CN116791193A - 一种用于mbe的智能生长系统及其使用方法 - Google Patents

一种用于mbe的智能生长系统及其使用方法 Download PDF

Info

Publication number
CN116791193A
CN116791193A CN202310685827.XA CN202310685827A CN116791193A CN 116791193 A CN116791193 A CN 116791193A CN 202310685827 A CN202310685827 A CN 202310685827A CN 116791193 A CN116791193 A CN 116791193A
Authority
CN
China
Prior art keywords
growth
epitaxial
mbe
data
parameters
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310685827.XA
Other languages
English (en)
Inventor
王晓晖
琚海涛
刘一凡
简贤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangtze River Delta Research Institute of UESTC Huzhou
Original Assignee
Yangtze River Delta Research Institute of UESTC Huzhou
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangtze River Delta Research Institute of UESTC Huzhou filed Critical Yangtze River Delta Research Institute of UESTC Huzhou
Priority to CN202310685827.XA priority Critical patent/CN116791193A/zh
Publication of CN116791193A publication Critical patent/CN116791193A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/002Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/46Sulfur-, selenium- or tellurium-containing compounds
    • C30B29/48AIIBVI compounds wherein A is Zn, Cd or Hg, and B is S, Se or Te
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0616Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating
    • G01B11/0641Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating with measurement of polarization
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0616Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating
    • G01B11/0683Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating measurement during deposition or removal of the layer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • G01N21/211Ellipsometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/207Diffractometry using detectors, e.g. using a probe in a central position and one or more displaceable detectors in circumferential positions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/207Diffractometry using detectors, e.g. using a probe in a central position and one or more displaceable detectors in circumferential positions
    • G01N23/2076Diffractometry using detectors, e.g. using a probe in a central position and one or more displaceable detectors in circumferential positions for spectrometry, i.e. using an analysing crystal, e.g. for measuring X-ray fluorescence spectrum of a sample with wavelength-dispersion, i.e. WDXFS
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N2021/3595Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using FTIR

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

本发明公开了一种用于MBE的智能生长系统及其使用方法,用于实时检测外延材料的生长情况并进行分析,同时自动调整外延材料的生长参数,进而提高外延材料的生长质量及可重复性。该系统由原位检测系统、数据分析系统、自动控制系统及其他组件构成。原位检测系统通过椭偏仪、RHEED、红外测温仪等仪器对外延材料生长情况的进行实时检测,同时对数据进行采集并传输到数据分析系统中对数据进行人工智能处理分析,并将分析结果反馈至自动控制系统对生长参数进行实时调整。本系统实现了实时监测和自动控制MBE外延生长,解决了人工监测和控制的主观性问题,优化了MBE外延生长的流程。

Description

一种用于MBE的智能生长系统及其使用方法
技术领域
本发明涉及一种实时控制MBE生长的系统及其使用方法,尤其涉及一种运用人工智能分析和控制的系统。
背景技术
分子束外延(MBE)是一种物理沉积单晶薄膜的方法,在超高真空腔内,源材料通过高温蒸发、辉光放电离子化、气体裂解,电子束加热蒸发等方法,产生分子束流。入射分子束与衬底交换能量后,经表面吸附、迁移、成核、生长成膜。该方法的优点是使用的衬底温度低,膜层生长速率慢,束流强度易于精确控制,膜层组分和掺杂浓度可随源的变化而迅速调整。
MBE生长系统配备有多种监控设备,可以对生长过程中外延材料表面晶体结构、生长速率、外延膜厚度等参数进行检测。现阶段外延材料的生长情况通常由人工进行监测,并且生长情况的分析和参数的调整需要生长工艺师来完成,从而实现MBE外延生长过程的监测和控制。然而这样的机制具有很强的主观性,无论是外延材料生长的状况还是生长参数的调整都依赖于人的判断,而人的判断本身存在一些问题:1.分析结果受制于生长工艺师的个人经验与状态;2.生长参数的调整由人工进行,分析结果局限于人工观测的时间点及反应时间。总而言之,这样的机制生长出来的外延材料质量上存在参差,良品率无法保证,外延生长的可重复性差。
发明内容
本发明的目的是提供一种用于MBE的智能生长系统及使用方法,用于实时检测外延材料的生长情况并进行分析,同时自动调整外延材料的生长参数,进而提高外延材料的生长质量及可重复性,实现了实时监测和自动控制MBE外延生长,解决了人工监测和控制的主观性问题,优化了MBE外延生长的流程。
本发明提供的一种用于MBE的智能生长系统,由原位检测系统、数据分析系统、自动控制系统构成。
本系统的基本工作原理为:
(a)原位检测系统实时检测外延材料的生长情况。
(b)原位检测系统配套数据采集装置对数据进行采样,并且实时地传输至数据分析系统。
(c)数据分析系统接收来自原位检测系统的数据,对数据进行处理和分析,并将分析结果反馈至自动控制系统,同时对外延材料的参数和生长参数进行数据的记录和传输。
(d)自动控制系统根据分析结果自动地调整外延材料生长参数,包括衬底温度、束流比等。
本系统是反馈控制系统,形成闭环结构,原位检测系统向数据系统输出检测数据进行数据分析,数据检测系统将分析结果传输至自动控制系统进行生长参数调整,原位检测系统受到来自自动控制系统的反馈,调整检测频率。生长参数调整前后,数据分析系统将综合对比分析,若参数调整后外延生长情况不符合预期要求,则自动控制系统接收分析结果继续对生长参数进行调整,再次校准生长参数,直至符合预期要求。
本发明的原位检测系统包括但不仅限于椭偏仪、RHEED、红外测温仪、真空计、残余气体分析仪,其他适用于MBE实时检测且能够实现无损检测的装置均可以组合集成原位检测系统。
目前,一般的MBE生长系统的光学端口配备的都是传统视口,而在MBE生长过程中生长腔室内传统视口的温度较衬底温度而言比较低,外延材料分子很容易沉积在视口上影响光路及观测,所以不得不减少视口暴露时间,实时检测不能持续进行。而本发明的原位检测系统配备有MBE加热式视口,视口可从室温加热至500℃以上,有效防止生长腔内的外延材料分子沉积,可以实现对外延材料生长连续、实时的检测。
椭偏仪是一种用于探测薄膜厚度、光学常数以及材料微结构的光学测量仪器。基于椭偏仪的检测我们根据不同材料的结构及生长过程建立符合的光学函数库和椭偏拟合模型,通过实时获取材料的椭偏参数,利用人工智能技术对其进行精确快速地计算分析得到材料的组分、厚度、粗糙度等信息。
反射式高能电子衍射(RHEED)是高能电子衍射的一种工作模式。它将能量为10~50keV的单电子束掠入射到晶体表面,其反射束带有晶体表面信息,并呈现于荧光屏。本发明采用的RHEED原位检测的采样频率和间隔可调,根据外延材料外延生长的不同阶段人为设定采样频率。生长成膜阶段的采样间隔较长;成核阶段对外延材料的生长质量至关重要,且相比于生长阶段,成核阶段时间较短大约为1-2分钟,所以该阶段实施全阶段采样,采样频率较快。通过RHEED获取图案特征和衍射强度,然后在经过数据分析系统分析就可以得到薄膜的晶体结构和表面粗糙度。
其数据分析系统根据不同的材料构建相应的数据库和分析模型,同时对多种检测方式的数据进行分析,基于数据库通过模型计算得出当前状态下的最佳生长温度等参数,并将参数传输至自动控制系统对生长参数进行调整。数据库的构建原始数据来源于以往实际实验中的大量数据和专业分析人员的分析,数据库是动态的,可以不断进行优化,数据分析系统中记录的实验数据将会成为数据库优化的资粮。
数据分析系统集成了远程控制功能和信息储存功能,MBE生长过程的所有数据都会实时地上传至远程控制端,研究人员可以通过远程控制端监测MBE生长情况和远程控制系统。除此以外,研究人员可以利用远程控制端的数据研究学习,同时这些数据也将用于数据分析系统的优化。
本系统的使用方法为:
a.确定外延材料的类型及参数;
b.根据材料类型在数据分析系统中建立对应的数据库和分析模型;
d.外延材料自动生长;
e.材料非原位检测(显微镜、XRD、EPD等);
f.数据校准优化。
本发明具有如下优点:
本发明提供的一种用于MBE的智能生长系统对于多种外延材料的制备具有普适性,不同的外延材料只需在数据分析系统建立对应的数据库和改变初始设定参数即可。
本发明提供的一种用于MBE的智能生长系统实现了对MBE外延生长实时监测和自动控制,进而提高了外延材料的生长质量及可重复性,解决了人工观测存在的主观性问题,避免外延生长的参差,优化了MBE外延生长的流程,收集了大量的实验数据可以用于后续数据库的优化和更新,同时也为研究人员提供良好的样本用于研究学习。
附图说明
图1为MBE智能生长系统的工作原理图
具体实施方式
下面将结合具体实施方式来对本发明做进一步详细的说明,该实例仅用来说明本发明,并不限制本发明的范围。
实施例一
一种用于MBE的智能生长系统及其使用方法,以尺寸大小为3in的碲锌镉材料为衬底,膜厚设计为10μm,镉的组分设计为0.31的中波碲镉汞外延材料的制备为例。
选用400nm-1000nm光谱范围,全光谱范围最快采集时间为0.3秒的椭偏仪;能量范围为500eV-15keV,电子束流为30uA,电子束斑尺寸为100um-150mm,工作距离为50mm-500mm的RHEED;PhotriXTM系列红外测温仪;
数据分析系统中调取尺寸大小为3in,衬底为碲锌镉,膜厚为10μm,镉的组分为0.31的中波碲镉汞材料的数据库及对应的分析模型。
采用湿化学腐蚀法对衬底进行预处理,衬底预处理完毕转入超高真空生长腔室内进行高温热处理,紧接着生长100nm碲化镉缓冲层。设定碲镉汞外延材料的生长参数,设置衬底温度为180℃,镉源的温度为578℃,碲源的温度为423℃,汞源的温度为193℃。根据碲镉汞的生长阶段设定原位检测系统的检测频率,成核阶段每1秒进行一次采样,缓冲层生长阶段每3秒进行一次采样,生长成膜阶段每1分钟进行一次采样。
碲镉汞MBE生长全过程中,外延材料的生长状态全程由原位检测系统实时监测,并且由自动控制系统实时地对生长参数进行调整和优化,实验人员仅按时对设备的工作状态进行检查,不人为对外延材料生长参数进行调整。
外延材料生长完毕,取出样品,通过显微镜、XRD、EPD等非原位检测方式对外延材料的组分、粗糙度、膜的厚薄、晶格质量、材料缺陷等参数进行检测。光学显微下材料表面光洁平整,红外傅里叶变换光谱仪测得生长的碲镉汞材料镉的组分为0.303,厚度为9.9μm。对外延材料进行X射线双晶衍射半峰宽测试,XRD采用Cu Kα1特征谱线,从衍射图线看出晶格质量良好。将非原位检测的数据与系统原位检测的数据进行对比分析,进一步地对数据进行校准和优化。
研究人员对存储在远程控制端的数据进行分析,积累数据对数据分析系统的数据库进行优化。

Claims (9)

1.一种用于MBE的智能生长系统及其使用方法,其特征在于,该系统由原位检测系统、数据分析系统、自动控制系统组成。
2.根据权利要求书1所述一种用于MBE的智能生长系统及其使用方法,其特征在于,该系统的工作原理为:原位检测系统实时检测外延材料的外延生长情况,并对检测数据进行采样,将采样数据传输至数据分析系统进行处理和分析,分析结果反馈至自动控制系统对生长参数进行实时调整,数据分析系统将对参数调整前后的外延材料生长情况进行分析对比,并作为进一步数据分析、数据反馈的关键参数。
3.根据权利要求书1所述一种用于MBE的智能生长系统及其使用方法,其特征在于,所述原位检测系统可以表征MBE外延生长外延材料和环境的信息,具备原位、实时、无损检测的特性,包括但不仅限于目前本发明采用的椭偏仪、RHEED、红外测温仪、真空计、残余气体分析仪。
4.根据权利要求书3所述原位检测系统,其特征在于,原位检测系统配备有MBE加热式视口,防止生长腔内的外延材料分子沉积在MBE系统的光学视口上影响光路和观测,通过原位检测技术实现对外延材料生长连续、实时的反馈控制。
5.根据权利要求书3所述原位检测系统,其特征在于,基于椭偏仪的检测我们根据不同外延材料的结构及生长过程建立符合的光学函数库和椭偏拟合模型,通过实时获取外延材料的椭偏参数,利用人工智能技术对其进行精确快速地计算分析得到外延材料的组分、厚度、粗糙度等信息。
6.根据权利要求书3所述原位检测系统,其特征在于,所述RHEED原位检测的采样频率可调,根据外延材料外延生长的不同阶段可以设定采样频率,通过数据分析系统对实时的图案特征和衍射强度进行分析,得到薄膜的晶体结构和表面粗糙度。
7.根据权利要求书1所述一种实时控制MBE生长的系统及其使用方法,其特征在于,其数据分析系统根据不同的外延材料构建相应的数据库和分析模型,同时对多种检测方式的数据进行分析,基于数据库通过模型计算得出当前状态下的最佳生长温度等参数,并将参数传输至自动控制系统对生长参数进行调整。
8.根据权利要求书1所述一种实时控制MBE生长的系统及其使用方法,其特征在于,其数据分析系统集成了远程控制功能,研究人员可以通过远程控制对系统进行控制。除此以外,数据分析系统的内所有的数据都会储存在远程控制端供研究人员研究学习,同时用于数据分析系统数据库的优化。
9.根据权利要求书1所述一种实时控制MBE生长的系统及其使用方法,其特征在于,其使用方法如下:
a.确定外延材料的类型及参数;
b.根据外延材料类型在数据分析系统中建立对应的数据库和分析模型;
d.外延材料自动生长;
e.外延材料非原位检测(显微镜、XRD、EPD等);
f.数据校准优化。
CN202310685827.XA 2023-06-09 2023-06-09 一种用于mbe的智能生长系统及其使用方法 Pending CN116791193A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310685827.XA CN116791193A (zh) 2023-06-09 2023-06-09 一种用于mbe的智能生长系统及其使用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310685827.XA CN116791193A (zh) 2023-06-09 2023-06-09 一种用于mbe的智能生长系统及其使用方法

Publications (1)

Publication Number Publication Date
CN116791193A true CN116791193A (zh) 2023-09-22

Family

ID=88043249

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310685827.XA Pending CN116791193A (zh) 2023-06-09 2023-06-09 一种用于mbe的智能生长系统及其使用方法

Country Status (1)

Country Link
CN (1) CN116791193A (zh)

Similar Documents

Publication Publication Date Title
CN112016676B (zh) 一种神经网络模型预测的半导体薄膜工艺参数优化系统
Vedam Spectroscopic ellipsometry: a historical overview
EP0298080B1 (en) Method and apparatus for monitoring surface layer growth
US5766360A (en) Substrate processing apparatus and substrate processing method
CN109852947B (zh) 一种包含拉曼光谱原位测量腔的化学气相沉积装置
CN111349914A (zh) 可在线/原位监测的微波等离子体化学气相沉积设备
CN109752321B (zh) 一种抛光碳化硅衬底变质层厚度和光学常数椭偏检测方法
CN110917998A (zh) 一种金刚石生长的在线监控方法及金刚石合成设备
US9136184B2 (en) In situ optical diagnostic for monitoring or control of sodium diffusion in photovoltaics manufacturing
CN103196772B (zh) 一种在线测量pld薄膜化学计量比及各成分质量的方法
Johs et al. Real-time monitoring and control during MOVPE growth of CdTe using multiwavelength ellipsometry
CN116791193A (zh) 一种用于mbe的智能生长系统及其使用方法
WO2022148223A1 (zh) 一种利用rheed原位实时定量探测薄膜粗糙度的方法
KR20010080237A (ko) 층 처리 방법 및 장치
CN117109456A (zh) 氮化物同质外延的原位检测系统及方法
Zesch et al. Glow discharge optical spectroscopy measurement of dopant concentrations in a-Si: H
Olson et al. Integrated multi-sensor system for real-time monitoring and control of HgCdTe MBE
US7129168B2 (en) Method of estimating substrate temperature
CN203178154U (zh) 一种在线测量pld薄膜化学计量比及各成分质量的装置
Pickering Spectroscopic ellipsometry for monitoring and control of surfaces, thin layers and interfaces
Kharchenko et al. In situ and real-time characterization of metal-organic chemical vapor deposition growth by high resolution x-ray diffraction
CN117660944B (zh) 一种可实现原子精度制造的化学气相沉积自动化装备
Duncan et al. Real-time diagnostics of II–VI molecular beam epitaxy by spectral ellipsometry
Jensen et al. Integrated multi-sensor control of II–VI MBE for growth of complex IR detector structures
Zaumseil In‐situ X‐ray measurements of relaxation processes in Si1‐xGex layers on si substrate

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20230922