanisms of resistance, treatment options, and alternative modalities
Geitani et al. Cationic antimicrobial peptides: alternatives and/or adjuvants to antibiotics active against methicillin-resistant Staphylococcus aureus and multidrug-resistant Pseudomonas aeruginosa
Barber et al. Observation of “seesaw effect” with vancomycin, teicoplanin, daptomycin and ceftaroline in 150 unique MRSA strains
Dosler et al. In vitro pharmacokinetics of antimicrobial cationic peptides alone and in combination with antibiotics against methicillin resistant Staphylococcus aureus biofilms
Hogan et al. Why are bacteria refractory to antimicrobials?
Ranjan et al. ESBL-plasmid carriage in E. coli enhances in vitro bacterial competition fitness and serum resistance in some strains of pandemic sequence types without overall fitness cost
Payne et al. Activity of innate antimicrobial peptides and ivacaftor against clinical cystic fibrosis respiratory pathogens
Swedan et al. Synergism of cationic antimicrobial peptide WLBU2 with antibacterial agents against biofilms of multi-drug resistant Acinetobacter baumannii and Klebsiella pneumoniae
Morici et al. Synergistic activity of synthetic N-terminal peptide of human lactoferrin in combination with various antibiotics against carbapenem-resistant Klebsiella pneumoniae strains
McCaughey et al. Antimicrobial activity of fosfomycin and tobramycin in combination against cystic fibrosis pathogens under aerobic and anaerobic conditions
Xia et al. In vitro antimicrobial activity and the mechanism of berberine against methicillin-resistant Staphylococcus aureus isolated from bloodstream infection patients
Wright et al. Proteome profiling of Pseudomonas aeruginosa PAO1 identifies novel responders to copper stress
CN115869306B (zh) Iowh-032用于制备抗革兰氏阳性细菌感染药物中的应用
Chen et al. A marine antibiotic kills multidrug-resistant bacteria without detectable high-level resistance
Kim et al. Biofilm formation and colistin susceptibility of Acinetobacter baumannii isolated from Korean nosocomial samples
Wang et al. Scutellarin potentiates vancomycin against lethal pneumonia caused by methicillin-resistant Staphylococcus aureus through dual inhibition of sortase A and caseinolytic peptidase P
Sacco et al. The antimicrobial peptide Esc (1-21) synergizes with colistin in inhibiting the growth and in killing multidrug resistant Acinetobacter baumannii strains
Paprocka et al. Bactericidal activity of ceragenin in combination with ceftazidime, levofloxacin, co-trimoxazole, and colistin against the opportunistic pathogen Stenotrophomonas maltophilia
De Oliveira et al. Rescuing tetracycline class antibiotics for the treatment of multidrug-resistant Acinetobacter baumannii pulmonary infection
Zhao et al. Transcriptomic Analysis of the Activity of a Novel Polymyxin against Staphylococcus aureus
Sidrim et al. β-Lactam antibiotics and vancomycin inhibit the growth of planktonic and biofilm Candida spp.: an additional benefit of antibiotic-lock therapy?
CN116850166B (zh) Ntp42用于制备抗葡萄球菌感染药物中的应用
Chen et al. Integrated evolutionary analysis reveals the resistance risk to antimicrobial peptides in Staphylococcus aureus
Schwan et al. Screening a mushroom extract library for activity against Acinetobacter baumannii and Burkholderia cepacia and the identification of a compound with anti-Burkholderia activity
Xiong et al. Effects of the antimicrobial peptide L12 against multidrug‑resistant Staphylococcus aureus

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant