CN115607727B - 基于白及多糖的光热多功能水凝胶、其制备方法、其用途及用于创面修复的药物 - Google Patents

基于白及多糖的光热多功能水凝胶、其制备方法、其用途及用于创面修复的药物 Download PDF

Info

Publication number
CN115607727B
CN115607727B CN202211613203.9A CN202211613203A CN115607727B CN 115607727 B CN115607727 B CN 115607727B CN 202211613203 A CN202211613203 A CN 202211613203A CN 115607727 B CN115607727 B CN 115607727B
Authority
CN
China
Prior art keywords
hydrogel
pda
polysaccharide
multifunctional
thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211613203.9A
Other languages
English (en)
Other versions
CN115607727A (zh
Inventor
曾锐
马子豪
瞿燕
苟恺军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Minzu University
Original Assignee
Southwest Minzu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Minzu University filed Critical Southwest Minzu University
Priority to CN202211613203.9A priority Critical patent/CN115607727B/zh
Publication of CN115607727A publication Critical patent/CN115607727A/zh
Application granted granted Critical
Publication of CN115607727B publication Critical patent/CN115607727B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L26/00Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form
    • A61L26/0061Use of materials characterised by their function or physical properties
    • A61L26/008Hydrogels or hydrocolloids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0052Thermotherapy; Hyperthermia; Magnetic induction; Induction heating therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/52Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an inorganic compound, e.g. an inorganic ion that is complexed with the active ingredient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0014Skin, i.e. galenical aspects of topical compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/06Ointments; Bases therefor; Other semi-solid forms, e.g. creams, sticks, gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L26/00Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form
    • A61L26/0061Use of materials characterised by their function or physical properties
    • A61L26/0066Medicaments; Biocides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L26/00Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form
    • A61L26/0095Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Inorganic Chemistry (AREA)
  • Dermatology (AREA)
  • Dispersion Chemistry (AREA)
  • Composite Materials (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明属于医药技术领域,具体涉及一种基于白及多糖的光热多功能水凝胶、其制备方法、其用途及用于创面修复的药物。本发明提供基于白及多糖的光热多功能水凝胶,采用如下重量份的原料制成:羧甲基化白及多糖100份、表面修饰有HCO3 的聚多巴胺纳米颗粒0.5‑2份、含Fe3+盐,以Fe3+的重量份计1‑4份。该光热多功能水凝胶可用于制备创面修复药物。实验表明,该水凝胶体系通过光热抗菌、清除自由基,降低TNF‑α炎症水平、促进VEGF水平升高,多环节协同促进糖尿病伤口等难以愈合的创面修复。因此,本发明具有很好的应用前景。

Description

基于白及多糖的光热多功能水凝胶、其制备方法、其用途及用 于创面修复的药物
技术领域
本发明属于医药技术领域,具体涉及一种基于白及多糖的光热多功能水凝胶、其制备方法、其用途及用于创面修复的药物。
背景技术
随着糖尿病发病率的不断上升,因不同原因造成的皮肤伤口在短时间内无法完全修复,严重者可导致残疾或死亡,生活质量受到影响,已成为全球瞩目的医疗问题。通常情况下,正常的伤口愈合过程是四个连续且重叠的时期:即止血期、炎症阶段、增殖期和重塑阶段。糖尿病伤口的病理特征是高血糖,炎症反应时间长、伤口周围易感染、血管化受损、上皮化功能障碍,导致伤口愈合周期长。目前,加速慢性伤口愈合已成为皮肤伤口治疗的一个热点研究课题,设计一种多功能多环节起效的修复性敷料具有重要的应用价值。具体来说,缩短炎症期、抵抗细菌感染、增加血管生成是慢性伤口愈合过程中伤口组织重塑和修复的前提条件。此外,适当的氧气供应可以调节伤口局部的微循环血流,改善局部缺氧,它已被证明可以促进伤口愈合。因此,本领域需要开发出能够产生O2调节微循环,同时减少炎症反应、抑制微生物、促进血管生成的伤口敷料,以治疗慢性伤口。
水凝胶是具有三维网络结构的亲水生物医学聚合物,符合湿润的伤口愈合理论,促进气体交换,输送生物分子以促进组织修复和再生,并被广泛用于伤口敷料领域。
白及多糖(Bletilla striata Polysaccharide,BSP),又名白及葡甘聚糖,来源于兰科植物白及Bletilla striata(Thunb.)Reichb.f的干燥块茎,是一种中性多糖,分子量在104~105Da之间,由α-甘露糖、β-甘露糖和β-葡萄糖经1→4糖苷键键合而成。据文献报道,BSP具有促进凝血、抗炎抗氧化、促伤口愈合、抗肿瘤和调节机体免疫等生物学活性,并且生物相容性良好、可生物降解以及结构可修饰。BSP通过与其他功能材料复合使用,可用于加速伤口愈合和组织修复等。例如,王斯韬等(中草药,2017,48(5):888-893.)通过BSP与卡波姆940共混交联得到一种具有经皮促渗和止血活性的水凝胶基质。随着BSP的加入,该水凝胶相比与卡波姆940空白组,因强氢键的相互作用表现出良好的物理强度;且两者互穿缠结形成网络结构,显著提高了黏度;同时增加BSP的质量分数可调节皮肤屏障的通透性,明显缩短止血时间;同时结果还表明该水凝胶缩短活化凝血酶的时间,并通过增加纤维蛋白量来促进凝血。
多巴胺(Dopamine,DA)是一种神经递质,在特定条件下可以发生氧化自聚,形成聚多巴胺(Polydopamine,PDA)。具有大量儿茶酚结构的PDA,具有超强的黏附性。PDA利用自身的黏附性来包裹纳米粒,进而形成“纳米衣”,使纳米粒具有PDA的特性。儿茶酚结构使纳米粒带负电,强静电排斥力使PDA包裹的纳米粒表现出极强的稳定性。另外,儿茶酚结构是多价金属离子的强配位体,如铁离子、锌离子、铜离子、铈离子、钆离子等。因此,PDA可通过金属离子配位间接吸附其他分子,如药物、DNA等。PDA在创面修复材料中也是一种常用的辅料,例如中国发明专利申请“CN114000262A一种载药聚多巴胺包覆纳米纤维敷料及其制备方法”公开了一种利用PDA负载药物的辅料。
总之,虽然目前已有很多创面修复材料,然而,对于难以愈合的创面(例如糖尿病导致的创面),目前仍然缺乏修复效果良好的修复材料。
发明内容
针对现有技术的缺陷,本发明提供一种基于白及多糖的光热多功能水凝胶及其用途,目的在于提供一种对糖尿病创面等难以愈合的创面具有良好的修复效果的修复材料。
一种基于白及多糖的光热多功能水凝胶,它是采用如下重量份的原料制成:
羧甲基化白及多糖100份、
表面修饰有HCO3 -的聚多巴胺纳米颗粒0.5-2份、
含Fe3+盐,以Fe3+的重量份计1-4份。
优选的,它是采用如下重量份的原料制成:
羧甲基化白及多糖100份、
表面修饰有HCO3 -的聚多巴胺纳米颗粒1份、
含Fe3+盐,以Fe3+的重量份计2份。
优选的,在所述表面修饰有HCO3 -的聚多巴胺纳米颗粒中,HCO3 -通过Fe3+络合在所述聚多巴胺纳米颗粒的表面。
优选的,所述聚多巴胺纳米颗粒的制备方法包括如下步骤:
步骤a,将多巴胺在氧化条件下自聚合得到聚多巴胺;
步骤b,将所述聚多巴胺与含Fe3+盐在溶液中反应;
步骤c,分离纯化,得到聚多巴胺与Fe3+络合的纳米粒子PDA-Fe3+NPs;
步骤d,将所述PDA-Fe3+NPs与碳酸氢铵混合反应;
步骤e,分离纯化,得到所述聚多巴胺纳米颗粒。
优选的,步骤b中,所述反应在pH为8.4~8.5的缓冲溶液中进行;和/或,步骤d中,所述反应在0℃以下条件下反应。
优选的,所述光热多功能水凝胶为将所述原料在水中混合制成的。
本发明还提供上述基于白及多糖的光热多功能水凝胶的制备方法,包括如下步骤:
步骤1,将羧甲基化白及多糖的水溶液和含Fe3+盐水溶液混合,得到CBSP/Fe3+水凝胶;
步骤2,将所述聚多巴胺纳米颗粒制成水凝胶后加入所述CBSP/Fe3+水凝胶,即得。
本发明还提供上述基于白及多糖的光热多功能水凝胶的用途,所述用途是在制备用于创面修复的药物中的用途。
本发明还提供一种用于创面修复的药物,它是以上述基于白及多糖的光热多功能水凝胶为活性成分,加上药学上可接受的辅料或辅助性成分制成的。
优选的,所述药物是用于糖尿病创面修复的药物。
本发明提供了一种自愈水凝胶,其通过羧甲基化白及多糖(CBSP)的羧基与Fe3+之间的配位键交联并原位加载光热转换纳米粒形成的,具有三维功能网络结构,可以作为理想的支架,并通过协同增效达到多功能的属性。同时,基于PDA的近红外响应性纳米粒子,通过PDA络合Fe3+,然后静电吸附结合碳酸氢盐,可在近红外辐射下可以产生二氧化碳。该纳米粒具有良好的近红外热转换和ROS清除能力,有助于清除细菌,调节氧化状态,加速伤口从炎症阶段向修复阶段的过渡。实验表明,该水凝胶体系通过光热抗菌、清除自由基,降低TNF-α炎症水平、促进VEGF水平升高,多环节协同促进糖尿病伤口的愈合。
显然,根据本发明的上述内容,按照本领域的普通技术知识和惯用手段,在不脱离本发明上述基本技术思想前提下,还可以做出其它多种形式的修改、替换或变更。
以下通过实施例形式的具体实施方式,对本发明的上述内容再作进一步的详细说明。但不应将此理解为本发明上述主题的范围仅限于以下的实例。凡基于本发明上述内容所实现的技术均属于本发明的范围。
附图说明
图1为CO2释放量与CO2@PDA NPs含量的关系图;
图2为(a)DA、PDA及CO2@PDA NPs的FTIR图谱;(b)BSP、CBSP及Gel的FTIR图谱;
图3为(a)DA、PDA及CO2@PDA NPs的XRD图谱;(b)CO2@PDA Gel、PDA Gel、BSP、CBSP及Gel的XRD图谱;
图4为Gels组的扫描电镜图片;
图5为(a)通过间隔拍照获得的CO2@PDA Gel的自愈过程演示图;(b)振荡角频率扫频试验得到的样品的G′和G″的结果图;(c)CO2@PDA Gel的动态应变扫描结果图;(d)CO2@PDAGel的交替应变扫描结果图;
图6为(a)水凝胶的光热图像;(b)凝胶的光热效应曲线图;(c)CO2@PDA凝胶的辐照-冷却循环激光开/关实验结果图;
图7为(a)PDA NPs及各组水凝胶在按照操作要求与红细胞悬浮液共孵育后的溶血图片;(b)PDA NPs及各组水凝胶在按照操作要求与红细胞悬浮液共孵育后的溶血率图;
图8为(a)水凝胶与L929细胞进行CCK-8细胞毒性试验的细胞活力结果图;(b)水凝胶与L929细胞进行CCK-8细胞毒性试验的细胞活死染色结果图;
图9为水凝胶对DPPH的清除率结果图;
图10为ROS清除检测代表性图片;
图11为(a)为各组水凝胶抗菌实验中的细菌OD值柱状图;(b)为各组水凝胶抗菌实验中的平板计数图片;(c)为各组水凝胶抗菌实验中的抗菌率结果图;
图12为(a)伤口愈合实验中的糖尿病大鼠皮肤创面细菌感染模型的伤口愈合图片;(b)伤口愈合实验中的糖尿病大鼠皮肤创面细菌感染模型的伤口愈合率图;
图13为伤口愈合实验中的糖尿病大鼠皮肤创面细菌感染模型的H&E、Masson、TNF-α及VEGF染色结果图。
具体实施方式
以下实施例和实验例中所用的材料和试剂,未特别说明的均为市售品。在以下实施例和实验例中,为了便于表述,也采用“Gel”来指代“水凝胶”。
实施例1
本实施例提供一种基于白及多糖的光热多功能水凝胶,其制备方法如下:
1、BSP的制备与纯化
基于水提醇沉法制备BSP粗产物。首先将药材打粉过三号筛,用乙醇和石油醚前后脱脂2次得到干燥粉末,加入纯水中,固液比为1:40(m/v),并在70℃下搅拌2小时,重复上述步骤两次以收集水提取物并浓缩至三分之一。此后,加入Sevag试剂以去除水提取物浓缩物中的蛋白质。然后,去蛋白的溶液通过浓缩去除残留的有机试剂,并通过加入无水酒精至最终浓度为80%(v/v)析出多糖沉淀。最后,将多糖沉淀在4℃冰箱放置过夜后,依次用无水乙醇溶液、丙酮溶剂和乙醚溶剂多次洗涤,并干燥至恒重得到BSP粗产品。
称取定量DEAE-52纤维素,用纯水洗涤,溶胀后,缓慢加入到下端装有砂芯滤板的柱子并使其自然沉积,再用大量的水洗涤12h平衡柱子,直到柱体积平稳为止。取0.4g BSP粗产品,加适量水溶解,获得4mg/ml的粗多糖溶液。当作为平衡液的水流至填料表面以下1-2mm时,关闭出口,沿柱壁缓慢加入粗多糖溶液,打开出口,至溶液渗入柱内,再关闭出口。用水洗脱,洗脱流速为2ml/min,以10ml/管收集洗脱液,通过苯酚-硫酸法反应测量洗脱液中多糖浓度,取100μL苯酚-硫酸法的反应液加入96孔板中,酶标仪测量其吸光度,随后,通过减压浓缩洗脱液,用纯水透析后,浓缩透析袋内溶液并冷冻干燥得精制的纯化BSP。
2、CBSP的制备
根据之前的文献,通过醚化方法均匀地合成CBSP。简言之,在冰浴条件下将1g BSP样品加在20ml 20%NaOH溶液中,并持续搅拌直至BSP样品全部溶解。向得到的多糖混合物溶液添加30ml异丙醇溶液并搅拌30min。之后,称取3g一氯乙酸溶解于少量水中并缓慢添加至多糖混合物溶液中,并在55℃下搅拌90min进行反应。反应完成后,通过添加冰乙酸将反应得到的反应液的pH值调节至中性。然后使用透析膜将反应液在纯水中持续透析3天,然后旋转蒸发和冷冻干燥以获得CBSP。
3、聚多巴胺基纳米粒的制备
聚多巴胺(PDA NPs)的制备是通过在多巴胺(DA)在氧化条件下自聚合形成的。首先,20ml无水乙醇与1ml氨水溶液和45ml纯水在温和的磁力搅拌下混合半小时。随后,加入5ml多巴胺溶液(50mg/ml),再搅拌24小时。离心得到PDA NPs,用纯水洗涤三次,最终将黑色沉淀分散在纯水中,经过冻干得到PDA NPs产物。
PDA NPs上的邻苯二酚结构,分子内的胺基、羧基官能团及儿茶酚胺等特征性基团,为螯合金属离子提供了有效位点,具有良好的螯合金属离子能力。因此选择先通过PDANPs络合Fe3+,通过静电吸附作用结合碳酸氢铵,生成带有HCO3 -离子的纳米粒子(CO2@PDANPs)。具体操作步骤如下:首先,将含Fe3+盐加入到上述制备的PDA NPs(用pH 8.5Tris缓冲液分散)中,搅拌2小时,离心用水纯化后得到PDA-Fe3+NPs,收集备用。接下来,通过超声处理将PDA-Fe3+NPs分散在水中。在冰浴下将1ml碳酸氢铵水溶液(5mmol/L)加入到1ml上述分散液中,静置1小时,每隔1小时滴加一次,共4次。在加入碳酸氢铵水溶液后,通过离心分离装载HCO3 -的混合物,并用0.5mmol/L碳酸氢铵溶液洗涤三次,表示为CO2@PDANPs。
4、水凝胶的制备
通过简单的溶液共混法制备水凝胶。将CBSP溶解在1ml水中,在室温下搅拌,形成均匀的CBSP溶液,然后与200μL新鲜制备的1wt%的FeCl3水溶液混合,制成一系列的CBSP/Fe3+水凝胶,简称Gels组(wt%代表水凝胶中Fe3+与CBSP的重量比)。将CO2@PDA NPs加入到混合物中,得到最终的水凝胶。
本实施例制备的三种水凝胶命名及组成如下:
Figure GDA0004066199640000061
对比例
与实施例1相比,本对比例提供不加入CO2@PDA NPs的Gels组,和用PDA NPs替代CO2@PDA NPs的PDA/CBSP/Fe3+水凝胶。
本对比例制备的六种水凝胶命名及组成如下:
Figure GDA0004066199640000071
下面通过实验例,对本发明的技术方案作进一步的说明。
实验例1水凝胶的表征
一、实验方法
1、CBSP的羧基含量
通过酸碱滴定法计算CBSP中的羧基含量。首先将0.2g BSP溶于20ml0.5mol/L盐酸异丙醇溶液中,搅拌5h后过滤收集样品,用80%乙醇反复洗涤析出至溶液为中性,然后在烘箱中常温烘干。准确称重的0.1g BSP预处理的样品溶于20ml 0.1mol/L的NaOH溶液中,在50℃下搅拌1h,随后在室温下用1mol/L的盐酸溶液进行滴定。选用酚酞作为指示剂,以指示剂由红色变为无色计算终点。重复3次,计算羧基含量。羧基含量由公式计算:
C=(20×CNaOH-VHCl×CHCl)/ms
其中,式中C为羧基含量(mmol/g)。CNaOH和CHCl分别代表NaOH和HCl溶液的浓度;VHCl是用来代表滴定样品的HCl溶液的体积;ms是指样品的质量。
2、PDANPs与CO2@PDA NPs粒径与电位
在室温下,取适量各纳米粒水分散液样品溶液,经超声分散均匀后,通过动态光散射仪表征这两种纳米粒的水合粒径和表面电势,重复测量三次,取平均值。
3、CO2@PDA NPs二氧化碳的释放量
通过化学恒等式CO2在氢氧化钙溶液中生成等摩尔量的碳酸钙,通过计算碳酸钙的含量间接的计算出CO2的释放量。具体操作如下,加入梯度量的CO2@PDA NPs在过量的氢氧化钙水溶液中(4mmol/L),将混合物在50℃下密封加热约10min。待冷却至常温后,通过离心去收集碳酸钙,并洗涤三次。随后,碳酸钙沉淀在5%硝酸溶液中溶解,采用ICP法测定Ca元素含量。
4、合成材料及水凝胶傅里叶红外光谱测试(FTIR)
干燥的BSP、CBSP、纳米粒以及Gels的化学结构经傅里叶红外光谱仪测试,进行FT-IR谱图分析。分别取适量干燥的BSP、CBSP、纳米粒和各种水凝胶样品,在红外灯烘烤下,各测试样品与溴化钾试剂按1:100的质量比称重并在玛瑙研钵中磨碎成细粉混合均匀,并将其用压片机压制成薄片,通过红外光谱仪在500~4000cm-1扫描范围进行检测。
5、合成材料及水凝胶X射线衍射测试(XRD)
各种干燥的纳米粒和水凝胶样品的X射线衍射图谱测试条件如下:通过X射线衍射仪选定4°/min的扫描速率下,扫描角度在5°-60°范围内测定的,使用Cu靶辐射,其λ=0.154nm。
6、水凝胶扫描电镜观察(SEM)
将经过冻干的各种水凝胶样品置于导电胶上,经过30s喷金处理后,通过扫描电子显微镜在5kV的加速电压下观看不同水凝胶的横截面形态,并拍摄代表性SEM照片。
7、水凝胶自愈性与流变学考察
首先通过宏观自愈实验观察并测定了水凝胶的自愈行为和能力,即取新鲜制备的200μL的CO2@PDA Gel样品,用小刀将其切成两半,然后将两半的水凝胶横截面紧密接触以观察自愈行为。其次,将水凝胶样品制备成直径8mm,厚度2mm的尺寸,通过流变仪测定不同条件下不同水凝胶样品的流变学行为,具体包括如下实验:振荡角频率扫频试验、动态应变扫频试验和循环应变试验下进行的。振荡角频率扫频试验是在25±0.1℃,在10%的恒定应变下,以0.1至100rad/s的角频率测量水凝胶的储存模量(G')和损失模量(G"),样品为Gel-1、Gel-2、Gel-3及PDA Gel。动态应变扫频测量是应变在1-1000%的范围内,在10rad/s的恒定频率下进行的,样品为CO2@PDA Gel。在循环应变试验中,振荡应变从小应变(γ=1%)交替切换到大应变(γ=300%),间隔时间为200s,样品为CO2@PDA Gel。
8、水凝胶光热性能的测量
通过用808nm近红外激光照射水凝胶,并通过近红外测温仪捕捉热图像来评估不同水凝胶样品的光热转换效果。简而言之,在1.5ml离心管中制备200μL不同类型的水凝胶样品,并填充1ml纯水,用2W 808nm激光连续照射10分钟,样品为Gel-2、PDA Gel、0.5CO2@PDA Gel、CO2@PDA Gel及2CO2@PDA Gel。同时,采用红外热成像仪监测温度变化,并在特定的时间间隔内捕捉热图像。随后,通过近红外激光循环照射实验来评价复合水凝胶近红外光热性能的重复性,通过连续照射和冷却,并循环四次,使用开关激光循环研究了CO2@PDAGel的光热稳定性。
二、实验结果
1、CBSP的羧基含量
通过酸碱滴定法计算CBSP中的羧基含量,其中羧基含量约为8.1mmoL/g。
2、纳米粒粒径与电位及释放气体能力分析
各种纳米粒的水合粒径大小较为均匀,如下表所示,
Figure GDA0004066199640000091
PDA NPs的粒径大小为218nm,同样CO2@PDA NPs为226nm。PDA NPs在水悬浮液中表现出平均zeta电位为-22.8mV,而CO2@PDA NPs的zeta电位约为-15.5mV,说明经过Fe3+阳离子和HCO3 -阴离子的结合增加了CO2@PDANPs的表面电位。
CO2@PDA NPs是以PDA光热剂为基材,通过PDA-Fe3+NPs静电吸引碳酸氢铵,并作为光热组分剂负载在水凝胶中。碳酸氢铵作为CO2的前驱体,在近红外辐射加热的条件下释放出CO2。为了证明CO2的释放成功,将PDA NPs和CO2@PDA NPs的悬浮液置于密封容器中,50℃加热10min,测量加热前后的悬浮液pH值。结果显示PDANPs悬浮液的pH值在加热后没有变化,而CO2@PDA NPs悬浮液的pH值则下降,这是由于在温度升高时,HCO3 -的分解生成碳酸导致CO2@PDANPs的pH值下降。此外,为了证明CO2@PDA NPs对HCO3 -的有效吸附,研究悬浮液中CO2@PDA NPs含量与CO2释放的关系。如图1所示,CO2的释放量几乎随纳米粒含量的增加而增加,从而证明了CO2@PDA NPs具有在加热下生成CO2的能力。
3、FTIR分析
为了证明PDA的成功合成以及HCO3 -在PDA上有效的负载,进行了FTIR光谱测量。正如FTIR光谱图2(a)所示,与单体DA相比,PDA的红外图谱具有明显的代表峰,其中在大约3400cm-1左右的宽峰代表羟基的伸缩振动峰;1610和1420cm-1为苯环的伸缩振动吸收峰,在1280及1350cm-1是C-O的伸缩振动峰及O-H的变形振动吸收峰,证明PDA NPs的成功合成。同时,CO2@PDA NPs相比PDA NPs,在大约1410和1290cm-1处峰值强度的增加,这是由于NH4HCO3的加入导致的,结果表明在PDA上成功加载了HCO3 -离子。
图2(b)显示了BSP、CBSP和Gel的FTIR光谱。在BSP的化学结构中,O-H在3415cm-1处有一个强吸收峰,甘露糖在885和810cm-1处有一个特征峰,这是多糖的典型特征峰。与BSP相比,CBSP的FTIR光谱在1600和1430cm-1附近显示出新的强吸收峰,这分别是由羧甲基中C=O的不对称和对称拉伸振动引起的,这种变化表明在多糖分子中成功引入了羧甲基,与上述的核磁结果一致。由于Fe3+与羧基基团之间的相互作用,在Gel的图谱中出现O-H拉伸峰蓝移,1600cm-1处的-COOH特征峰在减弱,这表明了Fe3+与多糖分子的有效络合。
4、XRD分析
通过XRD进一步验证了相容性和晶体结构的变化材料的种类。纳米粒的XRD结果如图3(a)所示,与DA相比,PDA与CO2@PDA NPs没有尖锐的衍射峰,在20°出现弥散的峰形,结果表明二者都为无定形结构,是非晶态。BSP、CBSP和水凝胶的XRD结果如图3(b)所示。BSP的曲线只观察到一个宽峰,没有出现尖峰,这证明BSP是一种非晶态非晶材料。CBSP与BSP相似,基本不变。同样,在水凝胶图谱中也没有出现新的峰,都呈现非晶态结构,这证实了它们都具有良好的均匀性。
5、SEM分析
利用扫描电镜研究了冻干水凝胶的微观结构。图4显示了含不同金属离子Gels组水凝胶的断裂表面,从左到右的图像为水凝胶体系内金属离子含量逐渐增加。可以看出冻干后,水凝胶呈现出明显的三维网络和多孔结构,显示了相互连接的微孔结构,是水凝胶的典型结构固有形态。通过图4对比发现,孔径取决于配位程度交联度越高,水凝胶的内部孔径越小,这表明体系内产生了更致密的三维网络结构。
6、自愈性能与流变学测量
如图5(a)所示,整片的水凝胶被切成两半,将两个分离的水凝胶样品在室温下放在一起,最后在短时间内合并成一体,破裂的水凝胶可以很快变成一个整体,表现出液体的性质,生动地展示了水凝胶的自愈性能。
CO2@PDA Gel由于配位键的动态可逆特性,在断裂后能够自主重建其原有的结构,具有显著的自愈性能。作为水凝胶型创面敷料具有良好的自愈合性能,能够在创面受到损伤时保持完整性,继续保护创面,是非常重要的。
流变测试为评价水凝胶的力学性能提供了一种快速、灵敏的方法。Fe3+的含量是影响水凝胶流变性能的一个主要因素,采用振荡扫频测量验证水凝胶的流变性能。如图5(b)振荡角频率扫频试验结果所示,在不同交联度下水凝胶的G′和G″随频率的变化,水凝胶的G′始终高于G″约一个数量级,表明水凝胶处于弹性固体凝胶状态,而且随着Fe3+的含量增加或在体系里增加纳米粒,水凝胶的G′值增加,表明交联度的增加有助于水凝胶机械性能的提升。通过动态应变扫频试验这种定量的方法对CO2@PDA Gel的自愈能力进行了评价。如图5(c)结果表明凝胶-溶胶转变交点在应变300%以上,表明当应变超过300%内部网络遭到破坏和水凝胶发生液化时。之后,分别以1%和300%的连续应变值考察CO2@PDA Gel的自愈能力。如图5(d)所示,当施加大的应变时,G′值下降,明显低于G″,表明水凝胶的网状结构被破坏,状态发生变化。当大应变诱导后,应变立即恢复到1%后,水凝胶的内部结构立即被重建,模量迅速恢复到初始值,这种循环应变试验表明,水凝胶在施加大应变时发生了崩解,但力学性能能在短时间内彻底恢复到初始值,表现出非常快的自愈过程。
7、光热性能
光热效应能刺激局部微循环血液流动,抑制细菌,减轻炎症。因此,通过近红外激光照射水凝胶样品,研究水凝胶的光热效应及不同含量的纳米粒子对水凝胶光热能力的影响。不同水凝胶的光热图像及相应的温度变化曲线如图6(a)所示,辐照10min后,PDA Gel和CO2@PDA Gel温度分别升高大约33.6℃和33.1℃,显著高于Gel的2.3℃。以上结果表明PDAGel与CO2@PDA Gel这两组水凝胶表现出良好的光热转换能力,而Gel没有光热效应。同时如图6(b)所示,随着PDA基纳米粒含量的增加,样品表现的光热能力逐渐增强,同时相同浓度的PDA与CO2@PDA的光热能力在水凝胶体系光热能力相当。考虑到有效抗菌的温度以及人体皮肤对温度的耐受温度,表明PDA Gel与CO2@PDA Gel组是较为适宜的实验组别,此外,通过4个辐照-冷却循环的激光开/关实验,对CO2@PDA Gel光热稳定性进行了研究。如图6(c)所示,CO2@PDA Gel的升温能力前后未发生明显变化,表明其具有良好的光热稳定性和光热重复性,可作为一种优异的光热转换材料。
实验例2水凝胶的生物相容性
一、实验方法
1、血液相容性评价
从5ml新鲜SD大鼠血液中获得红细胞,3500rpm离心5min后,并通过离心用无菌PBS冲洗5次。然后将收集的红细胞在PBS中稀释至50ml,得到5%红细胞-PBS溶液。之后,将0.5ml稀释红细胞添加到0.5ml不同的样品PBS悬浮液中(1mg/ml)。将所有样品置于37℃的摇床(100rpm)中处理2h。3500rpm离心5min,吸取100μL每个样品的上清液分别置于96孔板中,PBS处理组和纯水处理组分别作为阴性和阳性对照,在545nm处检测样品吸光度。样品溶血率的计算公式如下:
溶血率(%)=(AbsS-Absn)/(AbsP-Absn)×100%
其中,AbsS、Absn和AbsP分别为样品、阴性对照和阳性对照的吸光度值。试验一式三份进行。
2、细胞相容性实验
(1)细胞复苏与传代培养
首先进行冻存细胞的复苏实验,配制好所用溶液,随后取L929成纤维细胞冻存管置于37℃水浴锅中快速溶解、消毒表面后开始实验。在灭菌的超净工作台,将细胞冻存液加入含有5ml基础培养基的15ml离心管中,1000rpm离心5min。离心后弃去上层悬浮液,随后加入10ml 10%FBS和1%青霉素-链霉素双抗配制的DMEM低糖完全培养基,均匀分散细胞,加入到细胞培养皿中,放置在5%CO2恒温培养箱中培养,并定时在显微镜下观看L929成纤维细胞的贴壁状态,及时补充或更换新的培养液。
当L929成纤维细胞在皿底的生长贴壁覆盖率达到约75%~85%时,对L929成纤维细胞进行消化及传代处理。首先,吸出原有的培养液并用无菌PBS冲洗细胞2次,加入2ml胰蛋白酶在培养箱内进行消化细胞,当显微镜下观察细胞状态变圆后呈流动状,加入等体积的完全培养液停止消化,吸到到离心管中,1000rpm离心5min,倒掉上清培养液,加入新的完全培养基重悬分散细胞沉淀,按照1:2的比例进行传代操作,至第三代进行实验。
(2)CCK-8法检测样品对细胞的增殖抑制作用
首先,通过CCK-8试剂盒验证水凝胶对细胞活力的影响。按照5000个细胞/孔的密度培养在96孔细胞培养板中,并置于37℃的CO2培养箱中。细胞粘附在平板上24小时后,除去完整的培养基,分别加入100μL不同的灭菌样品溶液(1mg/ml),再共同培养24小时。然后,从每孔中除去上清液,加入100μLCCK-8试剂(10%v/v),再培养2小时。未处理的细胞作为阴性组,完全培养基作为背景。细胞存活率用以下公式计算并以百分比表示。
细胞活力(%)=(ODs-ODb)/(ODn-ODb)×100%
上述ODS、ODn和ODb表示样品组、阴性对照组和背景培养基的光密度值。该试验以每样品5个复孔进行。
(3)活/死细胞染色
L929成纤维细胞与样品的共培养方法与CCK-8法一致,在48孔板中与水凝胶溶液共培养72h后,弃去孔板中的培养基,用无菌PBS洗涤2次,然后用活死细胞染色试剂盒按照说明对细胞进行染色处理,并37℃遮光15min,随后用PBS洗涤两次去除多余染液后,在倒置荧光显微镜观察细胞染色的情况。
二、实验结果
1、血液相容性
材料的生物相容性在其应用于生物医学之前至关重要。溶血试验也是评估生物材料血液相容性的简单方法。如图7(a,b)所示,包括PDA NPs及各组水凝胶在按照操作要求与红细胞悬浮液共孵育后,各组的溶血率结果与PBS处理组相似,均低于2%,与水处理组相比有显著差异。这些结果表明,复合水凝胶均具有良好的红细胞相容性,对红细胞无溶血作用,是血液相容性材料,可安全应用于生物医学领域。
2、细胞相容性
细胞相容性对水凝胶敷料至关重要,通过使用L929细胞进行CCK-8细胞毒性试验来评估水凝胶对L929细胞活力的影响。CCK-8试验的原理是:在存在电子偶联试剂的情况下,四氮唑盐WST8可通过线粒体中的脱氢酶还原,它会产生橙黄色的formazan染料,与培养基中活细胞的数量呈正相关。然后通过比色法对活细胞数量进行动态量化,以进行生物安全评估。如图8(a)所示,各组相对存活率没有明显的差异,细胞存活率基本保持不变,均超过90%。接下来,用活/死染色法直观评估对细胞增殖的影响。如图8(b)所示,在水凝胶提取液中共培养3天后,各实验组均具有促进细胞增殖的作用,可能是由于BSP骨架是一种促进细胞增殖的生物相容性多糖。细胞相容性实验表明制备的水凝胶具有良好的细胞相容性,可用于组织修复。
实验例3水凝胶的抗氧化、抗菌活性
一、实验方法
1、体外DPPH自由基清除率
采用DPPH自由基清除法测定水凝胶的抗氧化效率。操作如下,将2ml水凝胶样品溶液(0.5、1、2mg/ml)分散在2ml DPPH-乙醇溶液中。搅拌混合物,并在黑暗中培养半小时。接下来,通过紫外-可见分光光度计测量517nm波长下DPPH的吸光度。通过以下公式计算DPPH的降解率:
DPPH清除率(%)=(Absb-Absh)/Absb×100%(3-3)
Absb和Absh分别为空白对照组(DPPH+乙醇)和水凝胶样品(DPPH+乙醇+水凝胶溶液),重复三次。
2、细胞ROS清除率
以上述的L929细胞作为细胞ROS清除率实验的细胞模型。将5×104/ml浓度的L929细胞接种在48孔板里,过夜孵育,然后除去所使用的培养基,用DCFH-DA荧光探针的DMEM溶液(10μmol/l)在黑暗环境中孵育细胞30分钟;随后通过阳性对照Rosup溶液避光处理30min,使细胞内迅速产生ROS,通过1mg/ml各组水凝胶样品1ml处理30min后,在倒置荧光显微镜下观察各组细胞的荧光强度。
3、水凝胶抗菌活性
3.1培养基的制备
(1)液体培养基配制
配制方法如下:定量称取2.5g胰蛋白胨粉末、1.25g酵母提取物粉末以及2.5g氯化钠置于500ml的锥形瓶,并加入250ml纯水溶解,灭菌透气封口膜封口并用橡皮筋扎紧,在120℃下,高压灭菌20min,降至室温后使用。
(2)固体培养基配制
配制方法如下:称取胰蛋白胨2.5g、酵母提取物1.25g、氯化钠2.5g、3.725g琼脂及250ml,适当加热、溶解后调节pH至中性,随后用耐高温灭菌透气封口膜封口,在120℃,20min高压下灭菌,待其自然降温后,进行培养皿铺板,每皿15ml,待其完全冷却凝固后使用。
3.2细菌悬液的制备
用无菌接种环挑取大肠杆菌/金黄色葡萄球菌的菌落,并接种在4ml灭菌的液体培养基中,将菌种分散均匀,然后置于37℃的恒温摇床中,200rpm振荡6h,备用。随后取灭菌的EP管,逐级稀释,然后各取2ml稀释的不同菌液,在紫外分光光度计下600nm波长处测试细菌悬液的OD值,根据OD值拟合曲线,得出细菌悬液的浓度。
3.3水凝胶抗菌实验
(1)比浊法
选用大肠杆菌和金黄色葡萄球菌作为实验的细菌模型。首先,将200μL不同的水凝胶样品置于紫外灯下照2h,随后将灭菌的水凝胶置于48孔板内,再其表面加入100μL106CFU/ml的细菌悬浮液。然后,将每个水凝胶样品置于近红外激光下辐照10min(808nm,2W)。随后再加800μL液体培养基与孔板内,放置在37℃恒温培养箱中孵育12h。第二天,取200μL每个样品中的细菌悬浮液加入到96孔板中,并在酶标仪600nm吸收处测量细菌悬液的光密度OD值。
(2)平板计数法
从每个样品中再取10μL细菌悬浮液,用1ml PBS稀释,一步步进行3次。然后,将100μL稀释液涂在琼脂平板上,在培养箱中培养16-18小时后,待菌落形成时,对平板上有活力的菌落单位进行拍照。
二、实验结果
1、DPPH清除率
在病理条件下,过度氧化应激下产生的自由基在机体内具有化学反应性和很强的活性,可以参与一系列的连锁攻击反应,引起细胞生物膜上的脂质过氧化造成细胞损伤,主要包括脂质和细胞膜、蛋白质和酶、核酸和染色体以及糖分子的损伤。因此,具有抗氧化功能的材料可以保护人体免受氧化相关的损害,这对人类健康非常重要。DPPH自由基清除法是定义抗氧化能力最常用的方法之一。在病理条件下,机体的细胞代谢产生过量的活性氧,可对人体细胞造成严重损害。具有抗氧化性能的材料能有效减少自由基,减少对机体的损伤。多糖可以作为电子或氢气供体,大多具有消除自由基的能力。如图9所示,Gel所呈现的抗氧化效果是CBSP体现出来的,最高值接近40%。对于负载PDA基材料的水凝胶组来说,PDA是一种非常重要的类似黑色素的仿生材料,具有优良的抗氧化性,对减少自由基有协同作用,且随浓度增加,清除能力提高到90%左右。因此,PDA@Gel及CO2@PDA Gel的抗氧化效果优于Gel。综上所述,该水凝胶具有优异的抗氧化性,增强了其生物活性,扩大了其应用价值。
2、ROS清除率
通过活性氧试剂盒检测水凝胶对细胞内ROS水平的影响。其检测原理是通过细胞内装载荧光探针DCFH-DA,并被酯酶水解成DCFH,细胞内的活性氧可以氧化无荧光的DCFH生成DCF带有荧光,通过观察荧光强度进行评估细胞内活性氧的水平。如图10所示,对照组经过阳性药物刺激后产生ROS,但随着水凝胶药物的处理后,出现了不同程度的ROS清除效果,这与DPPH实验结果相互验证,表明该水凝胶具有清除自由基的能力。
3、抗菌活性
一般来说,抗菌水凝胶是具有内在抗菌效果的前体材料,在接触时产生抗菌活性,或负载抗菌剂,通过逐渐释放药物获得抗菌效果。由于受损的皮肤容易受到细菌攻击,并且随着抗生素使用的增加和患者耐药性的演变,利用新型抗菌剂治疗细菌感染非常普遍。光热抗菌疗法是新兴的一种抑制细菌的方案,具有精准治疗,副作用小,疗效强等特点。如图11(a)所示,经过近红外辐射样品10min,细菌的数量出现明显变化,Gel经过实验例1的近红外光热能力验证表明没有抑制细菌的潜能,同样比浊法实验结果也证实没有抗菌效果。PDAGel和CO2@PDA Gel在照射10min后,温度升温至接近60℃,对细菌具有很好地破坏作用,结果也表明这两组细菌悬浊液的浑浊度明显下降。从图11(b,c)的细菌生长图片中,可以直接看出PDA Gel和CO2@PDA Gel相比较与对照和Gel具有明显的抗菌的作用,PDA Gel和CO2@PDAGel对大肠杆菌及金黄色葡萄球菌的抑制率均到达90%以上,这在实际应用中具有重要意义。
实验例4水凝胶促进糖尿病伤口愈合实验
一、实验方法
1、糖尿病大鼠模型构建
1.1链霉菌毒素溶液的配制
通过称定一定的柠檬酸和柠檬酸钠试剂,并按照固定的配比配制0.1mol/L,pH4.5的柠檬酸-柠檬酸钠缓冲液,具体配制方法如下:取2.1g柠檬酸加入100ml无菌水充分溶解作为A液,2.94g柠檬酸钠加入无菌水100ml作为B液,将A液与B液按照1:1比例混合,调节pH为4.2到4.5之间。随后称取一定量的链霉菌毒素溶于该缓冲液中,得到10mg/ml链霉菌毒素溶液,用于后续糖尿病动物模型造膜。
1.2糖尿病大鼠造膜
所有的动物实验都经过西南民大实验动物管理委员会的批准。雄性大鼠经过一周的适应性饲养后用于正式实验。在禁食12h后,称量初始体重和初始空腹血糖,随后通过腹腔注射70mg/kg链脲霉素-柠檬酸盐缓冲液建立糖尿病大鼠模型,在注射72h后测量大鼠的空腹血糖,当血糖数值≥16.7mmol/ml时,记为糖尿病大鼠造模成功。
2、体内糖尿病伤口愈合评估
2.1糖尿病大鼠全层皮肤缺损染菌模型
采用全层皮肤缺损染菌模型评价水凝胶对伤口愈合的影响。将糖尿病大鼠麻醉处理后,在其背部用剃毛器剃去毛发,用适量脱毛膏在其背部裸露皮肤处均匀涂抹,约2min后用纱布去除残留毛发。用酒精对大鼠脱毛区消毒,用直径1cm的圆形打孔器打孔形成直径为1cm的圆形创面,并用手术剪进行修剪去除筋膜。每只大鼠形成四处创面,位置对称,并保持一定的间距。取50uL大肠杆菌注射到各个创面,经过8h细菌处理后形成糖尿病大鼠全层皮肤缺损染菌模型用于后续实验。
2.2实验动物分组及给药
该实验将所有动物随机分为4组,每组5只:即200ul无菌PBS溶液+近红外照射5min为空白组、200μL Gel+近红外照射5min、200μL PDA Gel+近红外照射5min和200μL CO2@PDAGel+近红外照射5min三组水凝胶处理组。用不同的水凝胶样品覆盖每只大鼠的伤口创面上,在808nm激光照射下分别照射5min。同时,用近红外测温仪记录伤口区域的温度变化,并在3、4和14天对进行拍照记录大鼠恢复情况。使用Image J图像分析软件对第3、7和14天的伤口部位的恢复情况进行拍照和测量创面大小,伤口闭合百分比按以下公式确定。将所有大鼠单笼喂养,早晚各一次,每隔三天换药直至第14天处死。
伤口闭合率(%)=(A0-At/A0)×100%
其中At和A0分别为第t天和第0天的伤口面积。
2.3皮肤组织的采集、包埋与制片
本实验选择在手术后第14天时处死动物,对创面附近的组织进行采集,并浸泡于4%多聚甲醛溶液中保存24h。然后,取皮肤组织样本进行包埋处理,首先经蒸馏水流水冲洗2h去除多聚甲醛溶液,用剪刀进行组织修块,放入包埋盒中进行梯度酒精连续脱水处理,脱水顺序首先是75%乙醇浸泡1h,85%乙醇处理1h,95%乙醇浸润1h,最后2次无水乙醇分别沉泡2h;接着进行组织透明处理分别浸润2次二甲苯,每次15min;最后浸蜡3h,将其组织置于于石蜡中包埋。取样品蜡块在切片机里制成5μm厚度的样本,经过捞片、摊片和烤片处理后用于后续相关的染色分析。
2.4病理组织学检查与免疫组织化学检测
取上述切片进行脱蜡处理,并按照标准方案进行H&E和Masson染色,固定标本在正置显微镜下观察不同样品组织的病理学变化差异,采用显微成像系统进行拍照,记录伤口组织学损伤的变化。此外,石蜡切片分别用肿瘤坏死因子-α(TNF-α)和血管内皮生长因子(VEGF)的免疫组织化学分析,最后,在正置显微镜下观察所有切片的染色结果并拍照分析。
二、实验结果
1伤口愈合分析
用糖尿病大鼠皮肤创面细菌感染模型评价水凝胶的抗菌作用和创面愈合效果。水凝胶敷料每3天更换一次,研究表明近红外照射有益于伤口愈合,为保持变量一致,在实验过程中对各个组都给予近红外治疗。各组伤口在相同时间间隔的代表性图片见图12(a)。直观来看,PDA Gel及CO2@PDA Gel的创面愈合效果在各个阶段都明显优于其他两组,CO2@PDAGel组在治疗14天后未见明显创面,相比与PDA Gel,该组可以在近红外辐射下释放CO2,通过气体传输进入组织,促进血红蛋白输送氧气到缺氧部位,改善微循环,这可能是CO2@PDAGel组在治疗过程中的优势能力。从图12(b)数据显示,治疗3天后,对照组、Gel、PDA Gel及CO2@PDA Gel组创面闭合率分别约为8%、12%、19%和24%,在前期遭受细菌感染会延长炎症阶段,阻碍愈合,因此对照和Gel组均表现出很低的愈合率;第7天,CO2@PDA Gel组创面愈合率约为65%,明显高于对照组和Gel,炎症阶段一般持续三天以上,良好的抗氧化性能有助于减少氧化应激,利于过渡到增殖期;第14天,CO2@PDA Gel组创面完全愈合,创面愈合效果明显优于Gel及PDA Gel。这些结果清楚地证明了具有抗菌抗氧化、调节微循环特性的材料有助于伤口的恢复。
2、病理组织学与免疫组织化学分析
为了探讨创伤愈合过程的生物学机制,对胶原沉积、炎症和血管生成进行了评价。为此,分别进行了H&E、Masson染色、TNF-α及VEGF免疫组化染色。病理组织学与免疫组织化学结果见图13所示,H&E染色结果显示未处理对照组的组织学切片显示明显的炎性细胞浸润,CO2@PDA Gel的炎症细胞较少。同时,胶原沉积在皮肤收缩、再上皮化和真皮初步构建中起着重要作用。通过Masson染色评价处理14天后皮肤中的胶原沉积。CO2@PDA Gel处理的皮肤组织胶原纤维大量沉积,明显更厚、更致密、定向排列程度高,细胞外基质重建和组织重塑得到改善。
此外,TNF-α免疫组化染色显示,CO2@PDA Gel组炎症或感染的迹象很少,只有少量的TNF-α分泌。此外,激活血管新生是维持再生组织不可或缺的,允许充足的营养和氧气供应,并促进细胞因子运输和细胞迁移。VEGF促进血管的生成,稳定未成熟的血管,VEGF在再上皮化、血管生成和胶原沉积中起重要作用。CO2@PDA Gel组的创面中也出现了上调,这些结果证实了CO2@PDAGel具有较好的组织修复性能。
综上所述,本发明构建了一种CO2@PDA Gel,它是以CBSP和修饰有HCO3 -的PDA纳米颗粒作为主要原料,通过Fe3+交联后形成的。良好的光热抗菌、清除自由基作用,使得材料能够更好清除糖尿病伤口的细菌等微生物,降低伤口炎症,并通过传输CO2,调节局部微循环,有利于伤口愈合。本发明的CO2@PDAGel相比于对比水凝胶Gels组和PDA Gel,具有更好的伤口愈合效果,在糖尿病引发的创面等难愈合的创面的修复中具有很好的应用前景。

Claims (10)

1.一种基于白及多糖的光热多功能水凝胶,其特征在于,它是采用如下重量份的原料制成:
羧甲基化白及多糖100份、
表面修饰有HCO3 -的聚多巴胺纳米颗粒0.5-2份、
含Fe3+盐,以Fe3+的重量份计1-4份。
2.按照权利要求1所述的基于白及多糖的光热多功能水凝胶,其特征在于,它是采用如下重量份的原料制成:
羧甲基化白及多糖100份、
表面修饰有HCO3 -的聚多巴胺纳米颗粒1份、
含Fe3+盐,以Fe3+的重量份计2份。
3.按照权利要求1所述的基于白及多糖的光热多功能水凝胶,其特征在于:在所述表面修饰有HCO3 -的聚多巴胺纳米颗粒中,HCO3 -通过Fe3+络合在所述聚多巴胺纳米颗粒的表面。
4.按照权利要求3所述的基于白及多糖的光热多功能水凝胶,其特征在于:所述表面修饰有HCO3 -的聚多巴胺纳米颗粒的制备方法包括如下步骤:
步骤a,将多巴胺在氧化条件下自聚合得到聚多巴胺;
步骤b,将所述聚多巴胺与含Fe3+盐在溶液中反应;
步骤c,分离纯化,得到聚多巴胺与Fe3+络合的纳米粒子PDA-Fe3+NPs;
步骤d,将所述PDA-Fe3+NPs与碳酸氢铵混合反应;
步骤e,分离纯化,得到所述表面修饰有HCO3 -的聚多巴胺纳米颗粒。
5.按照权利要求4所述的基于白及多糖的光热多功能水凝胶,其特征在于:步骤b中,所述反应在pH为8.4~8.5的缓冲溶液中进行;和/或,步骤d中,所述反应在0℃以下条件下反应。
6.按照权利要求1-5任一项所述的基于白及多糖的光热多功能水凝胶,其特征在于:所述光热多功能水凝胶为将所述原料在水中混合制成的。
7.权利要求1-6任一项所述的基于白及多糖的光热多功能水凝胶的制备方法,其特征在于,包括如下步骤:
步骤1,将羧甲基化白及多糖CBSP的水溶液和含Fe3+盐水溶液混合,得到CBSP/Fe3+水凝胶;
步骤2,将所述表面修饰有HCO3 -的聚多巴胺纳米颗粒加入所述CBSP/Fe3+水凝胶,即得。
8.权利要求1-6任一项所述的基于白及多糖的光热多功能水凝胶的用途,其特征在于:所述用途是在制备用于创面修复的药物中的用途。
9.一种用于创面修复的药物,其特征在于:它是以权利要求1-6任一项所述的基于白及多糖的光热多功能水凝胶为活性成分,加上药学上可接受的辅料或辅助性成分制成的。
10.按照权利要求9所述的药物,其特征在于:所述药物是用于糖尿病创面修复的药物。
CN202211613203.9A 2022-12-15 2022-12-15 基于白及多糖的光热多功能水凝胶、其制备方法、其用途及用于创面修复的药物 Active CN115607727B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211613203.9A CN115607727B (zh) 2022-12-15 2022-12-15 基于白及多糖的光热多功能水凝胶、其制备方法、其用途及用于创面修复的药物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211613203.9A CN115607727B (zh) 2022-12-15 2022-12-15 基于白及多糖的光热多功能水凝胶、其制备方法、其用途及用于创面修复的药物

Publications (2)

Publication Number Publication Date
CN115607727A CN115607727A (zh) 2023-01-17
CN115607727B true CN115607727B (zh) 2023-03-28

Family

ID=84879621

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211613203.9A Active CN115607727B (zh) 2022-12-15 2022-12-15 基于白及多糖的光热多功能水凝胶、其制备方法、其用途及用于创面修复的药物

Country Status (1)

Country Link
CN (1) CN115607727B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118217399B (zh) * 2024-05-20 2024-08-02 齐齐哈尔市中医医院(齐齐哈尔市第三医院、黑龙江中医药大学齐齐哈尔临床医学院) 一种缓解皮肤炎症的止痒组合物及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113577376A (zh) * 2021-08-10 2021-11-02 四川大学 一种双重载药多糖基自愈合水凝胶及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113577376A (zh) * 2021-08-10 2021-11-02 四川大学 一种双重载药多糖基自愈合水凝胶及其制备方法

Also Published As

Publication number Publication date
CN115607727A (zh) 2023-01-17

Similar Documents

Publication Publication Date Title
Cao et al. Biodegradable hydrogel with thermo-response and hemostatic effect for photothermal enhanced anti-infective therapy
Cam et al. Accelerated diabetic wound healing by topical application of combination oral antidiabetic agents-loaded nanofibrous scaffolds: An in vitro and in vivo evaluation study
Hu et al. Dual-crosslinked mussel-inspired smart hydrogels with enhanced antibacterial and angiogenic properties for chronic infected diabetic wound treatment via pH-responsive quick cargo release
Zhou et al. A bioactive dextran-based hydrogel promote the healing of infected wounds via antibacterial and immunomodulatory
Wu et al. Anti-oxidant anti-inflammatory and antibacterial tannin-crosslinked citrate-based mussel-inspired bioadhesives facilitate scarless wound healing
Song et al. A natural cordycepin/chitosan complex hydrogel with outstanding self-healable and wound healing properties
You et al. Together is better: poly (tannic acid) nanorods functionalized polysaccharide hydrogels for diabetic wound healing
Ren et al. hUC-MSCs lyophilized powder loaded polysaccharide ulvan driven functional hydrogel for chronic diabetic wound healing
Li et al. Injectable and self-healing chitosan-based hydrogel with MOF-loaded α-lipoic acid promotes diabetic wound healing
You et al. Harnessing a biopolymer hydrogel reinforced by copper/tannic acid nanosheets for treating bacteria-infected diabetic wounds
Tamer et al. Enhancement of wound healing by chitosan/hyaluronan polyelectrolyte membrane loaded with glutathione: In vitro and in vivo evaluations
Mao et al. Preparation and evaluation of a novel alginate-arginine-zinc ion hydrogel film for skin wound healing
Zhang et al. pH-sensitive alginate hydrogel for synergistic anti-infection
Liu et al. Bioactive wound dressing based on decellularized tendon and GelMA with incorporation of PDA-loaded asiaticoside nanoparticles for scarless wound healing
Chai et al. Regenerative antibacterial hydrogels from medicinal molecule for diabetic wound repair
Yue et al. Physical dual-network photothermal antibacterial multifunctional hydrogel adhesive for wound healing of drug-resistant bacterial infections synthesized from natural polysaccharides
Lin et al. The role and mechanism of polydopamine and cuttlefish ink melanin carrying copper ion nanoparticles in antibacterial properties and promoting wound healing
Zheng et al. An antibacterial hemostatic AuNPs@ corn stalk/chitin composite sponge with shape recovery for promoting wound healing
Zhao et al. Self-healing and shape-adaptive nanocomposite hydrogels with anti-inflammatory, antioxidant, antibacterial activities and hemostasis for real-time visual regeneration of diabetic wounds
Rostami et al. Evaluation of application of chitosan/nano selenium biodegradable film on full thickness excisional wound healing in rats
CN115607727B (zh) 基于白及多糖的光热多功能水凝胶、其制备方法、其用途及用于创面修复的药物
Li et al. Ganoderma lucidum polysaccharide hydrogel accelerates diabetic wound healing by regulating macrophage polarization
Nezhad-Mokhtari et al. Engineered bioadhesive Self-Healing nanocomposite hydrogel to fight infection and accelerate cutaneous wound healing
CN110124082A (zh) 基于马齿苋多糖及黄酮提取物的溶胀型医用生物凝胶填料
Ren et al. Antibacterial chitosan-based composite sponge with synergistic hemostatic effect for massive haemorrhage

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant