CN116808006A - 兼具止血、抗炎、促伤口愈合的纤维膜及制备方法与应用 - Google Patents

兼具止血、抗炎、促伤口愈合的纤维膜及制备方法与应用 Download PDF

Info

Publication number
CN116808006A
CN116808006A CN202311091118.5A CN202311091118A CN116808006A CN 116808006 A CN116808006 A CN 116808006A CN 202311091118 A CN202311091118 A CN 202311091118A CN 116808006 A CN116808006 A CN 116808006A
Authority
CN
China
Prior art keywords
mofs
tax
efms
wound healing
hemostatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202311091118.5A
Other languages
English (en)
Other versions
CN116808006B (zh
Inventor
丁传波
赵婷
刘兴龙
王宁
杨敏
马立娜
高杨
郑毅男
刘文丛
洪波
张桐铜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin Agricultural Science and Technology College
Original Assignee
Jilin Agricultural Science and Technology College
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin Agricultural Science and Technology College filed Critical Jilin Agricultural Science and Technology College
Priority to CN202311091118.5A priority Critical patent/CN116808006B/zh
Publication of CN116808006A publication Critical patent/CN116808006A/zh
Application granted granted Critical
Publication of CN116808006B publication Critical patent/CN116808006B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/32Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. carbomers, poly(meth)acrylates, or polyvinyl pyrrolidone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/34Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6949Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit inclusion complexes, e.g. clathrates, cavitates or fullerenes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/70Web, sheet or filament bases ; Films; Fibres of the matrix type containing drug
    • A61K9/7007Drug-containing films, membranes or sheets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/20Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing organic materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • A61L15/24Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • A61L15/26Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • A61L15/28Polysaccharides or their derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/44Medicaments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/04Antihaemorrhagics; Procoagulants; Haemostatic agents; Antifibrinolytic agents
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/20Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials
    • A61L2300/216Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials with other specific functional groups, e.g. aldehydes, ketones, phenols, quaternary phosphonium groups
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/404Biocides, antimicrobial agents, antiseptic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/41Anti-inflammatory agents, e.g. NSAIDs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/412Tissue-regenerating or healing or proliferative agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/80Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special chemical form
    • A61L2300/802Additives, excipients, e.g. cyclodextrins, fatty acids, surfactants

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Hematology (AREA)
  • Materials Engineering (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Inorganic Chemistry (AREA)
  • Diabetes (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Dermatology (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明属于医药领域,涉及伤口敷料,具体涉及一种兼具止血、抗炎、促伤口愈合的纤维膜及制备方法与应用,该纤维膜是环糊精金属有机框架CD‑MOFs与有机聚合物结合所形成的MOF‑聚合物纤维复合膜,环糊精金属有机框架CD‑MOFs的内腔负载二氢槲皮素TAX;有机聚合物为聚己内酯PCL、聚乙烯吡咯烷酮PVP,PCL与PVP、负载TAX的CD‑MOFs的重量比为10‑15:1:1,负载TAX的CD‑MOFs分散在PVP有机溶液中,与PCL有机溶液混匀后经静电纺丝处理而成。该纤维膜是由疏水材料所形成的亲水表面的纤维膜,兼具止血、抗炎、抗菌、促进创面愈合的作用,在糖尿病伤口的治疗中具有很大的潜力。

Description

兼具止血、抗炎、促伤口愈合的纤维膜及制备方法与应用
技术领域
本发明属于医药领域,涉及伤口敷料,具体涉及一种兼具止血、抗炎、促伤口愈合的纤维膜及制备方法与应用。
背景技术
糖尿病伤口治疗在临床上仍面临着重大挑战,过度炎症,持续出血和伤口渗出液堆积是糖尿病伤口普遍遇到的问题,会妨碍细胞增殖和扰动组织重构,使得糖尿病伤口难以愈合。目前,对糖尿病足溃疡患者的治疗主要是清创、自体移植以及多种敷料的使用,但对持续出血、细菌感染、炎症产生的治疗相对单一,治疗效果并不理想。
中草药越来越受欢迎,许多研究都集中在天然活性成分,研究其抗菌、抗炎等性能,以用于各种再生医学和组织工程。二氢槲皮素(TAX)作为一种类黄酮类化合物,具有抗菌、抗炎、抗氧化、抗衰老、保肝的作用。有研究表明,二氢槲皮素可以通过抑制PI3K/Akt/mTOR信号通路的激活,促进自噬相关蛋白的表达,也可以通过激活Nrf2途径增强细胞的抗氧化能力、减少促炎症细胞因子的表达,促进皮肤修复。然而,二氢槲皮素的水溶性较差,在生理条件下显示出低生物利用度和有限的临床应用。因此,提高二氢槲皮素的生物利用度是利用二氢槲皮素促进伤口愈合的重要前提条件。
此外,生物材料的亲水性一般会影响其对受损组织周围生物液体的润湿性。大多数纤维膜都是为了吸收血液,促进凝块形成而设计的,但具有快速吸收特性的亲水性纤维会使垫子充满血液,垫子中的凝血会增加去除伤口敷料的难度。而疏水材料所形成的超疏水表面有利于凝血块形成,可以防止外界液体的意外吸收,同时易于剥离而不引起凝块损伤和继发性出血,但不利于渗出物的收集,而且往往会破坏生物液体中的生长因子,且难以附着在伤口上。因此,开发一种兼具止血、抗菌、抗炎、促进伤口愈合的由疏水材料所形成的亲水表面的纤维膜是非常重要的。
发明内容
鉴于上述技术问题,本发明的目的在于提供一种兼具止血、抗炎、促伤口愈合的纤维膜,该电纺纤维膜是由疏水材料所形成的亲水表面的纤维膜,兼具止血、抗炎、抗菌、促进创面愈合的作用,在糖尿病伤口的治疗中具有很大的潜力。
为实现上述目的,本发明采用如下技术方案:
一种兼具止血、抗炎、促伤口愈合的纤维膜,该电纺纤维膜是金属-有机框架与有机聚合物结合所形成的MOF-聚合物纤维复合膜,所做的改进是,所述金属-有机框架为环糊精金属有机框架CD-MOFs,所述环糊精金属有机框架CD-MOFs的内腔负载二氢槲皮素TAX;所述有机聚合物为聚己内酯PCL、聚乙烯吡咯烷酮PVP,所述聚己内酯PCL与聚乙烯吡咯烷酮PVP、负载二氢槲皮素TAX的环糊精金属有机框架CD-MOFs的重量比为10-15:1:1,负载二氢槲皮素TAX的环糊精金属有机框架CD-MOFs分散在聚乙烯吡咯烷酮PVP有机溶液中,与聚己内酯PCL有机溶液混匀后经静电纺丝处理而成。
作为本发明的优选,所述二氢槲皮素与环糊精金属有机框架的重量比为2:3-5,所述环糊精金属有机框架CD-MOFs为规则的立方晶体的纳米颗粒,边缘锋利。
本发明还提供一种兼具止血、抗炎、促伤口愈合的纤维膜的制备方法,该方法包括以下步骤:
步骤1、将二氢槲皮素TAX掺入环糊精金属有机框架CD-MOFs的内腔,制备TAX@CD-MOFs;
步骤2、将10-15重量份的聚己内酯PCL溶于有机溶液中,得到PCL有机溶液;
步骤3、将1重量份的聚乙烯吡咯烷酮PVP和1重量份的TAX@CD-MOFs溶于有机溶液中,通过机械搅拌将TAX@CD-MOFs分散在PVP有机溶液中,然后以脉冲模式超声处理,得到TAX@CD-MOFs的PVP分散液;
步骤4、TAX@CD-MOFs的PVP分散液和PCL有机溶液混合,搅拌过夜,得到均一溶液,进行静电纺丝处理,得到兼具止血、抗炎、促伤口愈合的纤维膜。
作为本发明的优选,步骤1中所述TAX@CD-MOFs的制备方法为:
(1)将γ-CD和KOH溶解在蒸馏水中,加入甲醇,密封于玻璃容器内,微波加热至溶液澄清,加入含有PEG20000的甲醇溶液,4℃快速结晶,静置,离心收集结晶,并用甲醇和乙醇洗涤,二氯甲烷浸泡,真空干燥得CD-MOFs;
(2)将二氢槲皮素乙醇溶液和CD-MOFs置于锥形瓶中,用恒温水浴振荡器在50℃下振荡,得到非均相溶液,通过离心回收载药复合物,用乙醇多次洗涤固体,真空干燥得TAX@CD-MOFs。
作为本发明的优选,步骤2中聚己内酯PCL溶于二氯甲烷中,步骤3中聚乙烯吡咯烷酮PVP和TAX@CD-MOFs溶于二氯甲烷中。
作为本发明的优选,步骤3中以脉冲模式超声处理3min,具体为:30秒为一个脉冲,每个脉冲后延迟30秒。
本发明在进行试验发现,PVP有机溶液与PCL有机溶液混匀后纺丝制成的纤维膜具有显著的止血效果,且负载CD-MOFs或TAX@CD-MOFs纳米颗粒的纤维膜的止血效果更优;因此,兼具止血、抗炎、促伤口愈合的纤维膜可以作为止血膜在体内或体外伤口止血药物中应用。
本发明在进行试验时发现,PVP有机溶液与PCL有机溶液制得的电纺纤维膜中添加CD-MOFs可以提高伤口愈合率,且CD-MOFs与TAX协同作用,促进肉芽组织生长,增强胶原合成,促进伤口重塑;因此,兼具止血、抗炎、促伤口愈合的纤维膜可以在制备促进创面胶原富集的药物中应用;也可以在制备促进创面肉芽组织生成的药物中应用。
本发明的优点和有益效果:
(1)本发明提供的电纺纤维膜通过添加CD-MOFs,使疏水材料EFMs的表面为亲水层,该电纺纤维膜集亲水伤口敷料、疏水伤口敷料优势于一体,表面的亲水层可以使电纺纤维膜粘贴在伤口处,且有利于伤口渗出物的收集,防止伤口渗出液积聚,防止环境过度湿润,促进新细胞外基质 ECM的形成,促进伤口愈合,而整体为疏水材料的设计方便使用后去除伤口敷料。
(2)本发明通过浸渍法将TAX装载到CD-MOFs中,浸渍法得到的TAX@CD-MOFs在水中的溶解度相较TAX提高12倍,显著提高了TAX的溶解度,增加了TAX的生物利用度,提高了电纺纤维膜促进伤口愈合的治疗效果。
(3)本发明TAX@CD-MOFs分散在PVP有机溶液中后与PCL有机溶液混匀后纺丝制成纤维膜,此种设计能够控制TAX按一定的速率持续释放,达到长久持续抗炎、抗菌、促修复的效果,从而加速伤口愈合。
(4)本发明提供的电纺纤维膜安全,具有良好的热稳定性,无细胞毒性,生物相容性好,且具有抗氧化特性,可以减轻伤口部位ROS的损害,降低糖尿病伤口中的炎症反应,促进血管生成及伤口收缩,加速皮肤再生,加速伤口愈合。
(5)本发明通过小鼠断尾模型和肝脏止血模型实验发现,PVP有机溶液与PCL有机溶液混匀后纺丝制成的纤维膜具有显著的止血效果,且负载CD-MOFs或TAX@CD-MOFs的纤维膜的止血效果更优,考虑是因为立方的CD-MOFs可以有效地靶向活化的血小板,通过增加与活化的血小板的碰撞频率和接触表面积来增强血小板聚集和止血,因此所提供的电纺纤维膜可以作为止血膜用于体内或体外伤口止血,可以有效控制出血量,大大缩短止血时间。
(6)本发明在伤口愈合实验中发现,PT组伤口愈合率高于PM组,PM组高于PP组,证明添加CD-MOFs的电纺纤维膜可以促进肉芽组织生成、胶原富集,提高伤口愈合率;而添加装载TAX的CD-MOFs的电纺纤维膜伤口愈合效果最好,21天伤口愈合率高达99%,考虑是装载TAX的CD-MOFs吸收伤口渗出液后,CD-MOFs通过扩散作用达到伤口位置,同时级联释放TAX,CD-MOFs与TAX协同作用加速了糖尿病伤口愈合。
(7)本发明提供的电纺纤维膜兼具止血、抗炎、抗菌、促进创面愈合的作用,可以同时解决糖尿病伤口过度炎症,持续出血和伤口渗出液堆积的问题,促进糖尿病伤口血管生成及伤口收缩,加速伤口愈合,在糖尿病伤口的治疗中具有很大的潜力。
附图说明
图1是本发明制备的CD-MOFs和TAX@CD-MOFs的表征;其中,A (a,b) 是扫描电镜(SEM)图像,放大倍数为20000倍,标尺:500nm;(B)X-射线衍射(XRD);(C)傅里叶变换红外光谱(FI-IR);(D)N2吸附-解吸曲线;(E)紫外可见光谱全波长扫描(UV-Vis);(F)热重分析(TGA);(G)TAX和TAX@CD-MOFs在水中(25℃)的溶解度,*p<0.05,**p<0.001。
图2是本发明制备的PP EFMs、PM EFMs和PT EFMs的特性分析;A(a,b,c)是扫描电镜(SEM)图像,放大倍数为1000倍,标尺:10um;(B)傅里叶变换红外光谱(FI-IR);(C)水接触角的图像;(D)水接触角的量化;(E)热重分析(TGA);(F)吸水率;(G)水蒸气透过率;(H)孔隙率;(I)TAX@CD-MOFs和PT的累积药物释放。
图3是本发明制备的PP EFMs、PM EFMs和PT EFMs的的体外活性;其中,(A)溶血试验;(B)EFMs对ABTS(a)和DPPH(b)的清除能力;(C)对大肠杆菌和金黄色葡萄球菌的抑制图像;(D)对大肠杆菌的抑制作用;(E)对金黄色葡萄球菌的抑制作用;(F)CD-MOFs和TAX@CD-MOFs的细胞生存能力;(G)PP、PM和PT的细胞生存能力, *p<0.05, **p<0.01。
图4是本发明制备的PP EFMs、PM EFMs和PT EFMs的体内止血性能;其中,(A) 小鼠肝脏和尾巴止血模型中的出血伤口照片;(B) 肝脏伤口的出血量;(C) 肝脏伤口的出血时间;(D) 尾巴的出血量;(E) 尾巴伤口的出血时间,*p<0.05, 和 **p<0.01。
图5是本发明制备的PP EFMs、PM EFMs和PT EFMs通过局部治疗对2型糖尿病(T2D)的皮肤伤口愈合的影响;其中,(A)伤口愈合实验示意图;(B)伤口愈合率;(C)NC、T2D、PP、PM、PT组的伤口痕迹;(D)第0、3、7、14和21天的伤口代表图像,*p<0.05, 和 **p<0.01。
图6 是皮肤伤口的组织病理学染色;其中,(A)代表性的H&E染色图像;(B)代表性的Masson染色图像。
图7是本发明制备的PP EFMs、PM EFMs和PT EFMs的免疫组化;其中,(A)CD68、VEGF、PCNA和α-SMA的免疫组化图像(比例尺:200µm);(B)CD68的统计分析;(C)VEGF的统计分析;(D)PCNA的统计分析;(E)α-SMA的统计分析,水平线表示这些组之间没有显著差异,*p<0.05, 和 **p<0.01。
图8是免疫印记分析图;其中,(A) EFMs通过Sirt-1/NF-κB途径改善糖尿病大鼠伤口愈合的机制示意图;(B) Sirt-1、NF-κB、MMP-9、TNF-α、IL-1β和β-actin的代表性蛋白带;(C) Sirt-1/β-actin的定量分析; (D) NF-κB/β-actin的定量分析;(E) IL-1β/β-actin的定量分析;(F) TNF-α/β-actin的定量分析; (G) MMP-9/β-actin的定量分析,*p<0.05, 和**p<0.01。
具体实施方式
下面结合附图和具体实施例来进一步说明本发明,但本发明的实施方式不限于此。对于未特别注明的工艺参数,可参照常规技术进行。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。
一、电纺纤维膜的制备
(1) CD-MOFs的制备
将γ-CD(324mg)和KOH(112mg)溶解在蒸馏水(10mL)中,加入6mL甲醇,密封于玻璃容器内,微波(50℃,100 W,10 min)加热10min,溶液澄清,快速加入16 mL含有128 mgPEG20000甲醇的溶液,低温(4℃)快速结晶,静置1h,离心收集结晶,并用甲醇和乙醇洗涤两次,二氯甲烷浸泡三天,50℃真空干燥6h。
(2)TAX@CD-MOFs载药复合物的制备
采用浸渍法制备TAX@CD-MOFs载药复合物。将二氢槲皮素乙醇溶液10ml (2mg/ml)和30mg CD-MOFs置于50ml锥形瓶中,用恒温水浴振荡器在50℃下振荡12小时,得到非均相溶液。通过离心回收载药复合物,用乙醇多次洗涤固体,并在50℃下真空干燥过夜。
(3)TAX@CD-MOFs/PCL/PVP电纺纤维膜(EFMs)的制备
将1g PCL溶于4mL二氯甲烷中,得到PCL溶液;0.1g PVP和0.1g TAX@CD-MOFs溶于3mL二氯甲烷中,通过机械搅拌将CD-MOFs分散在PVP溶液中,然后以脉冲模式(30秒脉冲,每个脉冲后延迟30秒,以避免样品过热)超声处理3min。随后,CD-MOFs的PVP分散液和PCL溶液混合,搅拌过夜,得到均一溶液;进行静电纺丝处理,得到EFMs,命名为PT EFMs (TAX@CD-MOFs/PCL/PVP EFMs)。
本实施例参照上述方法还制备了PM EFMs、PP EFMs;其中,由PCL、PVP和CD-MOFs纺丝制备的EFMs命名为PM EFMs (CD-MOFs/PCL/PVP EFMs),由PCL和PVP纺丝制备的EFMs命名为PP EFMs (PCL/PVP EFMs)。
二、本申请对上述制备的TAX@CD-MOFs载药复合物的载药量进行检测,对上述PPEFMs、PM EFMs、PT EFMs进行表征和测试,具体情况如下:
(1)载药率
将50mg TAX@CD-MOFs溶于100mL水和甲醇(3:2 v/v)混合溶液中,通过高效液相测定二氢槲皮素浓度,确定CD-MOFs内有效负载的TAX总量。根据下式计算了TAX@CD-MOFs的TAX负载能力( LC );
(2)表征
通过扫描电镜(SEM)观察纳米颗粒和EFMs的形貌,使用Image J进行图像分析。傅里叶变换红外光谱(FT-IR)测定纳米颗粒和EFMs的组成成分,扫描波数为500-4000cm-1,分辨率为2cm-1。对纳米颗粒采用装有Cu密封管的X射线衍射仪进行X射线衍射( XRD )分析。通过热重分析( TGA )测定纳米颗粒和EFMs的热稳定性。利用接触角测角仪在每个EFMs上5个不同位置上对电纺的表面润湿性进行水接触角( WCA )分析。
(3)吸水率、水蒸气透过率(WVTR )和孔隙率
3.1 将EFMs置于37℃的磷酸盐缓冲液( PBS , p H = 7.4 )中浸泡24 h,用滤纸擦去表面水后称重,通过以下方程计算吸水率:
(2);
其中,M0为EFMs初始质量,Mt为具有溶胀平衡的EFMs的质量。
3.2 根据ASTM E96标准方法测定了EFMs的WVTR。每张薄膜安装在装有PBS(pH=7.4)的渗透杯( 直径=3.60厘米 )口上,液面与样品之间的距离为 5±1 mm。容器、容器和水的重量记为 W1。将该装置转移到 37°C 的干燥器中,培养 24 小时后称重(W2)。WVTR由下式计算:
(3);
其中,t为时间( d ),A为杯口面积( m2)。
3.3 采用乙醇替代法测试了纤维的孔隙率。测量杯中装满乙醇,称重(m1)。将EFMs称重(ms)并浸入乙醇中使EFMs孔隙饱和。然后,将烧杯再次充满乙醇,称重(m2)。随后,EFMs迅速取出,剩余溶液和杯子的重量记为m 3 。通过以下方程计算孔隙率:
(4);
其中,Vp为孔隙体积,Vs为纳米EFMs的体积。
(4)体外药物释放
将10 mg样品置于10 mL PBS(pH=7.4)中,并在37°C和100 r/min的恒温摇床中摇晃预定的时间间隔。取出1mL释放介质进行释放分析,并用等量的新鲜介质溶液代替。用HPLC测量TAX的释放。TAX的释放百分比根据以下公式计算:
(5);
Vd:PBS的位移体积,3 mL
V:释放液PBS的体积,3mL
Ci:第i次交换样品时释放液中TAX的浓度(μg/mL)。
ms:用于释放的给药材料中TAX的质量(μg)
n:PBS的更换次数;
(5)体外活性测定
5.1溶血实验
EFMs置于 1.5 mL 离心管中,用生理盐水溶液洗涤三次,除去杂质,然后在离心管中加入 1 mL 生理盐水溶液,在 37℃下将EFMs浸泡30 分钟。然后将 20 μL 稀释新鲜全血加入试管中,37℃孵育 60 min。将 20 μL稀释新鲜全血分别与 1 m L 生理盐水溶液和 1mL 去离子水在没有膜样品的情况下孵育,作为阴性和阳性对照。3000 rpm 下离心 10min,用酶标仪记录上清液在 541 nm 处的吸光度。溶血速率使用以下方程计算:
(6);
其中,ODs,ODpc和ODnc分别为样品、阳性样对照、阴性对照的吸光度。
5.2 抗氧化活性测定
参照现有文献报道的方法,对DPPH自由基清除能力进行评价。首先将20mg EFMs浸泡于3mL DPPH ( 0.1mM )乙醇溶液中,室温避光孵育。随后用酶标仪在517nm处测定溶液的吸光度。ABTS分析时,将硫酸钾(2.45Mm)和ABTS溶液(7 mM)混合,室温避光孵育16 h,制备ABTS储备液。随后,取20 mgEFMs混合于3 mL ABTS阳离子溶液中,避光孵育,然后定期测定734 nm处的吸光度。采用以下方程计算EFMs的抗氧化活性:
(7);
其中,Ac和As分别为无EFMs样品和有EFMs样品的DPPH/ABTS溶液的吸光度。
5.3体外抗菌活性
所有样品的抗菌活性是通过CFU测试来评估的。简而言之,将不同的紫外线消毒的EFMs(200±5 mg)置于玻璃瓶中。细菌悬浮液(1×108CFU/mL) 然后,加入10 mL培养基,将100 μL细菌悬液涂在固体琼脂平板上,培养24小时,并拍照。计算可存活的菌落,然后用以下公式计算EFMs的抑菌效率:
(8);
其中,C和T分别为空白对照组和样品组的CFU数量。
5.4体外细胞毒性实验
纳米颗粒和EFMs对人永生化角质形成细胞( Hacat,购自上海富航生物技术有限公司)的细胞毒性进行了研究。每孔1×104个细胞密度的Hacat细胞用杜氏改良Eagle’s培养基( DMEM ),在96孔板中加入10%胎牛血清,37℃培养24h。然后,每孔加入100μL细胞悬液于平板上预培养24 h。将不同的纳米颗粒(CD-MOFs, TAX@CD-MOFs)和EFMs (PP, PM,PT )经紫外线照射灭菌30 min,并伴随浸入5 mL不含血清的培养基中37℃培养24 h,得到浸膏。然后每孔加入200μL提取液孵育24 h。然后加入100μL MTT溶液( 0.5 mg/mL )继续孵育4h。之后每孔加入100μL二甲基亚砜( DMSO ),在570 nm处测定吸光度,评价细胞活力。细胞接种于不含EFMs提取液的孔板上作为对照组。
(6) 体内止血性能
通过有代表性的小鼠肝脏表面创伤模型和小鼠尾部截肢模型评估EFMs的体内止血能力。雄性ICR小鼠被随机平均分为不同组。然后,用4%水合氯醛对雄性ICR小鼠进行标准麻醉,接着解剖,完全暴露出腹腔内的肝脏。用手术刀在肝脏表面形成一个大约0.4×0.4cm的活动出血伤口。用滤纸做一个0.2 cm宽的指示条,在距离指示条末端0.5 cm处画一条黑色指示线。出血后立即将指示条放在伤口上。然后,血液沿着指示条渗出。如果血液在3 s内渗出到黑线上,则说明出血的速度和初始出血量与随后的止血实验一致。完成出血评估后,立即将等量的PP EFMs、PM EFMs和PT EFMs放在伤口上进行止血实验。空白对照组只进行主动出血的创伤,不做任何止血处理。然后,记录总出血时间和出血量。
所有ICR小鼠的尾巴在距离末端5 cm处被切断。尾巴被垂直放置。观察血液滴落情况,以确保切割后的恒定速率,然后进行后续的止血实验。出血评估完成后,立即将活跃的出血尾巴放在含有相同数量的PP EFMs、PM EFMs和PT EFMs的尾巴上,以确保伤口表面与略微压缩的材料接触。断断续续地抬起尾巴,观察伤口出血情况。最后,记录停止出血的总时间和出血量。
(7)活体伤口愈合实验
诱发小鼠的2型糖尿病(T2D)。雄性ICR小鼠(购自长春市亿斯实验动物技术有限责任公司,18-20克)适应性饲养一周(22±2°C,湿度60±5%,昼夜光照交替)。一周后,给小鼠连续喂食五周高糖高脂饮食(HSFD;基本食物 49.5%、蔗糖 25%、猪油 15%、奶粉 5%、蛋黄粉5%、胆酸钠 0.5%)以诱导胰岛素抵抗,但对照(NC)组除外,该组喂食正常饲料。诱导T2D的方法是,首先在随后的三天中禁食禁水12小时,然后腹腔注射枸橼酸链脲佐菌素溶液(0.1 M,pH=4.3),剂量依次为80 mg/kg、70 mg/kg和60 mg/kg。第三次注射链脲佐菌素一周后,从尾静脉采血,采用微量全血试纸法直接检测空腹血糖。筛选出空腹血糖≥11.1 mM 的小鼠为T2D 小鼠。
将动物随机分为5组:对照组和T2D组(0.9%盐水)、PP组、PM组和PT组。
在小鼠背侧建立全厚的皮肤伤口。简而言之,通过注射水合氯醛10-12毫克/千克对动物进行麻醉。用脱毛膏除去小鼠背部的毛发,用0.9%的生理盐水擦拭皮肤,然后用剪刀在小鼠背部剪出一个1 cm的全皮伤口。对照组的伤口每天用0.9%生理盐水涂抹。治疗组分别用PP EFMs、PM EFMs和PT EFMs覆盖,每天更换伤口敷料。所有敷料在使用前都进行了0.5小时的紫外线消毒。在伤口治疗的第0、3、7、14和21天拍摄伤口照片,观察伤口面积(A),并使用以下公式计算伤口闭合率。
(9);
其中,A0是初始创伤面积,At是不同时间点的创伤面积。
(8) H&E和Masson
在伤口愈合的21天,从每组小鼠身上收集伤口皮肤样本,用10%多聚甲醛固定。将石蜡包埋的切片,脱蜡,用H&E和Masson对皮肤样本进行染色。在显微镜下观察图片,并收集和分析图像。
(9)免疫组化染色分析(IHC)
免疫组化染色是通过石蜡包埋的组织样本切片,去石蜡,用PBS清洗,并在室温下滴加3%BSA封闭30分钟后进行。然后,将按比例稀释的CD68、VEGF、PCNA和α-SMA的一级抗体滴加到切片上,并在湿盒中于4℃孵育过夜。用PBS清洗玻片后,在组织上滴入与一抗相应种类的二抗,在室温下孵育50分钟。最后,用新制备的3,3-二氨基联苯胺四盐酸盐(DAB)对切片进行染色,用苏木精对细胞核进行复染。进行显微镜检查,用Image J软件获取图像并分析光密度值。
(10)免疫印迹分析(WB)
通过免疫印迹法检测与NF-κB信号通路相关的Sirt-1、NF-κB、MMP-9、IL-1β和TNF-α的表达水平。从小鼠皮肤样本中提取总蛋白。来自不同组皮肤裂解物的等量总蛋白进行10%或12%十二烷基硫酸钠聚丙烯酰胺凝胶电泳(SDS-PAGE),然后电转到聚偏氟乙烯(PVDF)膜上。在室温下将膜与各种一级抗体孵育1.5小时。在用TBST洗涤几次后,将膜与二级抗体孵育1小时,借助增强化学发光(ECL)观察蛋白质带状试剂。每个条带的密度通过Image J软件的密度测量进行量化。
(11)统计分析
统计分析使用Origin 2022,GraphPad Prism 8, Image J和IBM SPSSStatistics软件进行。所有数据均以平均值±标准差表示。统计学意义由学生t检验和单因素方差分析确定。p<0.05被认为具有统计学意义( *p<0.05 , **p<0.01 )。
三、结果
(1)载药量计算
经计算,TAX载药量为176.23±5.62 mg/g。
(2)表征结果
2.1环糊精金属有机框架的表征
2.1.1 扫描电镜(SEM)
本申请通过微波辅助法快速合成环糊精-金属有机框架(CD-MOFs),其形成机理如下,当 CDs 分子处于碱性溶液体系时,其-OH 基团的质子 H 因静电作用而失去从而暴露出-O-,邻 C 上的 O 与之结合形成一个-OCCO-基团。此基团能与碱金属离子发生配位反应,因此 CDs 分子在碱金属离子的桥连作用下能够相互堆叠,不断延展,从而形成排列整齐规则,疏松多孔的 CD-MOFs。如图 1A(a)所示,所得CD-MOFs为规则的立方晶体,边缘锋利,形貌均一。其平均尺寸大小为218.03±70.32 nm。通过浸渍法封装药物。如图1A(b)所示,随着TAX的负载,TAX@CD-MOFs立方晶体的边缘略显平滑,虽仍能保持基本的立方体形态,但整体颗粒趋于不规整且表面较为粗糙,同时可看到细小团簇附着于晶体表面,可能是由于装载TAX所导致。其平均尺寸大小为205.68±69.06 nm。
2.1.2 X-射线衍射(XRD)
采用XRD图谱探究γ-CDs、TAX、CD-MOFs和TAX@CD-MOFs晶型。如图1B所示,CD-MOFs的 XRD 图谱与γ-CDs 有显著的差异。与γ-CDs相比,CD-MOFs的 XRD 图谱中的许多衍射峰发生了轻微的移动,甚至消失或被其他更清晰的特征峰取代。CD-MOFs在2θ=4.0°、5.6°、7.0°、13.3°、16.7°处有明显的衍射特征峰,所出现的变化表明,γ-CDs 分子与 K+离子相互作用形成更有序的晶体结构,这与模拟得到的XRD图谱中的特征峰位置一致,表明CD-MOFs成功制备。TAX在14.1°、15.3°、18.6°、19.1°、22.5°、25.1°、27.1°、29.7°等处存在明显的特征衍射峰,表明TAX为完整的晶体结构并具有良好晶型。而将其装载到CD-MOFs后,TAX的特征峰几乎完全消失,表明在负载过程中,由CD-MOF与TAX的相互作用,从而导致TAX从晶体状态变为无定形状态,并完全进入CD-MOF内部空腔,且TAX@CD-MOF与CD-MOF相比晶体特征峰强度略微有变化,这是由于负载TAX过程中的空间结构发生变化,但并未改变CD-MOFs的晶体结构。
2.1.3 傅里叶变换红外光谱分析(FI-IR)
如图1C所示,CD-MOFs和TAX@CD-MOFs的FT-IR谱图相似,CD-MOFs在3404 cm-1、2930cm-1、1637 cm-1、1413 cm-1、1157 cm-1、1081 cm-1、1028 cm-1、940 cm-1、为CD-MOFs的特征吸收峰,峰位与γ-CDs红外吸收峰基本一致说明保留了γ-CDs的空腔结构。少许峰位与γ-CDs相比发生了蓝移,尤其-OH峰最为明显,推测为K-O键配位所导致。而CD-MOFs和TAX@CD-MOFs的FT-IR谱图相似,TAX@CD-MOFs在1539 cm-1、1456 cm-1、1366 cm-1、1285 cm-1出现TAX的伸缩振动峰,表明TAX成功装载到CD-MOFs内。而TAX@CD-MOFs的红外图谱上没有显示TAX的其他特征峰,可能是由于TAX载入CD-MOFs网状结构中,TAX的特征峰被掩盖。
2.1.4 紫外可见光谱全波长扫描(UV-Vis )
如图1D所示,通过紫外-可见吸收光谱对TAX、TAX@CD-MOFs和CD-MOFs进行全波长扫描,TAX在290 nm处有一强烈吸收带,表明TAX的最大吸收波长为290 nm,而CD-MOFs在290nm波长下,没有观察到明显的吸收带,表明CD-MOFs并不会影响TAX吸光度大小。且TAX@CD-MOFs的特征吸收带仍在290 nm处,这是由TAX装载到CD-MOFs所致,且CD-MOFs并不改变TAX的吸收带。因此,TAX被成功封装在CD-MOFs的孔道内部,且CD-MOFs对TAX的吸收带并无影响。
2.1.5 N2吸附-脱附曲线
采用氮气吸附-脱附曲线分析CD-MOFs和TAX@CD-MOFs的比表面积。如图1E所示,CD-MOFs吸附等温线属于I型,吸附等温线在较低的相对压力下(P/P0<0.2)迅速上升,证明了微孔结构的存在。采用Langmuir 理论模型估计材料比表面积,CD-MOFs的比表面积约为615.81 m2/g。然而,TAX@CD-MOFs的吸附等温线在较低的相对压力下(P/P0<0.2)并无上升的曲线,表明TAX封装在CD-MOFs的微孔结构中,封装后的比表面积约为11.70 m2/g。
2.1.6 热重分析(TGA)
热分析的目的是确定TAX是否存在于CD-MOFs的孔体积中。如图1F所示,TAX在110℃下具有良好稳定性,但随后的曲线显示出其在整个过程中发生热分解,到590℃完全分解,剩余1.52%。CD-MOFs和TAX@CD-MOFs的TGA曲线显示最开始时发生第一个质量损失阶段,这可能是由于潮解或与框架内残留的溶剂蒸发导致的,而TAX@CD-MOFs的失重较低,这是由于TAX 占据部分孔道。在175-240℃, CD-MOFs和TAX@CD-MOFs发生第二个质量损失阶段,TAX@CD-MOFs 的失重速率更快,且具有较早的热降解和失重。这可能是由于CD-MOFs 孔体积存在TAX分子。这两种样品均表现出类似的热行为,但最终重量相差很大。CD-MOFs与TAX@CD-MOFs在800℃左右存在6.8%的质量差,这可能是负载的TAX热分解损失所导致的。
2.1.7 溶解度测定
如图1G所示,25℃下,TAX在水中的溶解度仅有4.78±0.44 mg/mL,而通过浸渍法得到的TAX@CD-MOFs,其在水中的溶解度增加到58.99±7.20 mg/mL,相较TAX提高12倍。结果表明TAX@CD-MOFs大大提高了TAX的溶解度,增加TAX的生物利用度。
2.2 TAX@CD-MOFs/PCL/PVP电纺纤维膜(EFMs)的表征
2.2.1 扫描电镜(SEM)
SEM图像(图2A)显示,PP EFMs表面光滑均匀,其平均直径为2.23±0.53 μm。加入CD-MOFs后,其平均直径为2.32±1.02 μm,相较于PP EFMs,其直径略有增大,这是由于纺丝前体溶液中添加CD-MOFs,溶液浓度增大,使得纤维直径增大。且纤维交互部分发生交联现象,这是由于CD-MOFs的亲水性,导致交互部分结合。PT EFMs的平均直径为2.20±1.24 μm,与PP EFMs和PM EFMs相比,其直径均减小,这是由于TAX 的存在,导致纺丝前体溶液的极性发生改变,导致其直径降低。
2.2.2 傅里叶变换红外光谱(FI-IR)
FT-IR光谱如图2B所示。PCL的主峰在1731 cm-1处,为C=O伸缩振动。在1234 cm-1处为-COO-振动。在2949 cm-1 为对称C-H2伸缩振动。在1174 cm-1 、1104 cm-1和1044 cm-1处为C-O-C伸缩振动。PVP的主峰则是在1661 cm-1处,为C=O伸缩振动。在1289 cm-1处为C-N振动。在1924 cm-1处为不对称C-H伸缩振动。在PP EFMs中,在1729 cm-1和1689 cm-1处,分别为PCL和PVP的主峰(C=O伸缩振动)。此外,在1240 cm-1处为PCL的-COO-振动。在1294 cm-1处为PVP的C-N振动,表明PCL 和PVP 是均分分散的。PM EFMs中添加CD-MOFs后,PVP的C=O 峰从1689 cm-1移动到1669 cm-1,推测PVP中的C=O 与MOFs形成氢键作用,导致红移。PT EFMs中C=O的峰位移动到1652 cm-1,这是由于装载TAX的原因,使得氢键作用加强,而CD-MOFs和TAX的峰被PCL和PVP掩盖,结果证实了纤维中存在 TAX或 CD-MOFs。
2.2.3水接触角(WCA)
通过水接触角(WCA)测试测量EFMs的润湿性,结果如图2C,2D所示。PP EFMs、PMEFMs和PT EFMs的在0s时的水接触角为130.46±8.36°、117.63±2.76°和124.10±1.91°,初始接触角较为接近,均大于90°。PP EFMs在120s时的水接触角为124.24±1.51°,与初始接触角相比,并未有太大变化。CD-MOFs和TAX@CD-MOFs的加入,使得PM EFMs和PT EFMs在120s的水接触角分别为4.43±2.14°和32.08±2.14。因此,CD-MOFs的加入能够增加EFMs的亲水性,而PT膜的接触角较PM略大,这是由于CD-MOFs的孔道中添加TAX导致的。
2.2.4热稳性分析(TGA)
不同的材料含有不同的组分,它们所具有的热动力学性质也有很大的差异。PCL和PVP均是一种具有良好热稳定性的合成聚合物。为了确定复合材料的热性能,本研究采用热重法探究PP EFMs、PM EFMs和PT EFMs的热稳定性。如图2E所示。PP EFMs、PM EFMs和PTEFMs在200℃内均具有良好的稳定性。PP EFMs在260℃左右开始失重,失重86%,随后在420-590℃范围内,剩余14%完全分解。而添加CD-MOFs和TAX@CD-MOFs后的EFMs,在200℃时开始失重,这是由于EFMs中的CD-MOFs热分解温度较PCL和PVP略低,CD-MOFs先分解,当温度大达到410℃时,PM EFMs和PT EFMs均失重83%,但PT EFMs的失重速率较PM EFMs缓慢,这是由于TAX的添加增所致。随后,PM EFMs在570℃时完全分解,而PT EFMs则在525℃时完全分解。结果表明,PP EFMs、PM EFMs和PT EFMs均具有良好的热稳定性。
(3)吸水率、孔隙率、水蒸气透过率
3.1吸水率
EFMs的吸水能力是伤口愈合过程和药物释放的重要因素。有研究表明,真皮支架的重要功能是吸收创面组织液,防止伤口环境过度湿润,产生炎症。理想的皮肤支架应具有100-900%(与其干重相比)的吸水能力。如图2F所示,与PM EFMs及PT EFMs相比,PP EFMs的吸水较差,增长略显缓慢,在24 h后期吸水率为144.09±13.48%。EFMs中加入CD-MOFs和TAX@CD-MOFs后,EFMs的吸水能力增强,24h分别达到193.11±13.44%和204.29±6.22%,然而PT EFMs比PM EFMs的慢,这是由于CD-MOFs的部分孔道被TAX占据,其吸收能力降低。研究表明,EFMs可以防止伤口渗出液积聚,防止环境过度湿润,促进新 ECM的形成。
3.2水蒸气透过率(WVTR)
EFMs的水蒸气透过率是评价其透气性能的重要指标之一。作为伤口敷料,EFMs应具有一定的透气透湿性能,既要防止水分的过度挥发,还要防止液体积聚在伤口处,导致CO2在伤口处积聚导致伤口介质酸化,从而抑制伤口处的细胞增殖。正常皮肤的WVTR约为204 g/m2/d,当皮肤受到损伤时,WVTR 突增到5138 g/m2/d。如图2G所示,PP EFMs的WVTR为3278.59±82.91 g/m2/d,PM EFMs和PT EFMs的WVTR分别为3250.58±53.43 g/m2/d和3258.22±80.39 g/m2/d,相比于PP EFMs有所降低,且在伤口敷料合适的WVTR范围内,这是由于在EFMs中加入CD-MOFs,当水蒸气经过支架时,EFMs中PVP和CD-MOFs会束缚水分子,使得水蒸气通过敷料的阻力增加,一定程阻碍了水分的传导。然而,PT EFMs较PM EFMs的WVTR有所升高,这是由于难溶性药物TAX占据CD-MOFs部分孔道,使得CD-MOFs的吸附水分子的能力有所下降,导致束缚水分子的能力下降,使得WVTR升高。研究表明,EFMs在一定程度上减少伤口处水分的挥发,有助于保持伤口的湿润环境,促进糖尿病伤口修复。
3.3孔隙率
EFMs孔隙率的高低是细胞生长和组织重建过程中营养运输和交换的先决条件。如图2H所示,PP EFMs、PM EFMs和PT EFMs之间的孔隙率没有有明显差异。PP EFMs的孔隙率为80.99±4.09%,PM EFMs和PT EFMs的孔隙率分别为81.14±1.56%和80.31±1.85%,均大于80%,这对营养供应和细胞生长是有利的。
(4)体外药物释放实验结果
TAX@CD-MOFs和PT EFMs的体外药物释放曲线如图2I所示。TAX@CD-MOFs突释现象严重,在第一个小时95.37±2.19%。而PT EFMs在第1小时仍然存在突释现象,其释放量约为38.67±3.88%,较TAX@CD-MOFs明显减缓,然后基本按一定的速率持续释放至第 12 h,在第12 h逐渐到达平台期。结果表明,TAX以一定的速率释放TAX,一定程度上改善了TAX@CD-MOFs的控释性能。该研究为MOFs与纤维复合材料用作药物递送系统提供了一种可行方法,可显著改善了药物的释放行为。
(5)体外活性测定实验结果
5.1 血液相容性
溶血试验是评价生物材料血液毒性的重要指标,以此来评价EFMs对红细胞的破坏程度。根据 ISO 10993-4 要求生物材料溶血率<5%被认为是安全的,符合生物安全标准,可以用作血液接触材料。如图3A所示,PP EFMs的溶血率为1.12±0.19%,PM EFMs的溶血率为2.31±0.17%、PT EFMs的溶血率为1.58±0.05%。各EFMs的溶血率均小于 5.0%,远低于标准,不会引起明显溶血。
5.2体外抗氧化活性
在伤口部位会产生过量的活性氧(ROS),破坏氧化剂和抗氧剂的平衡,导致组织再生和伤口愈合缓慢。而具有抗氧化特性的伤口敷料,可以减轻ROS的损害,从而提高皮肤再生的治疗作用。如图3B所示,PP EFMs和PM EFMs对DPPD和ABTS的清除能力很低,而PT EFMs对DPPD和ABTS的清除能力分别为79.27±0.16%和90.50±0.37%。因此,在EFMs中加入TAX,能大大提高EFMs的抗氧化活性。
5.3体外抑菌活性
由于皮肤伤口伴有细菌感染,因此抗菌活性对于伤口敷料至关重要,采用GB/T20944.2-2007方法评价EFMs对大肠杆菌和金黄色葡萄球菌抑菌活性。如图3C所示,PPEFMs、PM EFMs和PT EFMs均具有一定抑菌活性,不论是大肠杆菌还是金黄色葡萄球菌,PPEFMs与PM EFMs的抑菌活性较为接近,这是由于CD-MOFs并无明显的抑菌活性导致的。而与PP EFMs和PM EFMs相比,PT EFMs对两种细菌都表现出抗菌性能。PT EFMs对大肠杆菌的抑菌率(图3D)为79.44±4.19%,对金黄色葡萄球菌的抑菌率(图3E)为87.64±5.41%。显然,PTEFMs对大肠杆菌的抑菌率比对金黄色葡萄球菌的抑菌率稍小,这可能是由于革兰氏阴性菌和革兰氏阳性菌细胞壁结构的差异所致。结果表明,PT EFMs表现出令人满意的抗菌性能,这主要归功于TAX的持续释放。因此,这一特性可以为慢性伤口愈合提供抗菌和抗炎环境,并有益于伤口部位的实际保护。本实施例中大肠杆菌和金黄色葡萄球菌均购自上海雅吉生物科技有限公司。
5.4体外细胞毒性
通过MTT测定CD-MOFs、TAX@CD-MOFs、PP EFMs、PM EFMs和PTEFMs对Hacat细胞的体外细胞活性。如图3F所示,CD-MOFs和TAX@CD-MOFs在0-1000 μg/mL浓度下作用24 h后,细胞活力仍具有较高的细胞活力,在低浓度下对细胞具有一定的增殖作用,且TAX@CD-MOFs的细胞活力较CD-MOFs略高,表明TAX具有一定的增殖作用。即使浓度达到2000 μg/mL,相对细胞存活率也在79.58±2.51%和75.29±4.40%以上,表明CD-MOFs和TAX@CD-MOFs细胞毒性低,生物相容性好。
不同浓度的PP EFMs、PM EFMs和PT EFMs的细胞毒性如图3G所示,PT EFMs较PMEFMs略高,表明以一定速率长期释放TAX有利于细胞生长。此外,PP EFMs、PM EFMs和PTEFMs之间并无显著性差异,且相对细胞活力均大于80%,并无细胞毒性。因此,EFMs对Hacat细胞的生长与增殖没有副作用,该复合材料具有良好的生物相容性。
(6)肝尾止血实验
EFMs的止血性能是评价其在组织工程应用的重要指标之一,其紧急止血性能通过体内小鼠断尾模型和肝脏止血模型进一步研究,其评估了躯干和内脏器官中的急性出血事件。如图4A,4B,4C所示,当发生肝脏出血,出血时间超过300 s,其止血时间长,出血量大,为305 ± 14 s和494.10±24.37 mg。而PP组、PM组和PT组的止血时间分别为112 ± 7 s、107±8 s和104 ±8 s,出血量为66.28±8.95mg、59.10±3.34mg和62.17±4.23mg。对于EFMs,体内小鼠尾部切断模型中的止血效率显示出与小鼠肝脏止血模型类似的改善,如图4A,4D,4E所示,对照组的止血时间和出血量分别为211±15 s和126.23±8.91 mg,而PP组、PM组和PT组的止血时间分别为58 ± 7 s、52 ±4 s和54 ±5 s,止血量为24.50±4.57 mg、17.17±4.93 mg和18.4±0.62 mg。结果表明,具有功能组分(PVP、PCL)的材料可以有效地提高控制出血的能力。
(7)H&E和Masson染色
如图5B,5C所示,所有小组的伤口大小随着时间的推移逐渐缩小。NC组在14天伤口基本愈合,21天伤口完全愈合,且有毛发生成。与NC组相比,T2D组显示出较慢的伤口收缩速度。这是由于在高血糖条件下,伤口修复功能受损,是持续的炎症因子导致伤口收缩缓慢。并且在第7天伤口表面仍有渗出物。与T2D组相比,PP组(p<0.05)、PM组(p<0.01)和PT组(p<0.01)的局部应用明显加速了糖尿病伤口的恢复。伤口愈合的定量分析证实了上述结果(图5D)。然而,T2D组的愈合率不如NC组乐观,在21天仅有74.32±3.83%。与T2D组相比,PP组和PM组在第21天显示出较好的愈合效果,其伤口愈合率分别为82.23±3.38%和90.70±2.77%。而PT组在所有观察日的伤口收缩率均比T2D组、PP组和PM组好。在第21天,PP组(98.77±1.01%)的伤口基本愈合并被毛发覆盖。结果显示,EFMs能够促进糖尿病伤口修复。
(8)组织学染色
21日采集皮肤组织标本,通过H&E染色评估伤口愈合的生物学机制。如图6A所示,NC组和PT组中的伤口在重塑阶段实现了再上皮化和肉芽组织形成,肉芽组织处于良好的愈合状态,并且肉芽组织丰富,各层皮肤结构致密有序,细胞器和毛囊开始产生。PP组和PM组的伤口愈合较慢,再上皮化和肉芽组织并未完全形成,已形成的肉芽组织状态良好,但仍有较短的伤口。值得注意的是,PM组的再上皮化和肉芽组织的状态更为良好,表皮厚度较PP组更薄,部分位置有血管生成。而T2D组受糖尿病影响,其再上皮化和肉芽组织形成缓慢,皮肤结构疏松伤口长度最长且并未愈合。与其他组相比,在PT组中观察到新的肉芽组织和更复杂的表皮结构,沿着类似皮肤附属物的组织,与NC组较为接近。这些结果表明,PT组可以促进糖尿病创面组织的功能重建,愈合状态良好且时间短。
胶原蛋白是细胞外基质的重要组成部分,并参与愈合和皮肤强度的恢复。在高血糖条件下,成纤维细胞功能和胶原沉积受损,这影响肉芽组织重建。因此,皮下胶原沉积和重塑是慢性伤口愈合的另一个重要指标。为了评价不同EFMs的胶原沉积和重塑,Masson染色检查胶原沉积程度。如图6B所示,NC组中观察到大量胶原沉积,而在T2D组中的胶原含量明显下降。 PP组与PM组相比,PM组的胶原排列更为紧密,胶原沉积量更为明显,一些区域呈现波纹状排列。值得注意的是, PT组中的胶原含量明显增加,且胶原纤维保存完好,呈波纹状排列,较其他组致密,与NC组的结果最为接近,这是由于装载在CD-MOFs中的TAX吸收伤口渗出液后,CD-MOFs通过扩散作用达到伤口位置,同时级联释放TAX,加速伤口愈合。研究表明,胶原富集有利于胶原基质的重塑和伤口愈合。这些结果表明,PT组可以通过促进胶原的沉积和重塑来加速糖尿病伤口的愈合。综上所述,PT组能够加速糖尿病伤口愈合,
(9)免疫组化染色分析(IHC)
采用免疫组织化学方法检测CD68、血管内皮生长因子(VEGF)、增殖细胞核抗原(PCNA)和表达α-平滑肌肌动蛋白(α-SMA)在创面的表达。CD68是M1表型巨噬细胞的标志物,对于糖尿病伤口,伤口部位M1表型巨噬细胞的增加导致伤口愈合过程进入自我持续的炎症阶段,进一步导致伤口难以愈合问题,因此需要降低糖尿病伤口中的炎症反应,加速伤口愈合。VEGF是调节血管生成的重要生长因子,已被广泛用于评估血管生成的重要指标。PCNA是一种增殖细胞核抗原,主要在伤口的真皮和表皮组织中表达。α-SMA的肌成纤维细胞会形成大量肌动蛋白应力纤维,使其具有收缩和迁移功能,从而促进创面组织的重塑和修复。因此,α-SMA被认为是肌成纤维细胞收缩表型的典型标志。CD68免疫染色结果见图7A,7B。经21天治疗后,CD68的表达在PT组中大幅下降,特别其促炎症细胞因子的表达大幅减少,结果表明,用EFMs处理的伤口加速了从炎症期到增殖期的过渡。VEGF、PCNA和α-SMA的表达见图7A,7C,7D,7E,与其他各组相比,PT组在第21天均表达明显,其表达量与NC组接近,结果表明PTEFMs可以降低糖尿病伤口中的炎症反应,促进血管生成及伤口收缩,加速伤口愈合。
(10)免疫印迹分析(WB)
糖尿病伤口处的高糖环境容易诱发细菌感染和慢性炎症,通过WB实验测定第21天伤口周围炎性细胞的浸润情况。如图8所示,Sirt 1是NF-κB的上游通路蛋白,同时,Sirt 1可抑制NF-κB的表达。与正常组(NC)相比,T2D组SIRT1蛋白的表达明显降低(p<0.05),同时NF-κB、TNF-α和IL-1β的表达水平显著升高(p<0.01)。经PT组治疗后,SIRT1的表达被显著上调(p<0.05),而且NF-κB、MMP-9、TNF-α和IL-1β蛋白的表达(p<0.001)得到下调。另外,其他组相比,PP组对SIRT1的上调和对NF-κB、MMP-9、TNF-α和IL-1β的下调作用更显著(p<0.05)。这表明PT EFMs通过上调Sirt-1蛋白的表达,从而降低NF-κB的表达,进而抑制MMP-9、TNF-α和IL-1β的表达,最终抑制炎症。因此,PT EFMs作为伤口敷料,可以下调慢性伤口处炎症的表达,加速糖尿病伤口愈合。
以上所述为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种兼具止血、抗炎、促伤口愈合的纤维膜,该纤维膜是金属-有机框架与有机聚合物结合所形成的MOF-聚合物纤维复合膜,其特征在于,所述金属-有机框架为环糊精金属有机框架CD-MOFs,所述环糊精金属有机框架CD-MOFs的内腔负载二氢槲皮素TAX;所述有机聚合物为聚己内酯PCL、聚乙烯吡咯烷酮PVP,所述聚己内酯PCL与聚乙烯吡咯烷酮PVP、负载二氢槲皮素TAX的环糊精金属有机框架CD-MOFs的重量比为10-15:1:1,负载二氢槲皮素TAX的环糊精金属有机框架CD-MOFs分散在聚乙烯吡咯烷酮PVP有机溶液中,与聚己内酯PCL有机溶液混匀后经静电纺丝处理而成。
2.根据权利要求1所述的一种兼具止血、抗炎、促伤口愈合的纤维膜,其特征在于,所述二氢槲皮素TAX与环糊精金属有机框架CD-MOFs的重量比为2:3-5,所述环糊精金属有机框架CD-MOFs为规则的立方晶体的纳米颗粒,边缘锋利。
3.权利要求1所述的一种兼具止血、抗炎、促伤口愈合的纤维膜的制备方法,其特征在于,该方法包括以下步骤:
步骤1、将二氢槲皮素TAX掺入环糊精金属有机框架CD-MOFs的内腔,制备TAX@CD-MOFs;
步骤2、将10-15重量份的聚己内酯PCL溶于有机溶液中,得到PCL有机溶液;
步骤3、将1重量份的聚乙烯吡咯烷酮PVP和1重量份的TAX@CD-MOFs溶于有机溶液中,通过机械搅拌将TAX@CD-MOFs分散在PVP有机溶液中,然后以脉冲模式超声处理,得到TAX@CD-MOFs的PVP分散液;
步骤4、TAX@CD-MOFs的PVP分散液和PCL有机溶液混合,搅拌过夜,得到均一溶液,进行静电纺丝处理,得到兼具止血、抗炎、促伤口愈合的纤维膜。
4.根据权利要求3所述的一种兼具止血、抗炎、促伤口愈合的纤维膜的制备方法,其特征在于,步骤1中所述TAX@CD-MOFs的制备方法为:
(1)将γ-CD和KOH溶解在蒸馏水中,加入甲醇,密封于玻璃容器内,微波加热至溶液澄清,加入含有PEG20000的甲醇溶液,4℃快速结晶,静置,离心收集结晶,并用甲醇和乙醇洗涤,二氯甲烷浸泡,真空干燥得CD-MOFs;
(2)将二氢槲皮素乙醇溶液和CD-MOFs置于锥形瓶中,用恒温水浴振荡器在50℃下振荡,得到非均相溶液,通过离心回收载药复合物,用乙醇多次洗涤固体,真空干燥得TAX@CD-MOFs。
5.根据权利要求3所述的一种兼具止血、抗炎、促伤口愈合的纤维膜的制备方法,其特征在于,步骤2中聚己内酯PCL溶于二氯甲烷中,步骤3中聚乙烯吡咯烷酮PVP和TAX@CD-MOFs溶于二氯甲烷中。
6.根据权利要求3所述的一种兼具止血、抗炎、促伤口愈合的纤维膜的制备方法,其特征在于,步骤3中以脉冲模式超声处理3min,具体为:30秒为一个脉冲,每个脉冲后延迟30秒。
7.权利要求1或2所述的一种兼具止血、抗炎、促伤口愈合的纤维膜作为止血膜在体内或体外伤口止血药物中的应用。
8.权利要求1或2所述的一种兼具止血、抗炎、促伤口愈合的纤维膜在制备促进创面胶原富集的药物中应用。
9.权利要求1或2所述的一种兼具止血、抗炎、促伤口愈合的纤维膜在制备促进创面肉芽组织生成的药物中应用。
CN202311091118.5A 2023-08-29 2023-08-29 兼具止血、抗炎、促伤口愈合的纤维膜及制备方法与应用 Active CN116808006B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311091118.5A CN116808006B (zh) 2023-08-29 2023-08-29 兼具止血、抗炎、促伤口愈合的纤维膜及制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311091118.5A CN116808006B (zh) 2023-08-29 2023-08-29 兼具止血、抗炎、促伤口愈合的纤维膜及制备方法与应用

Publications (2)

Publication Number Publication Date
CN116808006A true CN116808006A (zh) 2023-09-29
CN116808006B CN116808006B (zh) 2023-11-10

Family

ID=88127765

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311091118.5A Active CN116808006B (zh) 2023-08-29 2023-08-29 兼具止血、抗炎、促伤口愈合的纤维膜及制备方法与应用

Country Status (1)

Country Link
CN (1) CN116808006B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021154038A1 (ko) * 2020-01-29 2021-08-05 숙명여자대학교 산학협력단 사이클로덱스트린(cyclodextrin)을 이용한 서방출형 금속유기 골격체 및 이의 제조방법
CN114371163A (zh) * 2021-12-03 2022-04-19 江苏大学 一种MOFs负载花青素的功能分区式新鲜度指示膜的制备方法
CN116570760A (zh) * 2023-07-11 2023-08-11 吉林农业科技学院 促进慢性伤口愈合的多功能缓释敷料及其制备方法与应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021154038A1 (ko) * 2020-01-29 2021-08-05 숙명여자대학교 산학협력단 사이클로덱스트린(cyclodextrin)을 이용한 서방출형 금속유기 골격체 및 이의 제조방법
CN114371163A (zh) * 2021-12-03 2022-04-19 江苏大学 一种MOFs负载花青素的功能分区式新鲜度指示膜的制备方法
CN116570760A (zh) * 2023-07-11 2023-08-11 吉林农业科技学院 促进慢性伤口愈合的多功能缓释敷料及其制备方法与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YAPING HE ET AL.: ""Cuboidal tethered cyclodextrin frameworks tailored for hemostasis and injured vessel targeting"", 《THERANOSTICS》, vol. 9, no. 9, pages 2489 - 2504, XP055719647, DOI: 10.7150/thno.31159 *

Also Published As

Publication number Publication date
CN116808006B (zh) 2023-11-10

Similar Documents

Publication Publication Date Title
Shakya et al. Ultrafine silver nanoparticles embedded in cyclodextrin metal‐organic frameworks with GRGDS functionalization to promote antibacterial and wound healing application
Cao et al. Biodegradable hydrogel with thermo-response and hemostatic effect for photothermal enhanced anti-infective therapy
Zhang et al. Ag@ MOF-loaded chitosan nanoparticle and polyvinyl alcohol/sodium alginate/chitosan bilayer dressing for wound healing applications
Cam et al. Accelerated diabetic wound healing by topical application of combination oral antidiabetic agents-loaded nanofibrous scaffolds: An in vitro and in vivo evaluation study
CN110354295B (zh) 一种光热转换材料及其制备方法
Yang et al. A quaternized chitin derivatives, egg white protein and montmorillonite composite sponge with antibacterial and hemostatic effect for promoting wound healing
Li et al. Novel SA@ Ca 2+/RCSPs core–shell structure nanofibers by electrospinning for wound dressings
Wang et al. Antibacterial, anti-inflammatory, rapid hemostasis, and accelerated repair by multifunctional metal–organic frameworks fibrous scaffolds for diabetic wounds
Qiu et al. An injectable metal nanoparticle containing cellulose derivative‐based hydrogels: Evaluation of antibacterial and in vitro‐vivo wound healing activity in children with burn injuries
CN115177778B (zh) 一种复合型伤口敷料、制备方法及应用
Donnadio et al. Carboxymethylcellulose films containing chlorhexidine–zirconium phosphate nanoparticles: Antibiofilm activity and cytotoxicity
CN115737838A (zh) 含姜黄素的聚合物及其在烧伤促愈合中的应用
Ciftci Release kinetics modelling and in vivo-vitro, shelf-life study of resveratrol added composite transdermal scaffolds
Wei et al. Mesoporous bioglass capsule composite injectable hydrogels with antibacterial and vascularization promotion properties for chronic wound repair
Bülbül et al. Traditional and advanced wound dressings: physical characterization and desirable properties for wound healing
Gao et al. A nanofiber/sponge double-layered composite membrane capable of inhibiting infection and promoting blood coagulation during wound healing
Agnes Mary et al. In vivo bioactivity of herbal‐drug‐incorporated nanofibrous matrixes
CN116942883B (zh) 促进糖尿病伤口愈合的仿生纤维膜及其制备方法与应用
Patole et al. In vitro and in vivo assessment of gallic acid-chitosan/polycaprolactone conjugate electrospun nanofibers for wound healing
Guo et al. A novel bola-molecular self-assembling hydrogel for enhancing diabetic wound healing
CN116808006B (zh) 兼具止血、抗炎、促伤口愈合的纤维膜及制备方法与应用
Shakiba et al. A bi‐functional nanofibrous composite membrane for wound healing applications
Wu et al. A unidirectional water-transport antibacterial bilayer nanofibrous dressing based on chitosan for accelerating wound healing
CN115607727B (zh) 基于白及多糖的光热多功能水凝胶、其制备方法、其用途及用于创面修复的药物
CN116603096A (zh) 一种基于硫化氢气体疗法的多功能水凝胶敷料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant