CN116848645A - 用于太阳能电池的钝化和导电层结构 - Google Patents

用于太阳能电池的钝化和导电层结构 Download PDF

Info

Publication number
CN116848645A
CN116848645A CN202180092347.1A CN202180092347A CN116848645A CN 116848645 A CN116848645 A CN 116848645A CN 202180092347 A CN202180092347 A CN 202180092347A CN 116848645 A CN116848645 A CN 116848645A
Authority
CN
China
Prior art keywords
layer
sicx
structure according
layer structure
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202180092347.1A
Other languages
English (en)
Inventor
K·丁
M·波马斯卡
邱开富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Juelich GmbH
Original Assignee
Forschungszentrum Juelich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Juelich GmbH filed Critical Forschungszentrum Juelich GmbH
Publication of CN116848645A publication Critical patent/CN116848645A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及用于在太阳能电池的正面或正面和背面上具有隧穿氧化物钝化接触件的太阳能电池,优选高温太阳能电池的层结构,其由至少一个隧穿氧化物层,特别是x=1‑2的硅氧化物层SiOx或x=1‑2的铝氧化物层AlOx,以及x50.5,优选≥0.5至0.9的μc‑SiCx(n)层组成,其中(n)=n掺杂,并且其中μc‑SiCx(n)在一个有利实施方案中是氢化μc‑SiCx:H(n)层。根据本发明的层结构可以优选被设计为太阳能电池,优选高温太阳能电池的正面接触件。本发明还涉及制造该层结构的方法以及包含根据本发明的层结构作为正面接触件或作为正面接触件和背面接触件的太阳能电池。

Description

用于太阳能电池的钝化和导电层结构
本发明涉及用于太阳能电池,特别是在高温稳定的太阳能电池的隧穿氧化物钝化透明层结构,以及包含该透明的钝化和导电层结构的太阳能电池,该层结构优选布置在太阳能电池的正面上,此外涉及制造这种层结构和太阳能电池的方法。
现有技术
为了尽可能接近太阳能电池的理论上可实现的最大效率,目前正在开发用于应提高太阳能电池的效率并减少内部损耗的不同方法和工艺。同时,太阳能电池的制造成本应便宜。
通过减少损耗机制,可以提高太阳能电池的效率。在此,载流子的重组和光效率的参数尤为重要。因此,研究和开发的目标是避免载流子的重组、尽可能无损害地传输自由载流子以及最佳地耦合输入光。
用于优化载流子传输的一种可能方法是隧穿氧化物钝化接触技术(TOPCon技术)。在该技术中,背面接触由超薄隧穿氧化物层和薄硅层组成。为了进行接触,将超薄隧穿氧化物背面接触件施加到硅电池的背面上,在大多数情况下在整面上。该硅氧化物钝化层只有一至两纳米厚。载流子可以通过量子力学隧穿过程克服该屏障层。在该隧穿氧化物层上,以面积覆盖的方式沉积高掺杂硅的薄层[7]。
到目前为止,TOPCon技术通常仅用于背面接触件。这是因为n型多晶硅(多晶硅(n))由于其光学材料性质所致而不利地表现出寄生光吸收。为了减少多晶硅层的这种寄生吸收,已经开发出多种解决方法。
用于减少多晶硅中的这种寄生吸收的目前解决方法之一是开发具有足够好的钝化效应和同时小的层电阻的极薄多晶硅层。同时,必须在制造方法中使用于电接触的材料膏剂和烧制状况与所述极薄多晶硅(n)适配。另一解决方法在于,用具有大带隙的替代性材料,例如nc-SiOx来替代该多晶硅(n)。此外致力于使用仅局部在金属接触件下的多晶硅(n),以减少或避免寄生吸收。
开发极薄多晶硅层的解决方法虽然在金属涂覆前产生良好钝化(iVoc>740mV),但是在涂覆后,例如用于电接触的银膏很可能烧穿极薄多晶硅(n)并直接接触到c-Si,这使钝化再次变差。不断地研究用于极薄多晶硅(n)的新膏剂,但目前没有进展。此外,烧制状况起决定作用并且难以控制。
使用nc-SiOx作为电子选择性材料的第二解决方法也显示出良好的钝化(iVoc>725mV),然而,隧穿氧化物的层厚度可能在nc-SiOx沉积时增加并超过2nm,这使载流子传输变差。
为了使用局部在金属接触件下的多晶硅(n),必须以结构化的形式局部施加该多晶硅(n),这必须通过昂贵的结构化方法得以实现。因此,必须开发成本便宜的结构化方法,以减少制造复杂度和因此减少生产成本,由此使制成的太阳能电池在工业上可实施。
目前还没有已知的解决方法,以在太阳能电池的正面上确立有利的TOPCon技术并由此受益于TOPCon技术的优异钝化性质。
任务和解决方案
本发明的任务是克服现有技术的缺点,并提供除了用于太阳能电池,特别是用于高温太阳能电池的背面接触件外也用于正面接触件的隧穿氧化物钝化接触技术(TOPCon技术),并因此也提供与现有技术相比在效率方面改进的太阳能电池。此外,本发明的目的是提供制造该隧穿氧化物钝化接触件,特别是用于太阳能电池的正面的隧穿氧化物钝化接触件的方法,以及提供包含该接触件的太阳能电池。
本发明的目的通过具有主权利要求的特征的层结构以及根据并列权利要求的方法和太阳能电池来实现。
主权利要求和并列权利要求的有利实施方案由引用它们的权利要求产生。
发明主题
在本发明中发现,通过使用μc-SiCx(n):H,特别是氢化μc-SiCx(n):H,隧穿氧化物钝化接触技术除了背面接触件外也可以在太阳能电池,特别是高温太阳能电池的正面上使用和确立。
与根据现有技术对于TOPCon技术已知的使用多晶硅(n)作为电子选择性和钝化层相比,使用μc-SiCx(n),特别是氢化μc-SiCx(n):H的优点是,该材料由于其透明性质不会引起寄生光吸收,但同时仍满足所需的钝化性质并实现电子的选择性传输。因此也可以受益于TOPCon技术对正面接触件的优异钝化并因此进一步改进太阳能电池的效率。
本发明的主题是用于在太阳能电池的正面或正面和背面上具有隧穿氧化物钝化接触件的太阳能电池,优选高温太阳能电池的层结构,其由至少一个隧穿氧化物层,特别是x=1-2的硅氧化物层SiOx或x=1-2的铝氧化物层AlOx,以及x≥0.5,优选≥0.5至0.9的μc-SiCx(n)层组成,其中(n)=n掺杂,并且其中μc-SiCx(n)在一个有利实施方案中是氢化μc-SiCx:H(n)层。根据本发明,该层结构可以优选被设计为太阳能电池,优选高温太阳能电池的正面接触件。隧穿氧化物层应在此优选具有1-2nm的层厚度,以具有足够化学钝化和隧穿的性质。
如前所述,在本发明中,用具有大带隙的导电微晶(n型)碳化硅(μc-SiCx(n))替代根据现有技术通常用于背面TOPCon的多晶硅(n),并尤其用于正面TOPCon。如果利用在α=104cm-1处的光学带隙(E04),氢化μc-SiCx(n)的带隙可以达到2.9eV。2.3至2.9eV的氢化μc-SiCx(n)层的光学带隙已被证明是有利的。由于该大带隙,氢化μc-SiCx(n)现在可以用于太阳能电池的正面上。氢化μc-SiCx(n)的寄生光吸收与例如多晶硅(n)或nc-Si:H(n)相比是低的。与多晶硅(n)或nc-Si:H(n)的值17737cm-1或13511cm-1相反,在光子能量E为2eV时μc-SiCx(n):H(n)例如具有2210cm-1的吸收系数α,因此有利地可实现大的层厚度,例如30至200nm的层厚度,其由此也有利地预防用于电接触层或太阳能电池金属化的膏剂的烧穿并由此防止膏剂与太阳能电池的c-Si半导体材料的直接接触。此外,因为由于所用的材料在μc-SiCx(n)沉积时不存在氧前体,隧穿氧化物的厚度也保持恒定并且确保穿过隧道的隧穿氧化物的载流子传输。
在层布置的一个有利实施方案中,优选将碳添加到微晶氢化n型碳化硅的材料中,以使得可提供富C和/或掺杂/合金化μc-SiCx:H(n)层。Si与C的比率可以在此有利地为1.0:0.7左右。然而,1.0:≥0.7至1.0的Si与C的比率也是可行的。通过将更多C和/或其它元素添加到该SiC网络中,可以改进氢化μc-SiCx:H(n)的热稳定性,因为氢在这样的网络中更稳定结合,由此提高该材料的热稳定性。通过将碳C添加到SiC网络材料中,可以提高氢的扩散能,这导致氢的扩散系数较低,这又对应于网络中氢的更高热稳定性。结合H的可量化数值处于1E22 cm-3的数量级。
在层布置的另一有利实施方案中,覆盖层施加到μc-SiCx:H(n)层上。其可以由防止氢从太阳能电池,特别是从层结构逸出的材料组成。覆盖层可以在此由SiNx:H材料组成,其中x可以取x=0.3至1.5的值。
在覆盖层的一个有利实施方案中,其具有在Si含量和N含量方面的浓度梯度。例如,覆盖层可以在此被分成在Si含量和N含量方面的三个浓度区段:
·与μc-SiCx:H(n)层直接接触的最下面的SiNx:H浓度区段是富Si的,并且由此实现氢化和良好的钝化品质。在此,N/Si比(x)为<1,优选为0.3至0.9。
·相反,最上面的SiNx:H浓度区段是富N的。在此,N/Si比(x)为>1。在富N状态下,N/Si比(x)例如为1.1-1.5。相比于与硅的结合能,该层具有较高的与氢的结合能,并根据迄今的认知,因此防止在高达800℃的高烧制温度下的氢逸出。此外,富N的SiNx特别适合作为抗反射层。
·中间的SiNx:H浓度区段是化学计量氮化硅层,其对于富Si的SiNx:H、化学计量的SiNx:H和富N的SiNx:H的层堆叠体而言是必需的。化学计量氮化硅的N/Si比(x)为1。
所述三层堆叠体具有阻止氢从根据本发明的层布置离开的最佳能力。
但是,原则上,可有效阻止氢扩散的所有材料可用作覆盖层。在每种情况下可以测量氢从SiC:H材料中的扩散。
本发明的主题还是具有隧穿氧化物钝化接触件的太阳能电池,其包括至少一个结晶n或p掺杂硅层,根据前述权利要求中任一项所述的层结构作为正面接触件或作为正面接触件和背面接触件施加到所述硅层上。
本发明还涉及制造根据本发明的层结构的方法以及包含该层结构的太阳能电池。
该方法在此包括以下步骤:
·提供包括硅层的衬底层
·将隧穿氧化物层施加到衬底层上
·将n或p掺杂的μc-SiCx:H层施加到隧穿氧化物层上。
在该方法的一个有利实施方案中,覆盖层施加到μc-SiCx:H层上。其在一个有利实施方案中应由防止氢从位于其下方的层中逸出的材料组成。在覆盖层的一个特别有利实施方案中,其由SiNxH层组成,并且特别是在Si含量和N含量方面具有上述的三级浓度梯度。
原则上,在例如通过PECVD制造根据本发明的层结构时应注意以下内容:
对于SiC沉积,单甲基硅烷流速、灯丝温度和衬底温度起决定作用。对于SiN沉积,沉积期间的硅烷和氮气流速、衬底温度、功率和基础压力起决定作用。其中,应注意SiNx沉积期间的功率,因为PECVD沉积会造成SiC的等离子体损坏,其应良好控制以免损害钝化。
尽管已经在附图和前面的说明书中详细示出和描述了本发明,但是这些附图和说明书应被认为是说明性或示例性的而不是限制性的。应当理解,普通技术人员可以在以下权利要求书中做出改变和修改。特别地,本发明包括具有来自上文和下文描述的不同实施方案的特征的任意组合的其它实施方案。
具体描述部分
下面,借助示例性实施例和一些附图更进一步和详细地解释本发明。本发明不限于在此公开的示例性实施例。所描述和/或示出的所有特征可以在不同的实施方案中单独地或组合地显现。在阅读下面结合附图阐述的实施例时,公开了本发明的不同实施方案的特征及其各自的优点。展示:
图1:具有硼扩散发射极的太阳能电池
图2:具有p型多晶硅作为发射极的太阳能电池
图3:具有氢化p型μc-SiCx作为发射极的太阳能电池。
图1示例性示出了在太阳能电池的正面上具有根据本发明的层结构的高温太阳能电池的示意性结构。具有透明的隧穿氧化物钝化接触件的根据本发明的层结构在此包括隧穿硅氧化物层SiOx 1,其在正面上施加在由结晶n掺杂硅c-Si(n)制成的衬底层2的表面上。在硅氧化物SiOx层1上施加氢化μc-SiCx层3。优选氢化的该μc-SiCx层3在此用作电子选择性接触层。μc-SiCx 3可以例如通过HWCVD沉积,这产生良好的结晶度和导电性。根据[1、2],μc-SiCx的导电性在高温退火过程后增加,这对垂直载流子传输有积极的影响。由于钝化接触件的优异表面钝化,c-Si块体用作横向载流子传输的主要通道[3]。在μc-SiCx层3上施加由SiNx:H制成的覆盖层4,该覆盖层4可被分成上述三个区域:富Si区域、Si与N的彼此比率相同的SiNx:H区域和富N区域。在太阳能电池的背面上,在c-Si(n)衬底层2上施加硼发射极层(p+发射极)5、氧化铝层(Al2O3)6和由SiNx:H制成的覆盖层7的层堆叠体,该覆盖层7具有与正面上的覆盖层4相同的性质。在正面和背面两者上,在已去除覆盖层4和7的区域上施加例如由银(Ag)制成的金属接触件8。这可以使用现有技术中已知的所有方法来实现。
通过使用C/Si比(x)>0.7的富C的μc-SiCx,其C-H键的键能高达432KJ/mol而Si-H键的键能为318kJ/mol,可以获得高温稳定的氢化μc-SiCx。此外,C/Si比(x)>0.7的SiC网络中的高碳比例确保无气泡的薄层。
先前的工作[4]表明,将碳添加到SiC网络中使高温逸出峰移向更高温度,这表明氢具有更好的温度稳定性。逸出峰的移动,更确切的说从500℃至650℃,可以由更高的扩散能来解释。这意味着,由于碳的掺入而导致原子氢的扩散系数更低,因此网络中原子氢的温度稳定性更高。F-ISE[5]还报道了,使用富C的a-SiC(不含隧穿氧化物)作为背面的钝化层,在工业烧制步骤后具有有前途的氢化品质。然而,在此,μc-SiCx与隧穿氧化物一起仅用作钝化的正面接触件。
先前已经描述的具有浓度梯度的SiNx:H覆盖层既可以用作覆盖层又可以用作抗反射层。之前的工作[6]表明,富Ni的SiNx使氢逸出峰从550℃移至800℃。800℃的温度被认为是重要温度,因为金属化期间的烧制过程通常在该温度下进行。通过具有N浓度梯度的SiNx层堆叠体(富Si的SiNx/SiN/富N的SiNx),可以进一步大幅减少普遍的氢逸出。通过使用具有浓度梯度的SiNx,由于N-H键的高键能和致密密度,可以在高温下防止氢逸出。在约400℃以上的高温时从c-Si(n)/SiO2界面或氢化μc-SiC中逸出的氢保留在电池中,并可以再次扩散到c-Si(n)/SiO2界面中并有助于氢化。在图1所示的实施例中,使用硼扩散发射极(p+发射极),这是被证明有利的标准技术。
图2与根据图1的实施方案的不同之处在于太阳能电池背面上的层堆叠体的布置,其包括硅氧化物层SiOx 9、多晶硅(p)层10和之前已经描述的具有不同Si和N浓度区段的由SiNx:H制成的覆盖层7。通过SiOx隧穿氧化物/多晶硅(p)堆叠体,使金属接触件钝化,由此可以有利地导致金属-半导体界面处重组的优化。
图3与根据图1的实施方案的不同之处在于太阳能电池背面上的层堆叠体的布置,其包括硅氧化物层SiOx 9、p型μc-SiCx层11和之前已经描述的由SiNx:H制成的覆盖层7。为了减少否则根据现有技术使用的多晶硅的寄生吸收,在该实施方案中有利地还在背面上使用p型μc-SiCx层11,由此能够在两面上实现μc-SiCx钝化接触件(见图3)。太阳能电池的这种实施方案对于制造方法是有利的,因为SiNx和SiC都可以通过HWCVD来沉积,并且因此简化了制造过程。
下面示例性地描述用于施加由氧化硅制成的隧穿氧化物层、碳化硅层和氮化硅层的方法和各自设定的参数:
1.施加由SiO2制成的隧穿氧化物层,其层厚度为1.5nm
a)臭氧氧化:
表1:通过臭氧氧化施加由SiO2制成的隧穿氧化物层的合适工艺参数
HCl O3 H2O pH 温度 时间
1-10ml 5-30ppm 16000ml 1-5 室温-50℃ 5-30min
臭氧氧化方法是本领域技术人员已知的方法并且例如描述在[8]中。
b)食人鱼氧化:
表2:通过食人鱼氧化施加由SiO2制成的隧穿氧化物层的合适工艺参数
H2O2:H2SO4 温度 时间
3:1-1:2 50-150℃ 5-30min
食人鱼氧化方法是本领域技术人员已知的方法并且例如描述在[9]中。
AlOx隧穿氧化物层和SiOx隧穿氧化物层都可以通过ALD(原子层沉积)方法来制备。然而,为此的前体却不同。对于SiOx,前体是三(二甲基氨基)硅烷(TDMAS)和氧气,而对于AlOx,使用三甲基铝(Al(CH3)3,TMA)和去离子水(H2O,DIW)。这些方法对于本领域技术人员而言是已知的,例如对于ALD-AlOx从[12]已知和对于ALD-SiOx从[13]已知。
2.施加SiC层,带其隙为2.3-2.9eV、暗电导率为1E-12至0.9S/cm SiC层的光学和电学性质在施加期间主要受灯丝温度的影响[10;11]。
方法:热丝化学气相沉积(Hot wire chemical vapor deposition=HWCVD)
表3:使用HWCVD施加SiC层的工艺参数
3.施加SiNx层,带其隙为2.6-5.7eV、632nm处的折射率为1.8-3
介电材料
人们认为,在宽的沉积条件范围内,SiNx层的光学性质更取决于[Si-H]与[N-H]的比率,而非[Si-N]、[Si-H]和[N-H]的比率[7]。
方法:等离子体增强化学气相沉积(Plasma Enhanced Chemical VaporDeposition=PECVD)
表4:使用PECVD施加SiNx覆盖层的工艺参数,该覆盖层具有包含不同Si或N含量的区域:
*:具有如下N/Si比的三层,其中富Si为0.4;Si~N为0.9,富Ni为1.1。
文献
[1]Lai,Y.等人,In Situ Doping ofNitrogen in<110>-Oriented Bulk3CSiC byHalide Laser Chemical Vapour Deposition.Materials(Basel,Switzerland),2020.13(2):第410页.
[2]Latha,H.K.E.,A.Udayakumar和V.Siddeswara Prasad,Effect of NitrogenDoping on the Electrical Properties of 3C-SiC Thin Films for High-TemperatureSensors Applications.Acta Metallurgica Sinica(English Letters),2014.27(1):第168-174页.
[3]Haschke,J.等人,Lateral transport in silicon solar cells.Journal ofApplied Physics,2020.127(11):第114501页.
[4]Ehling,C.等人Electronic surface passivation of crystalline siliconsolar cells by a-SiC:H.201035th IEEE Photovoltaic SpecialistsConference.2010.
[5]Glunz,S.W.等人Surface Passivation of Silicon Solar Cells usingAmorphous Silicon Carbide Layers.2006IEEE 4th World Conference onPhotovoltaic Energy Conference.2006.
[6]Jafari,S.等人,Composition limited hydrogen effusion rate of a-SiNx:H passivation stack.AIP Conference Proceedings,2019.2147(1):第050004页.
[7]Yimao Wan,Keith R.McIntosh和Andrew F.Thomson,Characterisation andoptimisation ofPECVD SiNx as an antireflection coating andpassivation layerfor silicon solar cells,AIP Advances 3,032113(2013);https://doi.org/10.1063/1.47951083,032113
[8]Kaifu Qiu等人,Development of Conductive SiCx:H as a NewHydrogenation Technique for Tunnel Oxide Passivating Contacts,ACS AppliedMaterials&Interfaces 2020 12(26),29986-29992;DOI:10.1021/acsami.0c06637
[9]Malte等人,Wet-Chemical Preparation of Silicon Tunnel Oxidesfor Transparent Passivated Contacts in Crystalline Silicon Solar Cells,ACSApplied Materials&Interfaces 201810(17),14259-14263;DOI:10.1021/acsami.8b02002
[10]M.等人,Development of a Transparent Passivated Contact asa Front Side Contact for Silicon Heterojunction Solar Cells,2018IEEE 7thWorld Conference on Photovoltaic Energy Conversion(WCPEC)(A Joint Conferenceof 45th IEEE PVSC,28th PVSEC&34th EUPVSEC),Waikoloa Village,HI,2018,第3468-3472页,doi:10.1109/PVSC.2018.8548008
[11]M.等人,Optimization ofTransparent Passivating Contact forCrystalline Silicon Solar Cells,IEEE Journal ofPhotovoltaics,第10卷,第1期,第46-53页,2020年1月,doi:10.1109/JPHOTOV.2019.2947131
[12]Hamchorom Cha,Hyo Sik Chang,Passivation performance improvementofultrathin ALD-Al2O3 film by chemical oxidation,H.Cha,H.S.Chang/Vacuum 149(2018)180-184
[13]Lozach,Shota Nunomura,Koji Matsubara,Double-sided TOPConsolar cells on textured wafer with ALD SiOx layer,Solar Energy Materials andSolar Cells 207(2020)110357
尽管已经在本申请的前面部分中借助特定实施例详细描述和说明了本发明,但是该说明书和附图应当仅被视为实例,而并不由此具有限制性效果。应当认为,本领域技术人员会并可以在其本身专业知识的范围内对以下权利要求作出进一步的改变和修改,这些改变和修改也落入权利要求的保护范围之内。特别地,具有各实施例的所提到的特征的各种类型的组合的其它实施方案也包括在本发明的范围内。

Claims (21)

1.用于具有隧穿氧化物钝化接触件的太阳能电池的层结构,其由至少一个隧穿氧化物层和x≥0.5的μc-SiCx层组成。
2.根据前述一项权利要求所述的层结构,其特征在于,所述μc-SiCx层是氢化μc-SiCx:H(n)层。
3.根据前述权利要求中任一项所述的层结构,其特征在于,所述μc-SiCx层具有30至200nm的层厚度。
4.根据前述权利要求中任一项所述的层结构,其特征在于,所述μc-SiCx层具有2.3至2.9eV的带隙。
5.根据前述权利要求中任一项所述的层结构,其特征在于,将碳添加到所述μc-SiCx层中。
6.根据前述权利要求中任一项所述的层结构,其特征在于,将碳添加到所述μc-SiCx层中,其中Si与C的比率为1.0比≥0.7至1.0。
7.根据前述权利要求中任一项所述的层结构,其特征在于,所述隧穿氧化物层是x=1-2的硅氧化物层SiOx或x=1-2的铝氧化物层AlOx。
8.根据前述权利要求中任一项所述的层结构,其特征在于,所述隧穿氧化物层是层厚度为1-2nm的硅氧化物层SiOx或铝氧化物层AlOx。
9.根据前述权利要求中任一项所述的层结构,其特征在于,所述隧穿氧化物层是通过食人鱼氧化、通过热氧化或通过臭氧氧化施加的硅氧化物层SiOx,或是通过ALD生长的硅氧化物层SiOx或铝氧化物层AlOx。
10.根据前述权利要求中任一项所述的层结构,其特征在于,所述层结构布置在所述太阳能电池的正面上。
11.根据前述权利要求中任一项所述的层结构,其特征在于,所述层结构是透明的。
12.根据前述权利要求中任一项所述的层结构,其特征在于,所述层结构布置在所述太阳能电池的正面和背面上。
13.根据前述权利要求中任一项所述的层结构,其特征在于,至少一个覆盖层施加到所述μc-SiCx层上。
14.根据前述权利要求中任一项所述的层结构,其特征在于,至少一个覆盖层施加到所述μc-SiCx层上,所述覆盖层由防止氢逸出的材料组成。
15.根据前述权利要求中任一项所述的层结构,其特征在于,至少一个覆盖层施加到所述μc-SiCx层上,所述覆盖层由x=0.3至1.5的SiNx:H层组成。
16.根据前述一项权利要求所述的层结构,其特征在于,所述SiNx:H覆盖层具有在Si含量和N含量方面的浓度梯度。
17.根据前述两项权利要求中任一项所述的层结构,其特征在于,所述覆盖层被分成在Si含量和N含量方面的三个浓度区段。
18.具有隧穿氧化物钝化接触件的太阳能电池,其包括至少一个结晶n或p掺杂硅层,根据前述权利要求中任一项所述的层结构作为正面接触件或作为正面接触件和背面接触件施加到该硅层上。
19.制造根据权利要求1至17中任一项所述的层结构的方法,其具有以下步骤:
·提供包括硅层的衬底层
·将隧穿氧化物层施加到衬底层上
·将n或p掺杂的μc-SiCx:H层施加到隧穿氧化物层上。
20.根据前述一项权利要求所述的方法,其特征在于,将覆盖层施加到所述μc-SiCx:H层上。
21.根据前述一项权利要求所述的方法,其特征在于,将至少一个覆盖层施加到所述μc-SiCx层上,所述覆盖层由防止氢逸出的材料组成。
CN202180092347.1A 2021-02-02 2021-12-15 用于太阳能电池的钝化和导电层结构 Pending CN116848645A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102021000501.5A DE102021000501A1 (de) 2021-02-02 2021-02-02 Passivierende und leitende Schichtstruktur für Solarzellen
DE102021000501.5 2021-02-02
PCT/DE2021/000205 WO2022167018A1 (de) 2021-02-02 2021-12-15 Passivierende und leitende schichtstruktur für solarzellen

Publications (1)

Publication Number Publication Date
CN116848645A true CN116848645A (zh) 2023-10-03

Family

ID=79025115

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202180092347.1A Pending CN116848645A (zh) 2021-02-02 2021-12-15 用于太阳能电池的钝化和导电层结构

Country Status (4)

Country Link
EP (1) EP4289009A1 (zh)
CN (1) CN116848645A (zh)
DE (1) DE102021000501A1 (zh)
WO (1) WO2022167018A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117712199A (zh) 2022-09-08 2024-03-15 浙江晶科能源有限公司 太阳能电池及光伏组件
CN117238987A (zh) * 2022-09-08 2023-12-15 浙江晶科能源有限公司 太阳能电池及光伏组件

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11257974B2 (en) * 2016-12-12 2022-02-22 Ecole polytechnique fédérale de Lausanne (EPFL) Silicon heterojunction solar cells and methods of manufacture

Also Published As

Publication number Publication date
DE102021000501A1 (de) 2022-08-04
WO2022167018A1 (de) 2022-08-11
EP4289009A1 (de) 2023-12-13

Similar Documents

Publication Publication Date Title
US8933525B2 (en) Semiconductor apparatus and method of fabrication for a semiconductor apparatus
JP6671888B2 (ja) 太陽電池及びその製造方法
JP6352939B2 (ja) 酸窒化シリコン誘電層を備える太陽電池のエミッタ領域
Luderer et al. Passivating and low-resistive poly-Si tunneling junction enabling high-efficiency monolithic perovskite/silicon tandem solar cells
US8283559B2 (en) Silicon-based dielectric stack passivation of Si-epitaxial thin-film solar cells
US20140251424A1 (en) Solar cell
CN116848645A (zh) 用于太阳能电池的钝化和导电层结构
CN112310232B (zh) 太阳电池及生产方法、电池组件
CN112951927A (zh) 太阳能电池的制备方法
JP2018195827A (ja) 太陽電池及びその製造方法
Tao et al. Carrier selective tunnel oxide passivated contact enabling 21.4% efficient large-area N-type silicon solar cells
CN113903833A (zh) 一种TOPCon电池LPCVD工艺
CN117476796A (zh) 一种TOPCon电池及TOPCon电池的制备方法
KR100994924B1 (ko) 태양전지 및 그 제조방법
CN113488547B (zh) 隧穿氧化层钝化结构及其制作方法与应用
CN118281095A (zh) 光伏电池钝化结构、光伏电池及其制备方法、光伏组件
CN102738248B (zh) 光电组件及其制造方法
KR102286289B1 (ko) 태양 전지
CN115274927A (zh) 一种TOPCon太阳能电池的制作方法
CN111477696B (zh) 一种基于钝化接触的太阳能电池片及其制备方法
CN112349801B (zh) 叠层电池的中间串联层及生产方法、叠层电池
CN114744053A (zh) 太阳能电池及生产方法、光伏组件
CN111864014A (zh) 一种太阳能电池及其制造方法
CN115274871B (zh) 一种应用于隧穿型太阳能电池上的接触结构、带有该接触结构的太阳能电池及其制造方法
CN221352770U (zh) 电池中间层结构及电池片

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination